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Abstract—Single-lane car-following is a fundamental task in
autonomous driving. A desirable car-following controller should
keep a reasonable range of distances to the preceding vehicle and
do so as smoothly as possible. To achieve this, numerous control
methods have been proposed: some only rely on local sensing;
others also make use of non-local downstream observations. While
local methods are capable of attenuating high-frequency velocity
oscillation and are economical to compute, non-local methods
can dampen a wider spectrum of oscillatory traffic but incur a
larger cost in computing. In this article, we design a novel non-
local tri-layer MPC controller that is capable of smoothing a
wide range of oscillatory traffic and is amenable to real-time
applications. At the core of the controller design are 1 ) an
accessible prediction method based on ETA estimation and 2 ) a
robust, light-weight optimization procedure, designed specifically
for handling various headway constraints. Numerical simulations
suggest that the proposed controller can simultaneously maintain
a variable headway while driving with modest acceleration and
is robust to imperfect traffic predictions.

Index Terms—Autonomous vehicles, predictive control for lin-
ear systems, hierarchical control.

I. INTRODUCTION

Despite significant progress in recent years, autonomous
driving still remains a challenging problem. Among many
problems in this area, single-lane car-following is arguably a
fundamental quest.

It is widely known that human car-following is inherently
sub-optimal. Suigiyama and Tadaki have demonstrated in [1],
[2] that stop-and-go waves could emerge in a circular platoon
of human vehicles without the presence of physical bottlenecks
or lane changes.

To improve, various local controllers have been pro-
posed [3]–[7]. For example, Luo has described a model
predictive control (MPC) formulation for fuel-efficient, fixed-
headway adaptive cruise control [5]. Kerner et. al. have
presented a variable-headway controller that can attenuate
propagation of stop-and-go waves [6]. In addition, Stern et.
al. have demonstrated that a single vehicle controlled by a
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proportional-integral controller is able to dampen stop-and-go
waves induced by human drivers in a circular platoon [7].

Beyond local methods, various approaches on non-local
controllers have been proposed in an effort to attenuate a
wider spectrum of oscillations, such as [8]–[10]. The key
advantage of non-local controllers lies at the fact that with
non-local knowledge of downstream traffic it can react in
advance to dampen non-local oscillations. For instance, [9],
[10] introduced various variable-headway MPC methods to
achieve smoother car-following by using information from
downstream traffic lights.

A common feature of the non-local methods above is
a bi-layer structure consisting of a prediction layer and a
control layer. To predict, these methods require dedicated
sensing infrastructure and either vehicle-to-infrastructure [9],
[10] or vehicle-to-vehicle [8] communication. While non-local
methods may have higher performance upper bound, they are
also more prone to errors [11]. Yet, mitigating the impacts of
erroneous predictions has been largely overlooked in previous
works.

To address prediction errors, a common idea is to subdivide
the control layer into a planning layer and a tracking layer.
First, the planning layer produces a reference trajectory using
the forecast from the prediction layer. Then, the tracking
layer attempts to track this reference without violating certain
performance constraints. This approach has found many appli-
cations in transportation outside of car-following. For example,
[12], [13] have applied this idea for autonomous intersection
coordination.

Adopting this idea of planning-then-tracking, we propose a
novel hierarchical MPC controller, consisting of a prediction
layer, a planning layer, and a tracking layer. The core MPC for-
mulation assumes the form of a linearly constrained quadratic
program (LCQP). Due to the tri-layer design, the controller
is robust to prediction errors. In contrast to [9], [14], the
method does not require dedicated sensing and communication
infrastructure for prediction. Rather, it only uses an estimated
time of arrival (ETA) estimator, which is commonly accessible
from mainstream map service providers and needs only cellular
network. In addition, compared to [9], [10], our method admits
a more flexible formulation of headway constraints and is
better understood when it comes to theoretical properties such
as optimality and feasibility.

