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Abstract— Bacteria such as Rhodobacter sphaeroides use a
single flagellum for propulsion and change of orientation.
Simple organisms such as this have inspired nanorobotic designs
with potential applications in medicine which motivates the
present work. In this article, an elastic model for a single
flagellum bacterium is presented and followed by an analysis
of the system based on optimization. The model is based
on the method of Regularized Stokeslet which allows for a
discretization of the system into particles which are connected
by spring forces. An optimal elasticity distribution that max-
imizes the mean forward speed is obtained. These elasticity

coefficients are obtained through the use of an adjoint-based
optimization scheme. The results are illustrated through a
simulation showing improvement on the swimming patter of
the bacteria.

I. INTRODUCTION

A bacterial flagellum is a helical structure attached to the

body of bacteria which is used for locomotion. A mechanism

that drives the motion of bacteria is chemotaxis. Several

studies explain the patterns observed in bacteria due to this

mechanism. In particular, J. P. Armitage and R. Schmitt [1]

describe the type of swimming patterns observed in different

bacteria that use flagella for their locomotion. Rhodobacter

sphaeroides is a particular example of such bacteria which

uses a single flagellum for motion.

Bacteria have a motor at the base of each flagellum which

applies a rotational torque. This torque forces the base of the

flagellum to rotate and the rest of the structure moves due to

the elastic forces joining it together, i.e. there are no internal

forces generated in the flagellum just reactive forces due

to stretching. When the direction of the torque agrees with

the handedness of the flagellum, the bacteria moves forward

while the flagellum stretches. If the torque is turned off, the

flagellum returns to its original position. It is stated in a paper

by J. P. Armitage et al. [2] that bacteria such as Rhodobacter

sphaeroides change direction just by stopping rotation, while

other bacteria such as Escherichia coli reorient themselves by

switching the direction of their torques. Figure 1 shows the

flagellar conformations of R. sphaeroides at different stages

of the motion process. In figure 2 it is observed that the

simulated model also demonstrates similar conformations.

Analysis on the propulsion mechanism of a single flagel-

lum has been done before by researchers such as E. Purcell

[3]. However, this type of analysis often ignores the dynamics

of the system, any elasticity considerations, and neglects the
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Fig. 1. Flagellar conformations in R. sphaeroides from the article [2] by
J. P. Armitage et al. Bar represents 1 µm.

effect of the body. On the other hand, simulation studies

such as the one performed by H. Flores et al. [4] include

the dynamics of the system and elasticity on the flagellum.

However, the model in [4] does not include the effect of the

bacterial body.

Fig. 2. Modeled Bacteria in its rest position (left) and during motion
(right).

The recent years have stressed an increased interest in

developing models of swimmers at low-Reynolds number.

The interest ranges from biological to nanotechnology ap-

plications. For example, a model that uses three spheres for

motion was introduced by A. Najafi and R. Golestanian [5].

R. Dreyfus et al. [6] built a microscopic artificial swimmer

with a flagellum composed of a chain of colloidal magnetic

particles linked by DNA. At a macro scale, J. Long et al.
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[7] build a simple robot that demonstrates the dynamics

underlying helical trajectory on microscopic organisms. Also

B. Behkam at al. [8] perform a propulsion analysis of a single

flagellum in a silicone oil tank.

In this article, the model presented by H. Flores et al. [4]

is expanded to model and analyze bacteria with a single

flagellum such as R. sphaeroides. This model includes a

bacterial body and an “engine” that drives the rotation of

the structure. The motion for the model is studied, and

some key observations on the trajectory of the structure are

highlighted. The model uses a combination of closed form

solutions of Stokes’ equations: the regularized Stokeslet and

rotlet. The model is analyzed: we investigate the influence

of the elasticity distribution in the flagellum of the bacteria

on the forward thrust motion. In particular, we characterize

an optimum value of the elasticity which provides maximal

thrust. This type of analysis can be used for systems biology

parameter estimation [9], [10], as well as for design, in

particular for micromachines [6], [8], which is a motivation

for this work.

We pose the problem as an optimization program, in

which the underlying flow of the problem (governed by

Stokes’ equations) appears in the constraints. We solve this

problem with adjoint-based optimization. The specificity of

the method proposed in this article lies in the use of the

closed form regularized Stokeslet and rotlet solutions in the

computation of the full solution of the direct and the adjoint

problems. Adjoint-based control or optimization has proved

to be a very efficient technique for shape optimization [11],

flow control [12], [13], parameter estimation in biology [9],

control of networks [14], [15]. In most of adjoint work

available in the literature, the gradient of the cost function

of the optimization problem is computed explicitly in terms

of the solution of the adjoint and the direct problems; note

that, the actual numerical solution of the problem has to rely

on numerical schemes to solve the corresponding PDEs. In

the present work, the specific structure of the system enables

us to write the gradient explicitly in term of the closed form

solutions of Stokes’ equation, which provides an enormous

gain in computational efficiency and numerical accuracy.

This article is organized as follows: first, the model is

introduced by reviewing the scheme used for discretization

of the structure and displaying some motion results; then, the

adjoint-based optimization analysis is presented by showing

the derivations and discussing the implications of our results.

II. MODELING

The model consists of the bacterial body, a helical flagel-

lum, and the junction connecting them. The junction, which

consists of a hook coming out of the bacterial body and

attached to the helical flagellum, has at its base the rotor

engine that drives the motion. In section II-B the engine is

modeled by a set of torques. These torques are the active

components that drive the motion of the whole structure.

The flagellum is a helical-shaped elastic structure that moves

due to the forces and torque effects that are imposed on it.

Of course, all of these interactions must be computed in an

environment of low-Reynolds number which characterizes

the scale of the organism to be modeled.
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Fig. 3. Rotor and junction structures shown together (top) and as separate
components (bottom).

