Modeling of Human Response to Ground

Motion using Discrete and Continuous

Methods

Brenda Dix and Jack Reilly CE 291F: Control and Optimization of Distributed Parameters Systems Final Project May 4, 2010

Motivation For Project

 Using cell phones as sensors for earthquakes

 Effects of human response to rigidlyattached accelerometer signal

Extraction of ground
acceleration from sensor

Discrete Models

ISO standards dictate a vibration simulator of 2DOF systems connected by a rigid frame

Problems with System:

- Not really 2 DOF just 2 SDOF systems connected by rigid frame
- Suggests that head and torso move independently of the lower body
- Doesn't account for building motion different from ground motion

Better Discrete Models

Damped 2DOF Model

 $m_1\ddot{x_1} + (c_1 + c_2)\dot{x_1} - c_2\dot{x_2} + (k_2 + k_1)x_1 - k_2x_2 = 0$

 $m_2\ddot{x_1} + c_2(\dot{x_2} - \dot{x_1}) + k_2(x_2 - x_1) = 0$

•Hard to estimate parameters •Doesn't account for building motion separate from ground motion •Still a discrete model

Better Discrete Models Continued

Subject-Beam Model

k,

m_s

Problems:

↑ X_s

•SDOF – not very robust •Does not account for damping

Continuous Model

$$m\frac{\partial^2 U}{\partial t^2} - k\frac{\partial^2 U}{\partial x^2} = 0$$

•Two rods with independent properties (mass, length, stiffness)

•Assume $L_1 = L_2$, $m_2 = 2m_1$, and determine stiffnesses

•Force boundary conditions on the system of rods

- @ 0, no force
- @ x₁, no displacement
- @ $x_1 + x_{2}$

Solution to PDE System

Separation of Variables

 $u(x,t) = T(t)\Phi(x)$

Modal Shape $\Phi_i(x) = C_i \cos b_i x_i + D_i \sin b_i x_i$ i = 1,2

Application of BC's

 $\Phi_1(x_1) = D\sin b_1 x_1 \qquad 0 \le x_1 \le L_1$ $\Phi_2(x_2) = D\{\sin b_1 L_1 \cos b_2 x_2 + \sqrt{\frac{m_1 k_1}{m_2 k_2}} \cos b_1 L_1 \sin b_2 x_2\} \qquad 0 \le x_2 \le L_2$

Full Model of PDE

- Stiffness Ratio Selection: for simplicity, a ratio of k1 / k2 = 2 is chosen
- Initial Conditions
 - No velocity
 - Assume sinusoidal initial shape

$$u(x_1,t) = \sum_{i=0}^{n} A_i sin(b_i x_1) cos(\omega_i t)$$

$$u(x_2, t) = \sum_{i=0}^{n} A_i \sin(b_i L_1 (1 + \frac{2x_2}{L_2})) \cos(\omega_i t)$$

3 Different Stiffness Ratios

k1=k2

k1/k2=0.5

Benefits of Continuous Model

- Reduces the number of parameters to be determined
 - In-between values embedded within the PDE, while discrete requires more nodes (more parameters)
- Can determine relative amplitudes of different modes as a function of location on body.
 - Know most likely position of sensor on human

$$u(x_1,t) = \sum_{i=0}^n A_i \sin(b_i x_1) \cos(\omega_i t)$$
$$u(x_2,t) = \sum_{i=0}^n A_i \sin(b_i L_1 (1 + \frac{2x_2}{L_2})) \cos(\omega_i t)$$

Further Study and Conclusions

FURTHER STUDY

- Additional sensors on the human participant to study local vibrational effects.
- Consider lateral movement and horizontal vibrations in order to understand 3-D picture of earthquake motions.
- Refine experiments to determine system parameters.
- Add damping to the model.

CONCLUSIONS

- Discrete models are commonly accepted but do not provide the resolution needed for the project.
- Our continuous model allows for the calculation of the modal response along the length of the body.
- Our continuous model does not meet our original goal of extraction of the earthquake ground motion signal.

References

ISO 5982:2001. "Mechanical vibration and shock -- Range of idealized values to characterize seated-body biodynamic response under vertical vibration".

http://www.iso.org/iso/catalogue_detail.htm?csnumber=32917

- Ji, Tianjian. "A Continuous Model for the Vertical Vibration of the Human Body in a Standing Position" *Proc. Of the UK Informal Group Meeting on Human Response to Vibration, Sept. 1995, Silsoe, UK.*
- Kuchnicki, Stephen. December 2009. "Simple Vibration Problems with MATLAB (and Some Help from MAPLE)"
- Randall, J. M., Matthews, R. T. and Stiles, M. A.1997. "Resonant frequencies of standing humans" *Ergonomics*, 40: 9, 879 886

Any questions?

