Motion Planning of a Water Tank with Differential Flatness and Optimal Control

> Dimitar Ho Brian Grunloh Nick Jenson

Problem Definition

Project Goal

 Move a tank containing a fluid to another location within a given time with minimal sloshing

- Potential Project Applications
 - Industrial process
 control moving tanks of
 liquid from station to
 station

Example of Constant Velocity

• Container traveling 1.5 meters in 2 seconds

 All simulations run with 0.3 x 0.3 meter container that is half filled

Proposed Solution Methods

- Differential Flatness
 - Based on Conservation of Mass and Momentum Equations
 - Reduction to form of 1-D wave equation

Optimal Control of Equivalent ODE Approach

 Pendulum Approximation
 Double Pendulum Approximation

Differential Flatness: Assumptions

• Saint Venant Equations (Shallow Water)

- Implies vertical velocities are much smaller than horizontal velocities and are therefore negligible.
- 1-Dimensional Motion
 - Restricted to horizontal translation (non-rotational)
- Neglecting Coriolis, frictional, and viscous forces
- Flat bottom, rectangular fluid container
- Motion begins and ends at steady-state

Differential Flatness: Governing Equations

 General Results from the Conservation of Mass and Momentum Equations

$$\frac{\partial^2 H}{\partial t^2} = \bar{h}g \frac{\partial^2 H}{\partial x^2} \qquad \qquad \frac{\partial H}{\partial x}(a,t) = \frac{\partial H}{\partial x}(-a,t) = -\frac{u}{g} \qquad \qquad \ddot{D} = u$$

Where: H = difference between average height and current fluid height $<math>\overline{h} = average height of the fluid (constant)$ v = velocity of the fluid at a given position g = gravity D = Distance traveled by the container u = feed forward input (acceleration) t = timea = distance from center of tank to edge of tank

Differential Flatness: Results

$$D(t) = \frac{1}{2} \left(y(t + \frac{a}{c}) + y(t - \frac{a}{c}) \right) \qquad y(t) = \begin{cases} p & \text{if } t \le a/c \\ \text{arbitrary} & \text{if } a/c < t < T - a/c \\ q & \text{if } t \ge T - a/c \end{cases}$$

ø,

- y(t) becomes arbitrary function between initial and final states
 - For minimal sloshing at steady state condition, must choose y(t) to have first and second derivatives equal zero at boundaries
- System is steady state controllable if initial state is zero
 - Can be steered from a steady-state position to any other steady position

Simulations – Differential Flatness Select y(t) to be a linear function

Constant velocity model under equivalent time and distance

Simulations – Differential Flatness Select y(t) to be a modified cosine function

Constant velocity model under equivalent time and distance

Equivalent ODE

- Approach:
 - Represent the water tank as a pendulum ODE system
 - Calculating steering, D(t), with Optimal Control using the approximate ODE model
- Assumptions:
 - Inviscid fluid
 - Irrotational fluid
 - Incompressible fluid
 - No surface tension

Equivalent ODE Approach: Modeling of the system

Simplification of the PDE to an ODE model consisting of N-pendulums, representing the first N eigenmodes of the water tank

$$\omega_n^2 = \frac{gn\pi}{L} \tanh\left(\frac{n\pi h}{L}\right)$$

Equivalent ODE Approach: Optimal Control

Formulating the minimum sloshing motion planning problem as an Optimal Control Problem using the equivalent pendulum model

Optimal Control Problem

$$\min_{\psi_i(t), u(t)} \int_0^{t_f} \left(\sum_{i=1}^N \omega_i \psi_i^2 + u^2 \right) dt$$

subject to:

$$\dot{\psi}_{i} = -\frac{1}{\ell_{i}} \left(u \cos(\psi_{i}) + g \sin(\psi_{i}) \right)$$

$$\dot{x} = v$$

$$\dot{v} = u$$

$$\psi_{i}(0) = v(0) = 0$$

$$\psi_{i}(t_{f}) = v(t_{f}) = 0$$

$$x(0) = a$$

$$x(t_{f}) = b$$

Equivalent ODE Approach: Solution of the Optimal Control Problem

Simulations – Equivalent ODE • Singular Pendulum Approach

Constant velocity model under equivalent time and distance

Equivalent ODE Approach: Adding Tilting Motion

Adding a tilt-DoF enables us to model the water tank system as a double pendulum.

We can derive a steering strategy for φ_1 and x, by solving an Optimal Control Problem of an equivalent inverted pendulum

Simulations – Equivalent ODE Double Pendulum Approach with Rotation

Constant velocity model under equivalent time and distance

Method Comparisons

Double Pendulum

Conclusions

- Both Differential Flatness and Optimal Equivalent ODE provide enhanced trajectories for minimizing sloshing
- Proper choice of y(t) improves trajectory
- Double Pendulum approach is optimal for reduction of fluid travel up the sides of the container due to container rotation

Future Steps

- Verification of simulation results
 - Implementation of resulting controls on linear stage system in Hesse Hall Lab

