Downloaded by UNIVERSITY OF CALIFORNIA (BERKELEY) on June 30, 2016 | http://arc.aiaa.org | DOI: 10.2514/6.2007-6588

AIAA Guidance, Navigation and Control Conference and Exhibit AlAA -6588
20 - 23 August 2007, Hilton Head, South Carolina

CrossMark

clickfor updates

Multiple Aircraft Deconflicted Path Planning with
Weather Avoidance Constraints

Jessica J. Pannequin* Alexandre M. Bayen!
University of California at Berkeley, CA 94720 University of California at Berkeley, CA 94720

Tan M. Mitchell*
University of British Columbia, Vancouver, BC, Canada V6T 174

Hoam Chung® Shankar Sastry¥
University of California at Berkeley, CA 94720 University of California at Berkeley, CA 94720

A nonlinear model predictive control based algorithm is presented for aircraft motion planning
that will apply to converging flows of aircraft going through convective weather in the en route
airspace. Two approaches for computing the objective function are explored and compared. The
first involves a quadratic objective function while the second derives the objective function from
the solution to the Hamilton-Jacobi equation, a nonlinear partial differential equation. For given
static convective weather conditions and aircraft destinations, the solution to the Hamilton-Jacobi
equation provides a value function that corresponds to the minimum travel time from any point
in the NAS to the specified destination. In both cases, the optimal control sequence is computed
over a fixed horizon by minimizing the aircraft objective function, subject to aircraft separation
constraints, bounds on aircraft turning rates and convective weather avoidance constraints. This
algorithm results in a set of locally optimal trajectories for the aircraft considered.

Nomenclature

Model Predictive Control horizon length, (units: seconds)

Model Predictive Control time step, (units: seconds)

Model Predictive Control number of steps in horizon

Total number of aircraft considered

(Z1,91,01), .., (TN, TN, ON)] State vector for N aircraft in continuous time.

[@1, ..., 4] Turning rate vector for N aircraft in continuous time. (units: radians/second).

[(z1,y1,61), ..., (xN, YN, On)] States of N aircraft in discrete time.

[u1,...,un] Turning rate for N aircraft in discrete time. (units: radians/second).

@1,y eN] = [£1,0, s T1n—1, -, N,05 -, EN,n—1] & Position vector for N aircraft in discrete time (units: kilometers)
W1, YN] = [¥1,0, s Yl,n—1s -, YN0, ---s YN,n—1] ¥ Position vector for N aircraft in discrete time (units: kilometers)
[01,...,0n] = [01,0,--,01,n—1,--,0N,0, -, ON,n—1] heading vector for N aircraft in discrete time (units: radians)

x;,; @ position of aircraft ¢ at discrete time j, (units: kilometers)

¥i,j Y position of aircraft ¢ at discrete time j, (units: kilometers)

0;,; Heading of aircraft ¢ at discrete time j, (units: radians)

u;; Turning rate of aircraft ¢ at discrete time j, (units: radians/second)

Vi Value function of aircraft ¢, encoding the minimum time to reach destination %, (units: seconds)

&+

%@H:x;\xlzﬁ >3

v Aircraft velocity, (units: kilometers/second)
Subscript

i Aircraft index

J Discrete time index
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I. Introduction

In the current Air Traffic Control system, protocols centralized at the sector level are applied by Air Traffic
Controllers to aircraft for conflict resolution.!*2*3 These protocols prevent Losses of Separation (LOS), to
enforce safety in the National Airspace System (NAS). In practice, and under normal weather conditions,
these protocols rarely involve more than three or four aircraft at a time, due to flow management techniques
applied at the Air Route Traffic Control Center (ARTCC) level, to regulate the flow of aircraft in the NAS.
However, in the presence of convective weather, aircraft flows are disrupted and are sometimes constrained
to converge through narrow windows (in space and time) of the airspace, triggering an increase in potential
LOS. Currently, these situations are solved manually by Air Traffic Controllers.*-%:6:7-8

The long term goal of this work is to generate fully decentralized algorithms for aircraft conflict resolution
protocols that will apply to converging flows of aircraft going through convective weather, inspired by the
work of Mao et al.? in geometrically unstructured environments. In this version of the work, only protocols
centralized at the sector level will be considered. This corresponds to the current operational system in place
in the NAS.?

An input of the problem is a grid, for which convective weather data is available at periodic time in-
tervals. The problem of deconflicting aircraft paths through severe weather is approached using Nonlinear
Model Predictive Control (NMPC). Assuming constant aircraft velocity, the optimal input sequence will
be repeatedly computed over a horizon 7" by minimizing an objective function for each aircraft subject to
non-linear constraints. The input sequence represents the turning rate for each aircraft (equal to zero if the
aircraft is traveling at fixed heading).

Two approaches for computing the objective function are explored and compared. The first one consists of
a quadratic cost penalizing the remaining physical distance of all aircraft to their respective targets. The sec-
ond option incorporates the solution to the Hamilton-Jacobi partial differential equation (HJ PDE),'0:11,12,13
for a set of convective weather data as well as a destination. The solution to the HJ PDE provides a value
function which represents the approximate minimum travel time from any point in the NAS to the specified
destination. The shortest travel time incorporates avoidance of convective weather patches. In both ap-
proaches, each destination in the NAS thus has a corresponding value function, which can be either defined
by the physical distance to the destination or the minimum travel time to the destination with convective
weather constraints. The set of value functions will be integrated in the objective function used in the NMPC
routine. By penalizing the position at the end of the horizon in the objective function, the goal is to minimize
deviations due to weather avoidance or aircraft conflict resolution. In other words, given that an aircraft
deviates from its optimal trajectory to avoid convective weather or another aircraft, the resulting trajectory
is such that the point at the end of the horizon is closest to its destination. The result gives locally optimal
trajectories, while maintaining aircraft separation constraints and ensuring convective weather avoidance.

