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Problem Definition 

• Project Goal 

– Move a tank containing a fluid to another location 
within a given time with minimal sloshing 

 • Potential Project 
Applications 

– Industrial process 
control moving tanks of 
liquid from station to 
station 



Example of Constant Velocity 

• Container traveling 1.5 meters in 2 seconds 

 

 

 

 

• All simulations run with 0.3 x 0.3 meter 
container that is half filled 

 



Proposed Solution Methods 

• Differential Flatness 

– Based on Conservation of Mass and Momentum 
Equations 

– Reduction to form of 1-D wave equation 

 

• Optimal Control of Equivalent ODE Approach 

– Pendulum Approximation 

– Double Pendulum Approximation 

 

 



Differential Flatness: Assumptions 

• Saint Venant Equations (Shallow Water) 
– Implies vertical velocities are much smaller than horizontal 

velocities and are therefore negligible. 

• 1-Dimensional Motion 
– Restricted to horizontal translation (non-rotational) 

• Neglecting Coriolis, frictional, and viscous forces 
• Flat bottom, rectangular fluid container 
• Motion begins and ends at steady-state 
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Differential Flatness: Governing 
Equations 

• General Results from the Conservation of 
Mass and Momentum Equations  
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Differential Flatness: Results 

• y(t) becomes arbitrary function between initial and 
final states 
– For minimal sloshing at steady state condition, must 

choose y(t) to have first and second derivatives equal zero 
at boundaries 

 

• System is steady state controllable if initial state is zero 
– Can be steered from a steady-state position to any other 

steady position 

 



Simulations – Differential Flatness 

• Select y(t) to be a linear function 

 

 

 

 • Constant velocity model under equivalent time 
and distance 

 

 

 

 
Model simulated to travel 1.5 meters over 2.0 seconds 



Simulations – Differential Flatness 

• Select y(t) to be a modified cosine function 

 

 

 

 • Constant velocity model under equivalent time 
and distance 

 

 

 

 
Model simulated to travel 1.5 meters over 2.0 seconds 



Equivalent ODE 

• Approach: 

– Represent the water tank as a pendulum ODE system 

– Calculating steering, D(t), with Optimal Control using 
the approximate ODE model 

• Assumptions: 

–  Inviscid fluid 

–  Irrotational fluid 

–  Incompressible fluid  

–  No surface tension 
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Equivalent ODE Approach: Modeling of 
the system  

Simplification of the PDE to an ODE model consisting of N-pendulums, 
representing the first N eigenmodes of the water tank 



Equivalent ODE Approach: Optimal 
Control 

Formulating the minimum sloshing motion planning 
problem as an Optimal Control Problem using the 

equivalent pendulum model 

Optimal Control Problem 



Equivalent ODE Approach: Solution of 
the Optimal Control Problem 



Simulations – Equivalent ODE 

• Singular Pendulum Approach 

 

 

 

 • Constant velocity model under equivalent time 
and distance 

 

 

 

 
Model simulated to travel 1.5 meters over 2.0 seconds 



Equivalent ODE Approach: Adding 
Tilting Motion 

Adding a tilt-DoF enables us to model the water tank system as a 
double pendulum. 



Simulations – Equivalent ODE 

• Double Pendulum Approach with Rotation 

 

 

 

 • Constant velocity model under equivalent time 
and distance 

 

 

 

 
Model simulated to travel 1.5 meters over 2.0 seconds 



Method Comparisons 

Constant Velocity 

Flatness with cosine y(t) 

Single Pendulum 

Double Pendulum 



Conclusions 

• Both Differential Flatness and Optimal 
Equivalent ODE provide enhanced trajectories 
for minimizing sloshing 

• Proper choice of y(t) improves trajectory 

• Double Pendulum approach is optimal for 
reduction of fluid travel up the sides of the 
container due to container rotation 



Future Steps 

• Verification of simulation results 

– Implementation of resulting controls on linear 
stage system in Hesse Hall Lab 

 