We regard the primary contribution of the paper as a novel



tri-layer MPC design, along with a comprehensive numerical
study that demonstrates its robustness to prediction errors. At
the code of the MPC design are: 1 ) A simple, accessible
prediction method using an ETA estimator and 2 ) A robust,
light-weight LCQP formulation.

We state the problem of the two-vehicle car-following in
Section II. Next, we formally define and analyze the tri-
layer hierarchical MPC control scheme in Section III. We
evaluate the performance of our MPC controller via numerical
simulations in Section IV and discuss the numerical results in
Section V. Lastly, we conclude our findings in Section VI.

II. PROBLEM STATEMENT

Consider a two-vehicle setup, where a considered vehicle
follows a preceding vehicle that travels along a path of length
L. Denote the initial and final times of the trip as t0 and tf ,
respectively.

Let the state of a vehicle be x :“ rs vsJ, where s and
v represent the position and speed of a vehicle, respectively.
Define a as the acceleration of a vehicle. Let ` be the length
of a vehicle. We use superscript to identify to which vehicle
a variable belongs, where the considered vehicle is indexed
as one and the preceding vehicle zero. Thus, x1 refers to the
state of the considered vehicle. Let the initial position of the
considered vehicle be w0, that is, s1pt0q :“ w0. Let the initial
position of the preceding vehicle be w1, that is, s0pt0q :“ w1.
Let wf :“ w1 ` L. Then, s0ptf q :“ wf . The two-vehicle
scenario is illustrated in Figure 1.

s
w0 w1 w2

. . . wf´1 wf

x1, a1, `1
Consid. Veh.

x0, a0, `0
Preced. Veh.

∆s

L

RADARETA

Fig. 1: Scenario of the two-vehicle car-following problem. At
t0, the considered vehicle is at w0 and the preceding vehicle at
w1. The preceding vehicle travels through a set of way points
pw1, w2, . . . , wf q, where each pair of consecutive way points
are spaced ∆s apart, barring boundary condition.

For the considered vehicle to properly follow the preceding
vehicle, we impose the following five requirements. First and
foremost, to prevent collision, we constrain the space headway
between the two vehicles to be greater than some minimal
headway hminptq : R Ñ Rě0. Next, to follow the preceding
vehicle, we constrain the space headway to be smaller than
some maximum headway hmaxptq : R Ñ Rě0. The third
constraint requires the speed of the considered vehicle to fall
within some speed limits rvmin, vmaxs. Next, we constrain
the acceleration of the considered vehicle to be bounded
within some range ramin, amaxs. Last but not least, among
all trajectories that satisfies the constraints above, we select
one that is the smoothest, as measured by `2-norm of the
acceleration.

We summarize the above specifications in Problem 1.

Problem 1. Provided s0ptq for t P rt0, tf s with some finite
tf , determine a trajectory of least acceleration in `2-norm
for the considered vehicle s1ptq for t P rt0, tf s such that
1) min@t s

0ptq ´ s1ptq ě hminptq, 2) max@t s
0ptq ´ s1ptq ď

hmaxptq, 3) v1ptq P rvmin, vmaxs for all t, and 4) a1ptq P
ramin, amaxs for all t.

With the problem stated above, we present the proposed
controller in the next section.

III. OPTIMAL CAR-FOLLOWING CONTROLLER

In this section, we present a hierarchical MPC scheme
consisting of 1) a prediction layer, 2 ) a planning layer, and
3 ) a tracking layer. The layered controller design is illustrated
in Figure 2. We present the details of the three layers below.

Prediction Layer

Planning Layer

Tracking Layer

Plant

Predicted traj. ŝ0ptq

Planned accel. ǎ1ptq

Actual accel. a1ptq x0ptq
x1ptq
a0ptq
(10 Hz)

Updated
predictor
state
(1 Hz)

Fig. 2: Diagram of the MPC controller design. Prediction layer
and planning layer are invoked every 1 second. Tracking layer
is triggered every 0.1 second.