This article is organized as follows. In the next section, the formulation of the problem is summarized.
Section III presents the algorithm used in this work. Section IV provides results of the simulation and a
discussion of the limitations of the method used. Finally, conclusions are presented in section V.

II. Problem Formulation

The goal of this work is to compute a set of locally optimal deconflicted trajectories for multiple aircraft
in the presence of convective weather regions. In the present setting, these constraints will be considered
static. The generalization of this technique to dynamic convective weather (with forecast) is one of the
potential next steps of this work. These regions of convective weather become obstacles, which aircraft must
avoid, as shown for two aircraft in the example of Figure 1.
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Figure 1. Example of deconflicted trajectories for two aircraft and their respective origin-destination pairs over Florida.

II.A. Aircraft Routing

High altitude traffic in the en route airspace follows flow patterns, which have been extensively studied in
the literature.!4:15:16,17:18 For the purpose of this work, we consider entry and departure points defined
by flows in high altitude sector, which characterize high altitude traffic. In earlier work,'®18:19 we have
explained how to construct the origin-destination points based on flow analysis, as shown for the entire NAS
for flows converging to LaGuardia airport in Figure 2a. Figure 2b represents the flows over Florida which
will converge to LaGuardia airport. These graphs were obtained using aggregate modeling, for which each
edge represents one aggregate flow with significant traffic in the NAS. In Figure 1, the origin-destination
pairs represent the vertices of edges of the graph in Figure 2.

(a) Flow Network (b) Subset of Flow Network
over Florida

Figure 2. Flow network converging to LaGuardia airport.'®
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The locally optimal trajectories connecting the
origin-destination pairs are computed by minimiz-
ing an objective function. In the first approach the
objective function includes a quadratic cost which
penalizes the remaining physical distance to the tar-
get (the destination disks on the map of Figure 1).
The second approach incorporates a value function
obtained from solving the HJ PDE. For each desti-
nation, the value function represents the minimum
time to reach the destination disk. This minimum
time function is commonly used in path planning
and robotics to find an optimal trajectory of the
system to the destination, given motion constraints
due to the environment.?°'!3 In both cases, the re-
sulting locally optimal trajectories will not be con-
strained to these flows, but rather will take advan-
tage of shorter routes while avoiding regions of con-
vective weather. Traffic through sectors ZMAG6/
and ZMA65 over Florida will be considered, as
shown in Figure 3, given that available weather data
provides large regions of convective weather in those
sectors, which makes them interesting to study.

II.B. Constraints

The computation of aircraft optimal trajectories must take into
account aircraft separation constraints and convective weather
avoidance constraints that restrict their effective airspace.
These constraints are encoded directly in the formulation of
our problem. Previous work by Shim et al.,>! modeled sepa-
ration constraints between multiple autonomous helicopters as
repulsive potential fields. The main advantage of hard coding
constraints is the guarantee of resulting in a set of conflict-free
trajectories if a feasible solution is found. Another advantage
of using hard constraints rather than potential fields lies in the
fact that fine tuning the repulsive potential fields parameters
can be quite tedious. However one drawback of hard coded con-
straints is the added complexity of the optimization problem
and thus an increase in the computation time.

II.B.1. Protected Zones

One of the key requirements in air traffic control is to avoid
LOS between aircraft. In high altitude sectors, above 29,000
feet, this occurs when aircraft are separated by a distance less
than 5 nautical miles horizontally or 1000 feet vertically. For
the purpose of this project, aircraft motion is restricted to the
(z,y) plane. The proposed method can easily be extended to
the full (z,y, z) space. However, because of the layered nature
of traffic, the present study is relevant for horizontal separation
in the en route airspace, which is horizontally stratified.??

II.B.2. Convective Weather

Figure 3. High Altitude Sectors over Florida.

Figure 4. Representation of Convective
‘Weather over Florida on August 1st, 2005 at
8:14pm.

In addition to the aircraft separation constraints, aircraft are prohibited from flying in regions with severe
convective weather. Convective weather data is obtained from the National Center for Atmospheric Research
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(NCAR). The specific data we are using is called National Convective Weather Detection (NCWD) which
represents archived convective weather data. The NCWD data is obtained using the Vertically Integrated
Liquid (VIL) algorithm, which converts weather radar reflectivity into a measure of liquid water content
in a sample volume. It has been shown?? that the amount of liquid water correlates well with the level of
turbulence in a sample volume.

The data obtained from NCAR is in Meteorological Data Volume (MDV) format. In order to read the
data into Matlab, it has to be converted to network Common Data Form (netCDF) format. The netCDF
Matlab toolbox allows us to read and manipulate the convective weather files. Each file contains a matrix of
918 by 1830 elements for the whole continental United States and each entry covers an area of approximately
4 by 4 kilometers. A matrix of this type is available approximately every 5 minutes.

In addition to the VIL representation of the data, there exists corresponding discrete levels called Video
Integrator and Processor (VIP), which range from 0 to 6. The conversion between the continuous VIL data
and the discrete VIP levels is shown in Table 1. The third column shows the colormap for representing the
VIP data, as shown in Figure 4. Pilots are prohibited from flying in regions in which the convective weather
VIP index is greater than 3. In regions of convective weather, preventing LOS becomes more difficult as the
effective airspace is reduced.

Table 1. Conversion from VIL to VIP Data.

VIL (Kg/m?) 0.14 0.7 3.5 6.9 12.0 32.0
VIP Level 1 2 3 4 ) 6
Colormap (Figure: 4) | white | pale gray | light gray | medium gray | dark gray | black

II.C. Problem Statement

The problem solved in this work can be summarized as follows.

Problem:
Given the following:
1) N aircraft in a subset of the NAS, with one origin-destination pair per aircraft.
2) Aircraft Dynamics.
3) Static convective weather data.
Find: for each aircraft, an optimal trajectory, from the corresponding origin to the
destination while avoiding severe convective weather and other aircraft.

