Motion Planning of Water Tank

Zhi Li 5/8/2014

Outline

Problem Definition
Mathematical Derivation
MATLAB Simulation
Conclusion
Future Perfection

Problem Sloshing when moving tanks containing liquids from one place to another Goal **Simulate tank dynamics** Minimize sloshing **Approaches Calculate flatness** Select proper output function

Assumptions

Irrotational potential flow

Shallow water

Flat Bottom

□1-D motion of tank

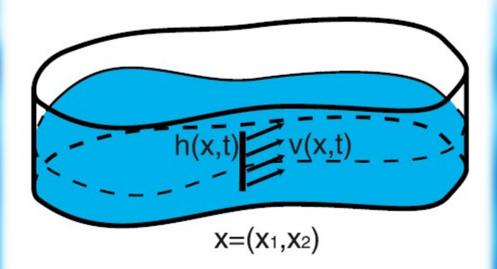


Fig. 3. The two-dimensional tank.

Petit, 2002

Notations

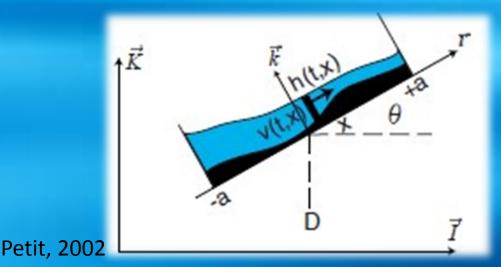
h(x,y,t) = Actual water depthH(x,y,t) = Actual depth minus average depth h = h + HD = Location of the tank's bottom centerv(x,y,t) = Velocity of water

Basic Equations Continuity

$$\frac{\partial h}{\partial t} + \nabla \cdot (h\vec{v}) = 0$$

Momentum

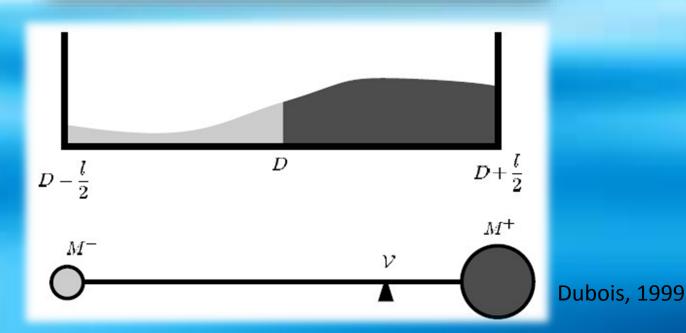
$$\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v} = -g\nabla h$$



Define Input & Output

Input D(t) – Position of tank center on the bottom Output y(t) – Center of gravity of tank's first half mass and second half mass

$$y(t) = D(t) + \frac{1}{2\bar{h}} \left(\int_0^a H(x,t) \, dx - \int_{-a}^0 H(x,t) \, dx \right)$$



System dynamics for 1D model

$$\begin{cases} \frac{\partial^2 H}{\partial t^2} = \bar{h}g \frac{\partial^2 H}{\partial x^2} \\ \frac{\partial H}{\partial x}(a,t) = \frac{\partial H}{\partial x}(-a,t) = -\frac{u}{g} \\ \ddot{D} = u \end{cases}$$

Recall d'Alembert's formula

Plug into the BC's to solve for D(t)

System dynamics for 1D model

$$\begin{cases} D(t) = \frac{1}{2} \left(y(t + \frac{a}{c}) + y(t - \frac{a}{c}) \right) \\ H(x, t) = \frac{c}{2g} \left(\dot{y}(t + \frac{x}{c}) - \dot{y}(t - \frac{x}{c}) \right) \end{cases}$$

$$y(t) = \begin{cases} p & \text{if } t \leq a/c \\ \text{arbitrary} & \text{if } a/c < t < T - a/c \\ q & \text{if } t \geq T - a/c \end{cases}$$

This approach can be extended to 2D case

System dynamics for 2D rectangular tank

 $\begin{cases} \ddot{H} = g\bar{h}\Delta H\\ g\nabla H\cdot\vec{n} = -u.\vec{n} \quad \text{on } \partial\Omega\\ \ddot{D} = u \end{cases}$

$$\begin{aligned} D_1(t) &= \frac{1}{2} \left(y_1(t + \frac{a_1}{c}) + y_1(t - \frac{a_1}{c}) \right) \\ D_2(t) &= \frac{1}{2} \left(y_2(t + \frac{a_2}{c}) + y_2(t - \frac{a_2}{c}) \right) \\ H(x_1, x_2, t) &= \frac{c}{2g} \left(\dot{y}_1(t + \frac{x_1}{c}) - \dot{y}_1(t - \frac{x_1}{c}) + \dot{y}_2(t + \frac{x_2}{c}) - \dot{y}_2(t - \frac{x_2}{c}) \right) \end{aligned}$$

Recall:

H = Fluctuation of surface

- D = Location of tank bottom center
- K, I = Global coordinate system
- k, i = Local system
- Ω = Tank boundary