A. Prediction layer

The prediction layer predicts the trajectory of the preceding
vehicle based on an ETA estimator. Because the ETA estimator
uses downstream information, it renders the controller non-
local.

Define a way point every ∆s from s0ptq to s0ptq` l ¨∆s at
some time t P rt0, tf s and for some spatial receding horizon
l ¨ ∆s ą 0. Non-integer l indicates that the spatial horizon
cannot be evenly divided by ∆s. Collect all way points into
a sequence, we have Wptq :“ pw1ptq, w2ptq, . . . , wl`1ptqq “
ps0ptq ` i ¨∆s | i “ 0, 1, . . . , lq. For convenience, we assume
wl`1 ď wf .

Define pT0ptq as the corresponding ETA set for the preceding
vehicle, that is, pT0ptq :“ pt01ptq, t̂

0
2ptq, . . . , t̂

0
l`1ptqq, where

t0i , t̂
0
i are the true and estimated arrival times of the preceding

vehicle at the way point wi P Wptq. For the problem to be
well-posed, we require both true and estimated arrival time
sequences to be strictly increasing.

We assume there exists an ETA estimator1 f : Wptq Ñ
pT0ptq that estimates the arrival time of the preceding vehicle at
each way point in Wptq. To model prediction errors, we assume

1Common ETA service providers include Google Maps, Waze, INRIX, and
Garmin.
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Fig. 3: Specification of the receding-horizon control scheme.
The prediction layer has a fixed spatial horizon and a variable
temporal horizon. The planning layer has a temporal horizon
m. The tracking layer has a fixed temporal horizon n.

that the relative estimation error is uniformly distributed with
an average at one and a radius of σ, that is,

t̂0i`1 ´ t̂
0
i

t0i`1 ´ t
0
i

„ Up1´ σ, 1` σq, i “ 1, 2, . . . , l,

where t̂01 “ t01. We use fσ to denote that an ETA estimator f
has an error radius of σ.

With Wptq and pT0ptq “ fσpWptqq, we can then generate a
predicted trajectory for the preceding vehicle ŝ0 : rt01, t̂

0
l s Ñ

rs0ptq, s0ptq ` l ¨ ∆ss using a standard interpolation method.
The above receding horizon design is illustrated in the s and
t̂0 axes of Figure 3.

B. Planning layer

The planning layer plans a reference trajectory for the
considered vehicle based on the predicted trajectory of the
preceding vehicle.

With ŝ0ptq predicted by fσ , we can derive the following four
trajectories: 1 ) ŝ´t ptq :“ ŝ0pt ´ ∆t´q: predicted envelope of
some minimal time headway ∆t´, 2 ) ŝ`t ptq :“ ŝ0pt´∆t`q:
predicted envelope of some maximal time headway ∆t`, 3 )
ŝ´s ptq :“ ŝ0ptq ´ ∆s´: predicted envelope of some minimal
space headway ∆s´, and 4 ) ŝ`s ptq :“ ŝ0ptq ´∆s`: predicted
envelope of some maximal space headway ∆s`. The above
four trajectories are illustrated in Figure 4.

While many possible designs are possible, in this study we
select the minimal and maximal headway envelopes as follows

ŝmin

´

t |W, pT0
¯

:“ max
`

min
`

ŝ´s ptq, ŝ
´
t ptq

˘

, ŝ`s ptq
˘

,

ŝmax

´

t |W, pT0
¯

:“ min
`

max
`

ŝ`s ptq, ŝ
`
t ptq

˘

, ŝ´s ptq
˘

.
(1)

The area between ŝminptq and ŝmaxptq is shaded in green in
Figure 4. Consequently, the minimum and maximum headways
are

hminptq “ ŝ0ptq ´ ŝmin

´

t |W, pT0
¯

,

hmaxptq “ ŝ0ptq ´ ŝmax

´

t |W, pT0
¯

.
(2)

The objective of the design in (1) is to generate smooth car-
following without falling far behind nor getting too close.
Compared to [9], [10], our formulation is stricter, which leads
to a tighter yet still safe and smooth car-following.