At this stage, only static weather is considered. The problem statement is detailed as follows. The
continuous time dynamics of aircraft i can be written as:

i(t) = wcosf(t)
(t) = wsind,(t) (1)

(1) = u(t).

The velocity v of each aircraft is assumed to be constant throughout the portion of the en route airspace
of interest. We are looking for the optimal input sequence u; for each aircraft in our system given constraints
described below to minimize an objective function, which will be defined next. We can assemble the individual
aircraft dynamics into a single system dynamics X = f(X, @i). The variable X represents the collection of state
variables (Z;,%;,0;) in continuous time for all aircraft (i € [1, N]). The variable @ is a measurable control
input from [0, 7] to RY and represents the collection of control sequences ; in continuous time for each
aircraft. T represents the time horizon used in the NMPC framework. We also define x¢ as the set of initial
states (position and heading) for all aircraft (similarly we define x; o as the set of initial states for aircraft 7).
The minimization of objective function J(xg, G(-)) for the entire system can be expressed as the minimization
of the sum of objective functions J;(x;,0,%;(+)) of each individual aircraft, as shown in equation (2).

<.
=
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N

mln J(x0, T ZJZ Xi,0, Ui (+)) (2)
=1

it glxo,G()) < 0.

We define (z ;”L’( )( s gf’( )()) as the continuous time (z,y) trajectory of aircraft ¢ under input control
@;(+) obtained by integration of equation (1). The optimization problem (2) is written explicitly in (3) below

with the constraints of the problem.

N

min Z Ji(xi,0,%i(+))

s.t Z—lagﬂz(t)ga i€[1,N] Vtel0,T]
R R R () R A (OB A ()) R (i,k)eC vtelo,T]
@O, 570 1) ¢ W ie[LN] vte[0,T]  (3)
20 (t) = veos 8 (1) i€[l,N] Vtelo,T)

5O @) = vsin 6O (1) i€[1,N] Vtelo,T]
0™ () = uy(t) i€ [1,N] Vtelo,T),

where we define the set C = {(k,i)|i € [1,N],k € [1,N],i # k}. The first constraint incorporates limits on
the turning rate of the aircraft. A value of a = 2.65 deg.s~! was used based on earlier work.?* The second
constraint states that all aircraft must be separated by a distance greater or equal to 7,3, = 5 nautical miles.
The third constraint expresses the fact that the trajectory of each aircraft must not enter regions of severe
convective weather, represented by the set W. The last three constraints correspond to the dynamics of the
aircraft. This formulation is standard in the path planning literature.?>

III. Algorithm

The algorithm used to compute the optimal trajectories is based on nonlinear model predictive control.
Model predictive control is defined by the computation, at every user-defined time step Atc, of the optimal
control sequence over a finite horizon.?6 The current state of the system sets the initial conditions at each
sampling point. One of the main advantages of this control scheme is its capacity to deal with nonlinearity
subject to hard constraints?” which makes it an attractive choice for multi-agent path planning.?8:29

The overall algorithm is detailed below. First, the initialization parameters are set (Number of aircraft
N, horizon length T, discretization time step At, MPC time step Atc, origin-destinations pairs and aircraft
speed v). The system dynamics are then discretized with time step At and an initial guess ug for the
discrete control sequence u is provided to the solver. Next, the solver computes the objective function and
constraints as well as the objective function gradient and constraints Jacobian repeatedly until it converges
to an optimal solution for the control input u over the time interval [0,7]. While a (locally) optimal solution
is preferred, a feasible solution is also acceptable because it guarantees a set of conflict free trajectories, which
is the main concern of this work. However due to the nonlinearity of the problem, we are not guaranteed to
find a feasible point,3° nor a unique optimal solution because the problem is nonconvex. While in practice,
feasible or optimal solutions are most often found, we need to keep this in mind to make the system robust
to these numerical issues prior to implementing it on flying agents.

All aircraft trajectories are updated by applying a subsequence of the control u over the time interval
[0, Atc]. If an aircraft has reached its target by the end of the horizon, it is removed from the optimization
routine to reduce computational complexity. The process then repeats in Atc time intervals until all aircraft
have reached their destination. The details of the algorithm are detailed in the subsequent sections.
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Initialization
Set number of aircraft N, horizon length T', discretization time step At and MPC time step Atc.
For all aircraft (i = 1,---, N), set origin-destination pair and aircraft speed v.
Discretize aircraft dynamics.
Load VIP weather data.
Main Loop: Repeat until all aircraft have reached their destination.
Solve discrete time nonlinear optimal control problem (8) on horizon 7.
Inputs:
Initial guess ug for control sequence u.
Objective function (9) and gradient of objective function (10) with respect to u.
Constraints (20),(24) and constraints Jacobian (21),(26) with respect to u.
Output:
Optimal control sequence u over time horizon [0, 7.
Advance to the next step on the horizon by Atc time intervals and update trajectories.
Remove aircraft which have reached their target at the end of their horizon.
End of main loop.
Output: Optimal trajectories for set of N aircraft from their origin to their destination.

ITI.A. Dynamics Discretization

In order to compute the optimal control sequence, the time continuous aircraft dynamics must be discretized.
The system dynamics f(X(¢), a(¢)) shown in equation (1) is continuous and Lipzchitz continuous. Therefore
the Forward Euler Method (FEM) can be applied to approximate the solution to the differential equations,®!
for i € [1, N], where aircraft ¢ has initial conditions x; 0 = (24,0, Yi,0,%,0). We call j the index corresponding
to the discretization in time. Equation (4) shows the approximated position of aircraft ¢ at time step j = 1.

Ti1 = T+ At-vcos(b;o)
Yi1 = Yo+ AOt-vsin(b; ) (4)
0i1 = Bio+ At-up.