2D model can be decoupled to get 1D model

System dynamics for circular tank

Laplace transform

$$\ddot{H} = g\bar{h}\Delta H \qquad \qquad \Delta \hat{H}(x,y,s) - \frac{s^2}{g\bar{h}}\hat{H}(x,y,s) = 0$$

SOV in cylindrical coordinates

$$\frac{1}{R}\left(\frac{d^2R}{dr^2} + \frac{1}{r}\frac{dR}{dr}\right) + \frac{1}{r^2\Theta}\frac{d^2\Theta}{d\theta^2} - \frac{s^2}{g\bar{h}} = 0$$

Can solve for H

 $\bar{H}(r,\theta) = R(r)\Theta(\theta)$

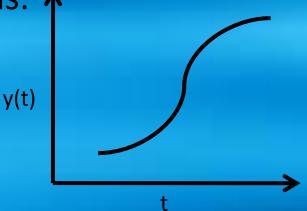
System dynamics for circular tank

$$\begin{cases} D_1(t) = \frac{1}{\pi} \int_0^{2\pi} y_1 \left(t - \frac{l\cos\varphi}{\sqrt{g\bar{h}}} \right) \cos^2\varphi \ d\varphi \\ D_2(t) = \frac{1}{\pi} \int_0^{2\pi} y_2 \left(t - \frac{l\cos\varphi}{\sqrt{g\bar{h}}} \right) \cos^2\varphi \ d\varphi \\ H(r,\theta,t) = \frac{\cos\theta}{\pi} \sqrt{\frac{\bar{h}}{g}} \int_0^{2\pi} \dot{y}_1 \left(t - \frac{r}{\sqrt{g\bar{h}}} \cos\varphi \right) \cos\varphi \ d\varphi \\ + \frac{\sin\theta}{\pi} \sqrt{\frac{\bar{h}}{g}} \int_0^{2\pi} \dot{y}_2 \left(t - \frac{r}{\sqrt{g\bar{h}}} \cos\varphi \right) \cos\varphi \ d\varphi \end{cases}$$

Selecting y(t) function

Steady state at start and end points – Controllable Tank moves from 0 to d in time T – D(t) from 0 to d Got four BC's to restrict y(t): y(0) = 0, y(T) = d, y'(0) = 0, y'(T) = 0

y(t) should roughly look like this: **^**



Four y(t) functions are tested

Cosine Function

$$y(t) = \frac{d}{2} \cos\left(\frac{\pi t}{T} + \pi\right) + \frac{d}{2}$$

3rd Order Polynomial

$$y(t) = -\frac{2d}{T^3}t^3 + \frac{3d}{T^2}t^2$$

Arc + Line + Arc

Error Function

$$y(t) = \frac{d}{2} erf\left(\frac{4t - 2T}{T}\right) + \frac{d}{2}$$

$$\begin{split} y(t) &= \begin{cases} r - \sqrt{r^2 - t^2}, & t < r \cdot \sin\theta_3 \\ t \cdot \tan\theta_3 + r(1 - \cos\theta_3 - \tan\theta_3 \sin\theta_3), & r \cdot \sin\theta_3 < t < T - r \cdot \sin\theta_3 \\ \sqrt{r^2 - (t - T)^2} + d - r, & t > T - r \cdot \sin\theta_3 \end{cases} \\ \theta_3 &= \pi - \theta_1 - \theta_2 \\ \theta_1 &= \arctan\left(\left|\frac{T}{d - 2r}\right|\right), \qquad \theta_2 = \arccos\left(\left|\frac{2r}{\sqrt{T^2 + (d - 2r)^2}}\right|\right) \end{split}$$

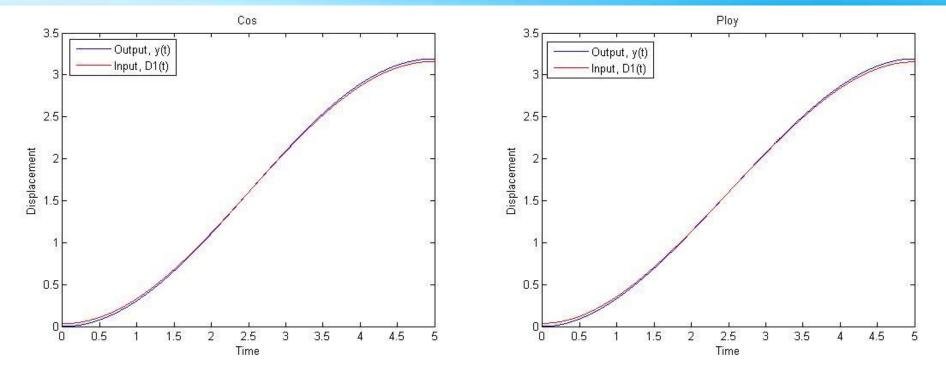
D(t) – y(t) Plots 2 x 2 Rectangular tank Water depth h = 1 Travel time T = 5 Time step dt = 0.001 Travel distance d = 3.19