Now, let m be the temporal planning horizon and ∆tp be
the temporal planning resolution. For all ip “ 0, . . . ,m, denote

∆t´
∆t`

∆s´
∆s`

t

s
ŝ0ptq

ŝ´
s ptq

ŝ´
t ptq

ŝ`
s ptq

ŝ`
t ptq

Fig. 4: Headway envelope design. ŝ0p¨q is the predicted tra-
jectory of the proceeding vehicle. ŝ´s p¨q, ŝ

`
s p¨q are estimated

minimum and maximum space headway envelopes, respec-
tively. ŝ´t p¨q, ŝ

`
t p¨q are estimated minimum and maximum time

headway envelopes, respectively. The shaded region represents
the feasible set in space and time.

tpip :“ t01` ip∆tp. Non-integer m indicates that t̂0m´ t
0
1 cannot

be evenly divided by ∆tp.
Define the planned states qX1p and the planned accelerations

qU1p of the considered vehicle as follows:
qX1p
m :“ tx̌1ptp0q, x̌

1ptp1q, . . . , x̌
1ptpmqqu,

qU
1p
m´1 :“ tǎ1ptp0q, ǎ

1ptp1q, . . . , ǎ
1ptpm´1qu.

(3)

Here, we introduce the check accent x̌ to denote that a variable
x is a planned decision variable.

With everything defined above, we plan for the states
and accelerations of the considered vehicle via the following
LCQP:

min
X

α
m´1
ÿ

ip“0

´

ǎ1ptpipq
¯2

` β
m
ÿ

jp“1

´

ξpjp

¯2

` γ
m
ÿ

jp“1

´

ζpjp

¯2

(4a)

s.t. x̌1ptp0q “ x1
0, (4b)

x̌1ptpip`1q “ Ap
ip
¨ x̌1ptpipq `Bp

ip
¨ ǎ1ptpipq, (4c)

0 ď ξpjp , š
1ptjpq ´ ŝmin

´

tjp |W, pT0
¯

ď ξpjp , (4d)

0 ď ζpjp , ´š
1ptjpq ` ŝmax

´

tjp |W, pT0
¯

ď ζpjp , (4e)

vmin ď v̌1ptpjpq ď vmax, (4f)

amin ď ǎ1ptpipq ď amax, (4g)

where

X :“
!

qX1p
m ,

qU
1p
m´1, tξ

p
jp
um1 , tζ

p
jp
um1

)

,

Ap
ip

:“ e
Aptpip`1´t

p
ip
q
, A “

“

r0 0sJ r1 0sJ
‰

,

Bp
ip

:“

ż tpip`1

tpip

e
Aptpip`1´τqdτ ¨B, B “ r0 1sJ,

for ip “ 0, . . . ,m´1 and jp “ 1, . . . ,m. The receding horizon
design is illustrated in the tp axis of Figure 3. We have W, pT0,
α, β, γ, and x1

0 as the inputs to the optimization program,
where α, β, γ P Rą0, α ` β ` γ “ 1, and x1

0 is the initial
state of the considered vehicle.

In (4a), the first term penalizes large accelerations, while
the second and third term, coupled with (4d) and (4e), regu-
late the vehicle inside the admissible space headway ranges.
Constraints (4b) and (4c) impose kinematic constraints using



zero-order hold. Lastly, constraints (4f) and (4g) impose speed
and acceleration limits.

Proposition 1. If the feasible set is nonempty, problem (4) has
unique global optimum.

Proof. Because α, β, γ ą 0, the objective function (4a) is
strongly convex. By construction, the feasible set is a poly-
hedron, which is also convex. Therefore, a direct application
of Lemma 8.2 and Theorem 8.6 in [15] reveals that if the
feasible set is nonempty, problem (4) has an unique global
optimum.