These results can be generalized to time steps j € [2,n — 1] to find the trajectory of all aircraft (i € [1, N])
in discrete time as shown in equations (5)-(7), which is an approximation of the continuous time solution.

j—2 k
T = xio+ At-veos(bi0) + At-v Z cos |00 + AtZu”] (5)
k=0 r=0
j—2 k
Yij = Yio + At -vsin(B;9) + At -v Z sin |0; 0 + At Z ui,r] (6)
k=0 r=0
-1
91‘,]‘ = 91‘,0 + At Z WU, - (7)
r=0

In discrete time, the entire input control sequence u is in defined as the vector [uj .. .uN]T, where wu;
corresponds to the sequence of control inputs applied to aircraft ¢ over the length of horizon T'. It is in turn
defined as u; = [u;p. .- ui,n_l]T, where u; ; corresponds to the control applied to aircraft ¢ at time step j.
Once the dynamics of all aircraft are discretized, the problem statement becomes the following in discrete

time:
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M=

m&n J(xg,u) = Ji(Xi,0, Ui)
i=1
st. —a<u;<a i€[l,N] je[0o,n—1]
(@i = 2r,3)* + (Yij — Yrg)” = Tiin (i,k)eC je[0,n—1]
(@i, Vi) § W ie[l,N] jelo,n—1] (8)
Tij41 =T ; + At-vcos(b; ;) i€[1,N] jel0,n—1]
Yij+1 = Yij + Ot - vsin(0; ;) i€[l,N] jel0,n—1]
Oijt1="0i; +At-u;; i€[1,N] jelo,n—1].

In order to eliminate the equality constraints in the system, which are more difficult to enforce than
inequality contraints,3! the optimization routine is performed over the input u rather than over the states
of the aircraft x. This can easily be done because all discrete states z; ;, y;; and 6; ; for i € [1, N] and
j € [0,n — 1] are uniquely determined by the input sequence u. As a result, the objective function and the
constraints are all expressed only in terms of u and the initial conditions xg = [X1,0,- - , XN,0] Of the system.

ITII.B. Objective Function
III.B.1. First Approach: Quadratic Objective Function

The first approach consists of including a quadratic cost, which penalizes the distance between the position
at the end of the horizon and the center of the corresponding target destination(zf,y!) for each aircraft, as
shown in equation (9). In addition, an input cost of the form 1/2u’ Ru is included in the objective function
where R is a diagonal matrix whose terms are proportional to the remaining distance of each aircraft to its
corresponding destination. Including this input cost serves to reduce unnecessary oscillations in the control,
as we will see in section IV.

N
J(x0,u) = Z (Tin—1(%i.0,us) = 5)% + (Yin—1(Xi0,w:) — y)* + %uTRu. (9)
i=1

The point at the end of the horizon is penalized to ensure that deviations due to aircraft conflict resolution
and convective weather avoidance are small. The dependency x; ,,—1(Xi,0, ui) has been added to signify the
implicit dependency of z; ,—1 in the initial states x;0 = (4,0, ¥i,0,0i,0) and input u; from equation (5) and
similarly for y; ,—1 from equation (6). In later parts of the article, it may be omitted for simplicity of
notation.

In order to achieve better results,?:3% the gradient of the objective function, shown in equation (10), is
provided to the solver. If the gradient is not provided, the solver computes its own numerical approximation
of the gradient, which is less accurate. In addition to increasing the computation time, omitting the gradient
can thus lead to inaccuracies in the computed optimal solution.

dJ(x0, 1) ol ' o OTin_1 _ t Oin
T 2 (; (x27n71 xl) 8711 + (yz,nfl yz) ou + Ru (10)

il O n— Oy
S @ino1 = al) st o+ (i —ul) - st
- + Ru.
N OTi,n— Yin—
Pima @in—1 = 2) - g T Wi — U0 gut Ty

From (5) and (6) we obtain closed form expressions for the partial derivatives of (z,y) with respect to
the control sequence u shown in equations (11)-(14). The non-zero terms correspond to p =i € [1, N] and
q < (j—2) where j € [0,n — 1] and ¢ € [0,n — 1]. For all other values of p and ¢, the partial derivatives are
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equal to zero.

O s i72 k
i — A2 stin 0;1+ AtZuM p=i and ¢<(j—2) (11)
8up’q k=q r=0
O j—2 k
Hii _ pg? -chos 0;1+ AtZui’T p=i and ¢<(j—2) (12)
aup’q k=q r=0
&vij . .
Il R -2 13
iy g p#i or ¢>(j—2) (13)
i, . .

= =0 > (7 —2). 14
Dty ¢ p#i or ¢>(j—2) (14)

HI.B.2. Second Approach: Hamilton-Jacobi Derived Objective Function

The second approach for computing the objective function consists of replacing the quadratic cost penalizing
the remaining distance to the target for each aircraft by a value function V;(x; n—1(Xi,0, %i); Yin—1(Xi,0, i))-
This value function represents the cost-to-go penalty corresponding approximately to the minimum time to
reach the user-specified target of aircraft 7, as shown in equation (15). In practice, the cost-to-go is commonly
used by ATC to provide aircraft with wind optimal routes.3?

N
1
J(x0,u) = Z Vi(@in—1(%1,0, i), Yin—1(Xi,0,wi)) + QuTRu. (15)

i=1

This value function is computed by solving a static HJ PDE, (16), in a computational domain 2 representing
the airspace.

max,, (VVi(x,y) - f(z,y,u;) — (z,y)) = 0 in Q\7;
V;-(!L y) =0 in 7.

In this work, the target set 7; is chosen as a small circle centered around the destination of an aircraft
(see Figure 1). If ¢(x,y) = 1, then V;(x,y) is simply the minimum time to reach 7; from (z,y) without
taking into account convective weather regions. In order for the value function to discourage travel through
regions with convective weather, these regions are penalized with a higher cost. For the present study,
((z,y) = min(kVP@Y) £ ), where VIP(x,y) corresponds to the convective weather index at (x,y) and k
is some small constant (the examples use k = 4). The value £, is used to express the fact that above a
threshold of 3 for VIP readings, all regions are equally penalized because they are forbidden (the examples
use lpax = k3). As a result, in the present work V;(z,y) is a cost to go function related but not exactly
equal to the time to reach the destination. A separate V;(z,y) is computed for each destination disk (see
Figure 1), therefore indexed by i (destination for aircraft 7).