Math

Derivation

Problem

Definition



MATLAB

Simulation

Future

Perfection

Conclusion

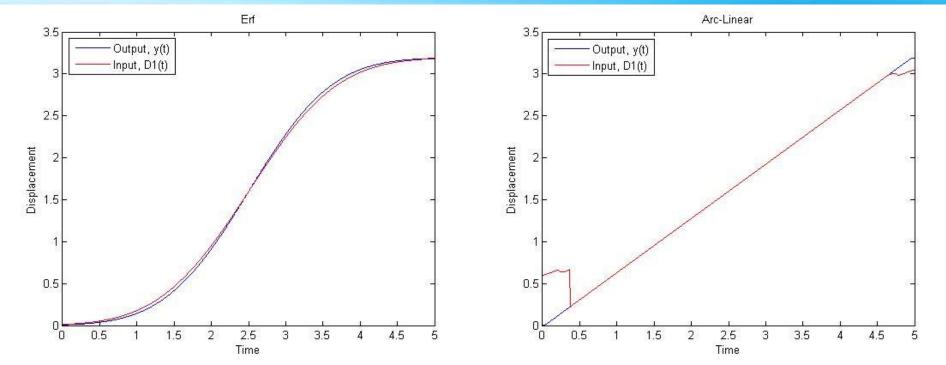
D(t) – y(t) Plots 2 x 2 Rectangular tank Water depth h = 1 Travel time T = 5 Time step dt = 0.001 Travel distance d = 3.19

Math

Derivation

Problem

Definition



MATLAB

Simulation

Future

Perfection

Conclusion

Mid-presentation Review

Math

Derivation

Problem

Definition

Two systems: Rectangular Tank and Circular Tank

MATLAB

Simulation

$$\begin{cases} D_1(t) = \frac{1}{2} \left(y_1(t + \frac{a_1}{c}) + y_1(t - \frac{a_1}{c}) \right) \\ D_2(t) = \frac{1}{2} \left(y_2(t + \frac{a_2}{c}) + y_2(t - \frac{a_2}{c}) \right) \\ H(x_1, x_2, t) = \frac{c}{2g} \left(\dot{y}_1(t + \frac{x_1}{c}) - \dot{y}_1(t - \frac{x_1}{c}) + \dot{y}_2(t + \frac{x_2}{c}) - \dot{y}_2(t - \frac{x_2}{c}) \right) \end{cases}$$

$$D_{1}(t) = \frac{1}{\pi} \int_{0}^{2\pi} y_{1} \left(t - \frac{l\cos\varphi}{\sqrt{g\bar{h}}} \right) \cos^{2}\varphi \ d\varphi$$
$$D_{2}(t) = \frac{1}{\pi} \int_{0}^{2\pi} y_{2} \left(t - \frac{l\cos\varphi}{\sqrt{g\bar{h}}} \right) \cos^{2}\varphi \ d\varphi$$
$$H(r,\theta,t) = \frac{\cos\theta}{\pi} \sqrt{\frac{\bar{h}}{g}} \int_{0}^{2\pi} \dot{y}_{1} \left(t - \frac{r}{\sqrt{g\bar{h}}}\cos\varphi \right) \cos\varphi \ d\varphi$$
$$+ \frac{\sin\theta}{\pi} \sqrt{\frac{\bar{h}}{g}} \int_{0}^{2\pi} \dot{y}_{2} \left(t - \frac{r}{\sqrt{g\bar{h}}}\cos\varphi \right) \cos\varphi \ d\varphi$$

Conclusion

Future

Perfection

Three output functions: Cosine, Polynomial and Erf

$$y(t) = -\frac{2d}{T^3}t^3 + \frac{3d}{T^2}t^2$$
 $y(t) = \frac{d}{2}erf(\frac{4t-2T}{T}) + \frac{d}{2}$

Goal: Minimize H

 $y(t) = \frac{d}{2} \cos\left(\frac{\pi t}{T} + \pi\right) + \frac{d}{2}$

Simulation Video



Analysis

The standard deviation of the water surface can be used to evaluate sloshing

	Rectangular Tank	Circular Tank
Cosine Function	0.0528	0.0323
Polynomial	0.0584	0.0310
Error Function	0.0830	0.0464

Conclusion

 Cosine and 3rd order polynomial outputs have better performance
 Circular tank produces less sloshing than rectangular tank

Future Perfection

Simulate non-linear moving trajectories
 Extend to more complicated geometries
 Find proper initial and final values of output
 Test more output functions

$$y(t) = \begin{cases} p & \text{if } t \leq a/c \\ \text{arbitrary} & \text{if } a/c < t < T - a/c \\ q & \text{if } t \geq T - a/c \end{cases}$$

References

[1] N. Petit, P. Rouchon," Dynamics and solutions to some control problems for water-tank systems", IEEE Trans. Contr. Syst. Technol., vol. 47, pp.594-609 2002

 [2] F. Dubois, N. Petit and P. Rouchon, "Motion planning and nonlinear simulation for a tank containing a fluid", European Control Conference, 1999

[3] D. Ho, B. Grunloh and N. Jenson, "Motion planning of a water tank with differential flatness and optimal control", CE291 Final **Project**, 2012

Thanks!