Proposition 2. For some initial time t0, if the feasible set
of problem (4) is nonempty, then its corresponding receding-
horizon policy has a solution for all t ą t0, that is, it is
persistently feasible.

Proof. To show that problem (4) is persistently feasible, it
suffices to show that it has a solution at every future time step.
Because the feasible set is initially nonempty, the problem has
a solution at t0. For every other time step t ą t0, it is easy to
verify that zero acceleration is a feasible point due to the fact
that constraints (4d) and (4e) are soft. Therefore, it follows that
problem (4a), when repeatedly applied in receding horizon,
always stays feasible.

Remark 1. When the initial velocity is too high or too low,
the feasible set of (4) will become empty. For example, when
the initial velocity is greater than vmax` amax∆tp, there will
be no acceleration within the actuation limits that can steer
the velocity below vmax in the next time step. To prevent any
chance of infeasibility, we can replace the hard constraints on
velocity with suitable soft constraints.

Remark 2. Because the constraints on minimum headway
are soft, it is possible for the considered vehicle to violate
constraint (4d). Therefore, it is theoretically permissible for
the preceding vehicle to collide with the preceding vehicle.
Note that this is chosen by design because the hard constraint
version of (4d) can never be guaranteed in practice due
to irregularity of human driving and inevitable errors in
prediction. Therefore, the presented soft constraints in (4d)
should be viewed as a “best-effort” attempt to respect the
minimum headway requirement.

Furthermore, we briefly comment on how constraints (4d)
and (4e) can be extended to account for cut-ins and cut-outs.
For example, a possible design is illustrated in Figure 5. Under
this design, the considered vehicle will not overreact when a
discontinuous change occurs in the position of the preceding
vehicle. Rather, it gradually recovers to a comfortable headway
over time. With the help a switching condition, this policy can
be combined with that of (1) to form a hybrid MPC controller
to perform car-following with cut-ins and cut-outs.

C. Tracking layer

To handle prediction errors, an additional tracking layer is
introduced to track the planned accelerations and to guard the
considered vehicle from imminent collisions.

∆s˚

∆s˚

Cut-In

t

s

∆s˚

∆s˚

Cut-Out

t

s

ŝ0ptq

ŝminptq

ŝmaxptq

Fig. 5: Headway envelope design to handle cut-ins and cut-
outs. Left design is for cut-ins and right for cut-outs. The
proposed designs aim to to keep a comfortable headway ∆s˚

without overreaction.

Concretely, the layer takes the following form, which is a
modified version of (4).

min
Z

λ
n´1
ÿ

ic“0

`

ǎ1ptcicq ´ ā
1ptcicq

˘2
` µ

n
ÿ

jc“1

`

ξcjc
˘2

(5a)

s.t. x̄1ptc0q “ x1
0, (5b)

x̄1ptcic`1q “ Ac
ic ¨ x̄

1ptcicq `Bc
ic ¨ ā

1ptcicq, (5c)

0 ď ξcjc , s1ptcjcq ´ s̃min

`

tcjc | a
0ptc0q

˘

ď ξcjc , (5d)

vmin ď v̄1ptcjcq ď vmax, (5e)

amin ď ā1ptcicq ď amax, (5f)

where

tcic :“ t` ic∆t
c, Z :“

!