Algorithms for directly solving HJ PDEs similar to (16) exist,>*'13 however, their generalization to time-
dependent data and other vehicle dynamics is not trivial and implementations are not publicly available.
Instead, the value functions V;(z,y) were computed using the publicly released code in the Toolbox of Level
Set Methods.3?

As was done for the quadratic objective function, the gradient of the objective function is provided to
the solver to increase the accuracy of the results. Equation (17) details the gradient computation.

(16)

dJ(xp,u) OVi(xin—1,Yin—1) OTin—1 L OVi(xin—1,Yin—1) OYin—1 + Ru
ou 1 axm_l ou 8y,;7n_1 ou
i=
ZN OVi(Tin—1,Yi,n—1) OTin—1 OVi(Tin—1,Yi,n—1) OYi,n—1
=1 0T m—1 Oui,0 OYin—1 dui,o

= : + Ru, (17)

ZN OVi(Tin—1,Yi,n—1) OTin—1 OVi(Tin—1,Yi,n-1) OYi,n—1
=1 0T n—1 OUN n—1 OYin—1 OUN n—1

where OV;(z; n—1,¥Yin—1)/0%i n—1 should be Wkwmfbymfl) (similarly for OV (@i n-1, Yin—1)/Oin—1)-
This slight abuse of notation is used for simplicity. The main difference with the previous case lies in the
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fact that the value function V;(x;,y;) computed with the Toolbox of Level Set Methods cannot be expressed
in an analytic form, as is almost always the case when dealing with real world data. Therefore, the partial
derivatives OVi(zi n—1,Yin-1)/0%in—1 and OV;(@;n-1, Yin—1)/0Yin—1 have to be be approximated numer-
ically. The partial derivatives of the positions (x,y) with respect to the control sequence u are computed
using equations (11)-(14). The resulting gradient of the objective function thus contains numerical approxi-
mations. This poses a significant problem because the solver computes the Hessian to the Lagrangian using
the gradient provided by the user. If these gradients are not accurate, the second order derivatives can be
meaningless, which can lead to inaccurate results. The following section details the results of these two
methods.

III.B.3. Objective Function Implementation: Comparison and Results

Table 2 summarizes the advantages and drawbacks of both methods. The method using a quadratic objective
function exhibits a well defined gradient, which shortens the computation time and allows the system to scale
very well. One of the drawbacks of this method is that we do not possess a global view of the environment,
which causes the resulting trajectories to be sub-optimal.

In the case when the objective function is derived from the solution the HJ PDE, several complications
arise from the necessity to approximate the gradient numerically. These approximations cause the compu-
tation time to increase significantly as the solver exhibits difficulties when trying to converge to a solution.
In addition, these numerical approximations cause the system to be sensitive to changes in initial aircraft
position.

However, another advantage of the HJ PDE method is that winds can easily be encoded in the value
function computation, which is crucial because aircraft typically fly wind optimal routes, which can be
significantly different from shortest physical paths. But before we can successfully implement the HJ PDE
derived objective function and include the wind, we must first find means to compute the gradients more
accurately, possibly by using advanced numerical differentiation methods. Another solution could be to use
first order optimization algorithms. Both of these options will likely cause the computation time to increase
significantly.

Table 2. Comparison between objective function approaches.

Quadratic Objective Function Objective Function derived
from solution to HJ PDE

Advantages || e Gradient of objective function | e Allows for global view of

is well defined. airspace.
e Shorter computation time. e Easily extended to include
e Scales well. wind profile.

Drawbacks e Restricted to local view e Numerically approximated
of airspace. gradient, which leads to:

- Longer computation time.
- Sensitive to changes in

aircraft initial position.

III.C. Constraints

As was done for the objective function and its gradient, we provide the solver with the constraints ¢ of the
system as well as the constraints Jacobian dc with respect to the control variable u. The constraints are
supplied in the form of a vector ¢ = [¢; - - ¢n,] where ¢;(x0,u) < 0,Vi € [1, N.] where N, represents the
total number of constraints in the system. The constraints Jacobian dc, supplied to the solver is a matrix of
the form:

10 of 22

American Institute of Aeronautics and Astronautics



Downloaded by UNIVERSITY OF CALIFORNIA (BERKELEY') on June 30, 2016 | http://arc.aiaa.org | DOI: 10.2514/6.2007-6588

661 e BCNC

Bul,o 811,1,0
de = (18)
Ocy e 8CNC
OUN,n—1 OUN,n—1

HI.C.1. Input Constraints

The first constraint in (8) corresponds to a bound on the control variable u. Physically, this represents the
maximum feasible turning rate of the aircraft at cruising speed. It can be explicitely written as the following
constraint.

—a<u;;<a Vie[l,N] Vje[0,n—1]. (19)

Due to the simplicity of this constraint and the functionality of the solver,3? it is enforced by simply specifying
a lower and upper bound on the decision variable u when the optimization problem is defined, rather than
including it in the constraints vector c¢. As result, it is also not included in the constraints Jacobian dc.

II1.C.2. Collision Avoidance Constraints

The second constraint in (8) represents the required inter-aircraft minimum horizontal separation. Let
c§% ¢ (X0, 1) be defined as the constraint enforcing a safe separation between aircraft i and k at time j as
shown in equation (20).

c‘z?f‘j,k(XO,u) L2 _ (@i — x;w-)2 + (yi; — y;w-)2 <0 V(i,k)eC Vje[0,n—1]. (20)

min

The values z; ; and y; ; are defined by equations (5) and (6). Next, the Jacobian of the constraints vector
must be provided to the solver. If we look at the partial derivative of one constraint ik with respect to
the control sequence u, we obtain:

oz, j oz 4 yi,j Yk, j
(aul‘i - 3u’f,g> (T, — i) + (aulj) - au'f,f)) (Yr,j — Yij)
= -2 : (21)
ox; j oy, 4 0Yi,j Yk, j
(8UN,n]—1 o 3“1\/111) (xkvj - zivj) + (BuN,njf1 - GuNiLJ,1> (yk,j - yi,j)
The dependency on (xj0,u;) of x;; and y;; has been omitted for clarity. The values Oz; ;/0u, , and

0yi,j/0uy 4 are computed using equations (11)-(14). A column vector is obtained for each constraint to
construct the Jacobian for collision avoidance constraints.

II1.C.3. Convective Weather Avoidance Constraints:

Pilots are not allowed to fly through regions where the VIP convective weather index is greater or equal to 3,
expressed by the third constraint in (8). In order to enforce this set of constraints, we clustered convective
weather regions which are in close proximity to one another in order to enclose them in minimum area
ellipses. The process is detailed in Figure 5. Let ¢}, (X0, 1) be defined as the constraint enforcing aircraft
i to avoid weather cluster k at time j, as shown in equation (22).

o L )2
& (o) 21— T TS Wiy bzy’“) <0 Vie[L,N] Vje[o,n—1] Vke[L,Ng  (22)

Ny is defined as the number of clustered convective regions. The pair (z},y)’) corresponds to the center
of ellipse k with major axis ax and minor axis by. The position (] ;,¥; ;) is related to (v; j,y; ;) through a
rotation matrix determined by the corresponding ellipse orientation, as shown in equation (23). The angle
0y gives the orientation angle of the major axis of ellipse k with respect to the = axis.

l Tij ] _ [ xf‘z cos(f) —sin(6y) ] l JU;J —axy ] (23)
Yi,j Y.

Jr
. /
sin(fx)  cos(6k) Yii — Uk
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Using equation (23), we can write constraint c}'; , (Xo, 1) in terms of the position (z; ;,y;;) of aircraft i, as
shown in equation (24).

(i — ) cos(Or) + (yi,; — yiY) sin(6y)]?

[(yi,; — yi) cos(Bk) — (wi; — xy) sin(6x)]?

2
ag

+

b}

If we look at the partial derivative of constraint ¢;’; , with respect to the control u, we obtain:

where

W W
Oin  OCp 0w

L 96 Oy

W
¢k

81’1‘7]‘

W
9k

0Yi,;j

ou o me ou

~ 2cos(fk)
aj

2sin(6y,)
by

2sin(fy)
aj
~ 2cos(0)

by

W
0cij Omij

3yi,j 8u

9ci i Oyig

Bac,i,j 0’11/1,0

w
9¢iik _Oi;

9yi,; Ouio

Oci i OYi,;

Oz j OUN n—1

0yi,j OUN n-1

(w5, — ) cos(Ok) + (vi,; — yi ) sin(0)]

[(yij — yi ) cos(Ok) — (wi,j — x)) sin(Or)]

[(wi,; — x3) cos(Ok) + (yi,; — i) sin(Or)]

[(Yi,j — yr) cos(Ox) — (i — x ) sin(bk)] -

<0.

(28)

The values dz; ;/0up 4 and Jy; ;j/0u, , are computed using equations (11)-(14). A column vector is
obtained for each constraint to construct the weather avoidance constraint Jacobian.

IV. Results

One of the challenging aspect of this work was to generate an efficient implementations of the proposed
algorithms. We decided to use the Tomlab software. Tomlab is an optimization environment which can
interface with Matlab.?2 The two main advantages of this package is the reduction of computational time as
well as the added access to different types of solvers. This final version using the SNOPT solver,?® proved
to be faster, more robust to changes in initial aircraft positions and provide better scalability. The results
detailed in the following sections were obtained using this setup. Moreover, all results shown were computed
using the quadratic objective function.
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IV.A. Conflict Resolution

The collision avoidance portion of the algorithm was first tested in an environment without any convective
weather. Results with 16 aircraft for different initial conditions and horizon lengths are shown in Figure 6.
The simulation parameters for the four cases are shown in Table 3. In all results, one unit on the axis of
Figure 6 corresponds to a distance of 1 km. Thus, given that the speed of the aircraft, at cruising altitude,
is set to 230 m.s~!, based on previous work,?* the travel time of each aircraft is approximately 1 hour when
the effective aircraft considered covers a region of 800 x 800 km. The approximate travel time is shortened
to approximately 30 min in the cases when the airspace is reduced to 400 x 400km, as shown in Figures 6c¢-d.

Table 3. MPC Simulation Parameters for Collision Avoidance Results.

Figure | T (s) | At (s) | v- At (nm) | Ate (s) | Effective Airspace (km?)
6a 256 16 1.98 32 800 x 800
6b 256 16 1.98 32 800 x 800
6¢ 256 16 1.98 32 400 x 400
6d 128 16 1.98 32 400 x 400

In the case of Figure 6a, the aircraft are set up in an approximate circular configuration such that they
would all potentially collide at the same point. The same simulation was repeated for an asymmetrical
configuration as shown in Figure 6b. These two simulations were inspired by the 16 maneuvers results
shown in earlier work by Hu et al.?? When comparing the results of Figures 6a-b with previous results,??
fewer oscillations in the control parameter as well as less abrupt changes in heading can be observed in the
MPC case. Figure 6¢ displays the same first simulation but with a reduction in the effective airspace to
400 x 400. In these first three cases, all MPC iterations exit either because an optimal or a feasible solution
has been found. Therefore we are guaranteed that all constraints are respected and no LOS have occurred.
While an optimal solution is preferred, a feasible solution is satisfactory because the main concern is to avoid
LOS and collisions with severe convective weather.