X
1c

n ,U
1c

n´1, tξ
c
jcu

n
1

)

,

Ac
ic

:“ eApt
c
ic`1´t

c
ic
q, Bc

ic
:“

ż tcic`1

tcic

eApt
c
ic`1´τqdτ ¨B,

for some horizon n, resolution ∆tc, ic “ 0, . . . , n ´ 1, and
jc “ 1, . . . , n. X

1c

n ,U
1c

n´1 are defined similar to those in (3).
Note that here we use accent x̄ to indicate that a variable x
is an internal variable of the tracking controller. The receding
horizon design is illustrated in the tc axis of Figure 3. Unlike
the planning layer, the minimum headway envelope s̃minp¨ |

a0p¨qq is generated by assuming that the preceding vehicle
accelerates constantly from tc0 to tcn. Similar to the planning
layer once again, we have a0pt0q, λ, µ, and x1

0 as inputs to the
optimization program, where λ, µ P Rą0, λ` µ “ 1.

The modified LCQP in the tracking layer in (5) is struc-
turally identical to (4) except for: 1 ) we remove the soft
constraint on maximum headway; 2 ) we adopt a shorter
planning horizon n and a smaller temporal resolution ∆tc;
and 3 ) we predict the trajectory of the preceding vehicle by
assuming that it keeps its current acceleration for the entire
tracking horizon.

Note that the last change above is made to ensure safety.
Because constraints (5d) only takes vehicular RADAR mea-
surements, which are generally highly reliable, the collision
avoidance of the car-following is mostly decoupled from
the ETA estimation. Hence, a bad prediction from the ETA
estimator cannot severely impact the safety of the vehicle.

Remark 3. Because the optimization problem (5) may be
viewed as a special case of problem (4) where γ “ 0, it has
the same properties as those highlighted in Propositions 1,2
and Remarks 1,2.



Remark 4. We assume that we can directly control the accel-
eration of the vehicle. Consequently, dynamic constraints (5c)
are purely kinematic.

Lastly, we briefly describe how our proposed method can be
extended for multi-vehicle platooning. For example, consider
a platoon of vehicles with indices 0, 1, . . . , k, where index 0
indicates the preceding human vehicle and indices 1, . . . , k
indicate the k following automated vehicles. As before, we can
use an ETA estimator to generate a prediction for vehicle zero.
For all the vehicles that follow, we can substitute the predicted
trajectories of the preceding vehicles by the corresponding
planned trajectories. That is, for i “ 1, 2, . . . , k, we can use
ǎi´1ptq to compute ši´1ptq and approximate ŝi´1ptq with
ši´1ptq. Integrating the above prediction method with the
planning and tracking methods presented in this paper, we have
consequently produced a complete platoon controller design.

IV. NUMERICAL SIMULATION

To evaluate the proposed controller, we test its performance
through an array of numerical experiments, each equipped
with an ETA estimator of an unique combination of spatial
resolution ∆s and noise level σ.

For all simulations, we emulate the preceding vehicle by
replaying a recorded drive from [16]. The velocity and accel-
eration of the recorded drive are shown in the second and third
rows of Figure 6.

Spatial horizon of the ETA estimators are fixed to l ¨∆s “
3000 m. We run an array of simulations by varying the
spatial resolution ∆s between 10 m and 500 m and noise
level σ between 0.01 and 0.25. To establish a performance
baseline, we run an additional simulation with an intelligent
driver model (IDM) controller [17]. Parameters of the IDM
are chosen to roughly match that of the MPC controller:
a “ 1.5, b “ 3, δ “ 4, s0 “ 3.5, ` “ 4.65. Likewise,
to establish a performance upper bound, we run one more
simulation with a controller that can perfectly foresee the
trajectory of the preceding vehicle. We call this controller the
oracle controller.

Shared parameters of the planning and tracking layers are:
vmin “ 0, vmax “ 35 m s´1, amin “ ´1.5 m s´2, amax “

3 m s´2,∆s´ “ 5 m,∆s` “ 100 m,∆t´ “ 0.6 s, and
∆t` “ 3.0 s. Unique parameters of the planning layer are:
α “ 0.2, β “ 0.7, γ “ 0.1,∆tp “ 1 s, and m “ 60. Unique
parameters of the tracking layer are: λ “ 0.1, µ “ 0.9,∆tc “
0.1 s, and n “ 30.