The simulation shown in Figure 6¢c was repeated with a horizon reduced by half from 256 seconds to
128 seconds. The result is displayed in Figure 6d. While no constraint violations occurred, it is important
to note that in this case, one MPC iteration resulted in the error message Too many iterations. All other
iterations for the same simulation exited because an optimal or feasible point had been found. Thus while we
may have been fortunate to avoid an LOS in this case, such an error message does not guarantee feasibility.
The horizon length is the only difference between the simulations shown in Figures 6¢ and d. This shows
that the length of the horizon is an important tuning parameter for the MPC framework. It is necessary to
remember that since we are dealing with a nonlinear framework and constraints, we are not guaranteed to
find a solution. However most of the time, given the correct MPC tuning parameters, optimal or feasible
solutions are found.

Figure 7 details the trajectory displayed in Figure 6¢. The circle around the current position of each
aircraft corresponds to the protected zone of the aircraft. The actual horizontal separation constraint between
aircraft is 5 nautical miles which corresponds to 9.26km. This type of test is standard in the multiple vehicle
motion coordination literature.3¢:22:21,37.3,38

In addition to choosing the appropriate horizon length, the value of the matrix R in the input cost term
1/2u” Ru is an important tuning parameter for solving the optimization problem. Figure 8 shows the result
for three different values of R for the simulation shown in Figure 6¢c where the system is comprised of 16
aircraft. The horizon length chosen is 256 seconds with a time step At = 16 seconds and a control update
interval Atc = 32 seconds. Figure 8a displays the resulting trajectories for no input cost. While no violations
occur and all aircraft reach their destination, the trajectories appear chaotic with many unnecessary loops. It
appears that introducing the input cost penalizes these loops, which are no longer seen when a proper input
cost is included, as shown in Figure Sc, where the value of R is chosen to be 102 times the remaining distance
to the target. However when the value of R becomes larger, the input cost dominates the cost penalizing the
remaining distance of an aircraft to the target. Thus after deviating to avoid other aircraft, each aircraft no
longer has an incentive to turn back fast enough towards its target and often misses is completely as shown
in Figure 8b, where the value of R is 10* times the remaining distance to target. Thus is it necessary to
perform careful parameter tuning prior to implementing the system.
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Figure 6. Trajectories generated for 16 aircraft without convective weather avoidance. The larger circles correspond
to the aircraft destinations. (One unit on the (z,y) axes corresponds to 1km).

One of the main challenges in the implementation of the algorithm was the minimization of the computa-
tion time in view of using it in real-time on actual aircraft in the future. All simulations were performed on
a Pentium 4 processor with a 3.2GHz CPU and 504MB of RAM. Table 4 shows results for the computation
time for different numbers of aircraft in the system, in the absence of weather avoidance constraints. The
computation times displayed correspond to the time needed to converge to a solution u over the horizon T
This process repeats until all aircraft have reached their destination. However, we are interested in the time
required to converge to a solution because it must be smaller than the control update interval Atc in order
to implement the algorithm in real time. Three computation times are shown, the minimum, maximum
and average time required to converge to a solution. As can been seen with these results, when the system
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Figure 7. Flight tracks generated for 16 aircraft without convective weather avoidance. (One unit on the (z,y) axis
corresponds to 1km). The larger circles correspond to the aircraft destinations while the smaller circles located at the
current position of each aircraft refers to the protected zone around an aircraft, which must not be entered by another
aircraft. The complete set of trajectories for this simulation is shown in Figure 6c.
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reaches 16 aircraft, the longest iteration took 70.31 seconds which would not allow an implementation in
real time with a control update interval of 32 seconds, even though the average time is below this limit at
21.67 seconds. This issue would most likely be solved by using a faster computer. However it is important to
consider that a few iterations may take significantly longer than the average, due to a larger number of active
contraints. Additional protocol may need to be included in the algorithm prior to real-time implementation
to address this issue.

Table 4. Computation time without weather avoidance.

# Aircraft N | min time (s) | max time (s) | av. time (s) | Control update interval Atc (s)
1 0.03 0.14 0.04 32.0
6 0.25 5.34 0.59 32.0
12 1.78 28.5 3.93 32.0
16 4.46 70.31 21.67 32.0

IV.B. Conflict Resolution and Convective Weather Avoidance

Once the aircraft collision avoidance portion of the code was tested, convective weather avoidance was
included in the problem. Figure 9 shows the resulting trajectories for two sets of O-D pairs for 20 aircraft.
These configurations were chosen to mimic aircraft entering and leaving sectors as detailed in Figure 10
and 11. For these simulations, a shorter horizon length of 128 seconds was sufficient for aircraft to maintain
the minimum separation between all other aircraft as well as to avoid convective weather regions with a VIP
index greater or equal to 3. The larger circles of Figure 9 represent the target destination and the ellipses
correspond to the boundary enclosing convective weather which aircraft must not cross. Once aircraft have
reached their destination, they are removed from the system and no longer displayed on Figures 10 and 11.
As an example, notice that aircraft A9 reached its target before 50 time steps and it thus not present in
Figure 10b.

As shown in Figure 9, all aircraft successfully reach their destination while avoiding convective weather
regions. The other difference between the two simulations shown in Figure 9 is the separation required from
severe convective weather. In the first case, shown in Figure 9a, aircraft are forbidden to fly through regions
where the VIP convective weather index is greater or equal to 3. However, they are allowed to fly right
next to these forbidden regions. On the other hand, Figure 9b displays a more conservative constraint for
weather avoidance. In this case, not only are convective weather regions with a VIP index greater or equal
to 1 enclosed in the bounding ellipse, but in addition a safety zone around these regions is included as well.
In these simulations, the level of separation from convective weather regions is enforced at the system level
by changing the range of influence during the dilation and erosion steps in the weather clustering process
before computing the minimum area ellipses. However a different weather avoidance separation constraint
could easily be enforced at the aircraft level by changing the bound on the individual weather constraints.