To evaluate performance, we use two measures e and f
to quantify tracking error and fuel saving, respectively. The
measure e is defined to be the standard deviation of v̌1˚ ´ v̄1

for all sampled time instants, where v̌1˚ denotes the planned
velocity under perfect prediction. The measure f is defined
to be the ratio of the fuel consumption of the baseline IDM
controller to that of the MPC controller, using the energy
model described in [18].

Position, velocity, and acceleration of the oracle controller
are shown in Figure 6. As the oracle vehicle has demonstrated
in Figure 6, the optimal behavior is to avoid accelerating or
decelerating unless there is an imminent violation of at least
one of the two headway constraints.
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ŝ0

(m
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Fig. 6: Demonstration of the planning layer. The oracle con-
troller assumes perfect prediction over the entire planning
horizon.
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Fig. 7: Performance heat maps of the MPC controllers. The
top heat map measures tracking error e, while the bottom heat
map measures fuel saving f .

Tracking error and fuel saving are visualized in the top and
bottom heat maps in Figure 7. As expected, tracking error
e is proportional to spatial resolution ∆s and noise level σ.
Likewise, fuel saving f is inversely proportional to spatial
resolution ∆s and noise level σ. Note that both performance
measures platoon near the origin, indicating that the MPC
controller is robust to prediction errors and especially so to
that induced by σ.

Lastly, we comment on the running times of the planning
and tracking layers. The optimization solver is part of a python
package called CVXOPT [19]. Benchmarked on an Intel i7-
6700K CPU, the average running time of the planning layer



is about 0.12 s and of the tracking layer about 0.04 s. From
Figure 2, we find that both times fit comfortably into their
allocated time budgets.

V. DISCUSSIONS

In this section, we discuss two of the most consequential
features in the design of the controller, namely, 1 ) the space
between the maximum and minimum headway constraints and
2 ) the resolution and noise level of the ETA estimators.

It is clear that the larger the space between the maximum and
minimum headway constraints, the smoother the car-following
could be. For example, if the considered car is allowed to be
arbitrarily far behind the preceding vehicle without incurring
any penalties, it can simply wait for the preceding vehicle
to exit the road and then accelerate to a very small constant
velocity to complete the trip. Nevertheless, we know from
common sense that such behavior is not acceptable in most
of the real-world applications.

On the contrary, when the space between the two headway
constraints is small, the MPC controller will become sensitive
to prediction errors. Consider a situation where the allowable
headway gap is thin and the prediction errors are significant.
Because the considered vehicle is already close to the bound-
aries of the headway constraints, an error in prediction could
easily mislead the planning layer to falsely believe that it will
soon violate one of the headway constraints. In an effort to
steer away from imminent constraint violation, the planning
layer overreacts, leading to undesirably large acceleration or
deceleration.

To resolve the above problem, one could modify the head-
way constraints proposed in (1). One possible solution is to
enforce a minimum space gap between the maximum and
minimum headway envelopes and to add a small penalty to
encourage the considered vehicle to drive at the center of the
allowable headway constraints.

Last but not least, we comment on how to choose an ETA
estimator. As illustrated in Figure 7, the performance of the
controller changes significantly with the resolution and noise
level of the ETA estimator. In practice, one may first define a
desirable tracking error edes and a desirable fuel saving fdes.
With edes and fdes defined, one can then draw two level sets
in the two heat maps of Figure 7. Any ETA estimator with e
and f that simultaneously fall within the two level sets may
be deemed sufficient to meet the design specifications.

VI. CONCLUSIONS

In this article, we propose a hierarchical MPC control
scheme based on a LCQP. We show via simulations that
the controller can achieve smooth and tight car-following
and is robust to prediction errors. Additional constructions
can be added to further enhance its robustness to erroneous
forecasts. Possible future works include field tests with various
ETA estimators, extension to handle cut-ins and cut-outs, and
modification for platooning.
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