The simulations shown in Figure 9 are detailed in Figures 10 and 11 respectively, overlapped with the
map of Florida and its high altitude sectors. Again the larger black circles correspond to the target disk
for each aircraft. The smaller circles placed at the current positions of each aircraft represent the minimum
separation required between aircraft. In addition to the current position, the previous 24 time steps are
displayed as well, representing the past 3 min and 20 seconds of flight time at cruising altitude. These
figures allow us to better verify the aircraft minimum separation constraints are respected.

Table 5 shows results for the computation time for different numbers of aircraft in the system, in the
presence of weather avoidance constraints. As in the conflict resolution case, the computation times displayed
correspond to the time needed to converge to a solution u over the horizon 7. Three computation times
are shown, the minimum, maximum and average time required to converge to a solution. When the system
reaches 16 aircraft, the longest iteration took 43.68 seconds. This would not allow an implementation in real
time with a control update interval of 32 seconds, even though the average time is below this limit at 29.16
seconds. It it interesting to compare these times with the ones without weather avoidance constraints. We
notice that the minimum and average times are smaller in the absence of weather, which is expected because
we are dealing with fewer constraints. However the maximum time is greater for pure conflict resolution.
This shows that the computation time also depends on the number of active constraints, which is influenced
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Figure 8. Affects of the tuning parameter R. All simulations were performed with identical origin-destination pairs
for 16 aircraft, a horizon length of 256 seconds, a time step of 16 seconds and a control update interval of 32 seconds.
(One unit on the (z,y) axes corresponds to 1km).
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Figure 9. Examples of deconflicted trajectories for 20 aircraft in the presence of convective weather for different weather
avoidance constraints. (One unit on the (z,y) axes corresponds to 1km).
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(a) 25 Time Steps (3 min, 20 sec). (b) 50 Time Steps (6 min, 40 sec).

(¢) 75 Time Steps (10 min, O sec). (d) 100 Time Steps (13 min, 20 sec).

Figure 10. Detailed example of trajectories generated for 20 aircraft over Florida, for a tight bound around convective
weather regions.
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(a) 25 Time Steps (3 min, 20 sec). (b) 50 Time Steps (6 min, 40 sec).

(¢) 75 Time Steps (10 min, O sec). (d) 100 Time Steps (13 min, 20 sec).

Figure 11. Detailed example of trajectories generated for 20 aircraft over Florida, for a conservative bound around
convective weather regions.
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by the aircraft origin-destination configuration. For the conflict resolution simulations, aircraft were placed
such that they would all potentially collide in the center (Figure 6). This set-up leads to an increase in the
number of active constraints. On the other hand, the simulations with weather avoidance dealt with more
realistic configurations where 16 aircraft colliding at one point would rarely, if ever, be seen. However in
both cases, additional protocol should be included prior to real time implementation to deal with those few
iterations which take longer than average to converge to a solution.

Table 5. Computation Time.

# Aircraft N | min time (s) | max time (s) | av. time (s) | Control update interval Atc (s)
6 1.26 3.62 1.93 32.0
12 7.12 18.64 11.41 32.0
16 12.12 43.68 29.16 32.0
20 33.89 170.62 57.09 32.0

V. Conclusion

Nonlinear model predictive control was applied to a multi-agent system to compute a set of locally
optimal trajectories in the presence of convective weather in a two dimensional space. Two approaches
for computing the objective function were explored. The first consisted of a quadratic cost penalizing for
each aircraft, the distance between the position at the end of the horizon and the target center. The
second method incorporated the solution to the Hamilton-Jacobi nonlinear partial differential equation for
a given destination and convective weather data. The solution to this PDE results in a value function which
represents approximately the minimum travel time from any point in the NAS to the specified destination.
One advantage of this method lies in the fact that the value function derived from the HJ PDE provides a
global view of the environment with no local minima. Furthermore, it can incorporate any user defined cost
such as minimum time or minimum fuel.

However this value function cannot be expressed in analytical form unlike the quadratic cost function. In
order to increase the accuracy of the results, the gradients of the objective function and the constraints are
provided to the solver, which in turns uses these gradients to approximate the Hessian of the Lagrangian.
In the case of HJ PDE derived objective function, the numerically approximated gradients lead to results,
which are not always well behaved. These numerical approximations cause the computation time to increase
significantly as the solver exhibits difficulties when trying to converge to a solution. They also cause the
system to be sensitive to changes in aircraft initial positions.

The next goal of this work is to incorporate a third dimension in the system as well as including time
varying weather patterns and wind profiles. The added dimension will certainly cause a substantial increase
in the computation time due to the introduction of a second decision variable. A tradeoff will need to be
examined between the added computation time and the usefulness of extending the framework to three
dimensions, given the layered structure of high altitude traffic. Introducing time varying weather patterns
will present interesting challenges such as choosing proper methods for weather forecasting and dealing with
weather avoidance constraints, which change over the optimization horizon.

In the future, including wind data in the current framework will be valuable because aircraft typically
chose to fly wind optimal routes. In this case, having a global view of the airspace will become crucial. Also,
incorporating winds in this study will enable the use of additional user defined costs such a fuel consumption.
One advantage of the HJ PDE method lies in the fact that the system can easily be extended to include wind
profiles. However before successfully implementing this method, means for computing accurate numerical
gradients must be found or first order optimization algorithms must be explored as an alternative.

This work presents a centralized protocol for multiple aircraft aircraft routine, which is similar to the
current operational system in the NAS. This general class of methods usually suffers from limited scalability
and poor robustness. In addition, if designed to be applied from the ground, they are subject to equipment
failure at the Air Route Traffic Control Center level. One possible solution to this problem is to develop fully
decentralized conflict resolution algorithms, which is the motivation for the long term goal of this work. Once
the time varying centralized version of the algorithm is built and tested in three dimensions, a decentralized
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protocol will be designed to be applied in the Next Generation Air Transportation System (NGATS).
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