The bacterial structure is discretized into a set of particles

joined by a network of springs (see figure 3), which have

forces and torques applied to them. The motion of these

particles obey a set of PDEs as it is described in the next

section.

A. The Particle Method

Due to the low-Reynolds number that characterizes this

system, the hydrodynamics of the system can be properly

described with the Stokes equations. These equations in

dimensionless form are given by:

∆u = ∇P − f
∇u = 0

(1)

where u is the fluid velocity, P is the fluid pressure, and f
is the external force density.

Here we use the regularized Stokeslet and regularized

rotlet solutions derived by H. Flores et al. [4] for the cases of

a single point force f0 and a single point torque L0 applied

at location x0. The regularized Stokeslet solution is given by

Us(x; x0, f0) = (r2+2δ2)

8π(r2+δ2)3/2
f0 +

[fT
0

(x−x0)]

8π(r2+δ2)3/2
(x − x0),

(2)
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and the regularized rotlet solution is given by

Ur(x; x0, L0) = (2r2+5δ2)

16π(r2+δ2)5/2
[L0 × (x − x0)], (3)

where r is the distance between x and x0, and δ is the reg-

ularizing parameter in the method. These formulas express

analytical solutions to a regularized version of the Stokes

equations (1) in which the forces and torques are not applied

at single points, but are distributed over a small neighborhood

of the application point. For more details refer to [4].

These closed form solutions give us a velocity field that

can be used to track particles moving in the fluid. Hence, we

only require a model that specifies the forces and torques due

to a particular configuration at a specified time. In this model,

the effect of the forces (which are defined at all particle

locations) and the torques (applied at a total of 4 locations)

can be combined to define the following dynamics for the

system:

ẋk =

3∑

i=0

Ur(xk; xni , Li) +

Nx∑

j=1

Us(xk; xj , fj) (4)

where ni ∈ R, the set of indices where torques are applied,

and Nx is the total number of particles. See figure 3 and

section II-B for an illustration.

B. Bacterial Model

The bacterial model follows the same methodology de-

veloped by H. Flores et al. [4]. The flagellar structure and

the body of the bacteria are discretized into a collection

of particles with a network of springs connecting them. A

view of some of these connections is shown in figure 3 and

figure 4.

The particles and spring connections on the body of the

bacteria (which is defined as an ellipsoid) define a triangular

tessellation of its surface. Besides having spring connections

on the surface of the body, we also define connections

between the front and back particles in the body. These are

marked with dark lines in the bottom-left plot of figure 3.

These connections are there to make the structure more

stable.

The flagellum is discretized by using triangular cross sec-

tions perpendicular to the helix that determines the centerline

of the structure. The types of spring connections in the

flagellum are cross sectional, longitudinal, diagonal, and anti-

diagonal (see figure 4).

Fig. 4. Springs on the flagellum: Cross-sectional, longitudinal, diagonal,
and anti-diagonal (from left to right).

The body is joined to the flagellum by a junction shaped

as a hook. This junction is discretized in the same way as

the flagellum. The junction is connected to the head through

the rotor engine. This engine is discretized allowing for free

rotation of the junction. At the bottom of figure 3 the engine

structure (which is a diamond-like structure joined to the

body) and part of the junction are shown. The top of figure 3

shows these components together and their location in the

bacterial model.

Forces due to the stretching of a spring are defined by

using Hooke’s law. The total force at a point xi is the

summation of the forces due to all the particles connected

to it, and it is given by

fj =
∑

n∈c(j)

αjn

(
1 −

r0,jn

rjn

)
(xn − xj), (5)

where c(j) is the set of indexes of particles connected to

xj by spring, αjn is the elasticity of the spring connection

between xj and xn, rjn is the distance between the particles,

and r0,jn is the rest length of the corresponding spring.

The driving force in the engine are the torques. A main

torque L0 is applied at location xn0
, and counter-torques Li

are applied at locations xni for i = 1 . . . 3. The location

of the torques are shown at the bottom of figure 3. All of

these torques are defined to be parallel. The magnitude σ0

of the main torque is given by σ, and the magnitude σ i of

the counter-torques is given by −σ/3 which is chosen to

conserve angular momentum. The equation of any of the

torques is given by

Li = σi
p

||p||
, (6)

where p � (xn0
−(xn1

+xn2
+xn3

)/3). The vector p points

in the same direction as the tangent to the axis of rotation

of the junction.

C. Motion Results

t = 0 t = 500

t = 525 t = 550

t = 600 t = 1000

Fig. 5. Motion simulation illustrating a change of orientation due to
reversing the torque at t = 500.

Figure 5 shows some plot at different stages of a simu-

lation. For this simulation, the torque is turned-on at time
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t = 0, its direction is reversed at time t = 500, and it

is set again to its original magnitude at t = 530. Initially

the flagellum has a small pitch (top-left). As the structure

moves, the flagellum stretches (top-right). The structure

changes orientation when the torque is reversed (middle-left),

and reorients itself (middle-right) when the torque is reset.

Finally, the structure moves in a new direction (bottom-right)

with a change of orientation of about 30 deg.

Animation of the motion can be seen at:

http://www.ce.berkeley.edu/∼bayen/acc07/acc07.html.

III. ADJOINT-BASED SPEED OPTIMIZATION

The goal of this section is to analyze the elasticity distri-

bution over the flagellum. In particular, we show how to

optimize average forward speed by varying the elasticity.

Gradient ascent will be used to obtain the maximum of

a functional that is specified below. The derivation of the

gradient is performed using the adjoint problem since a direct

computation would be computationally expensive.

A. Optimization Problem with PDE Constraints

The optimization problem is to find the optimal elasticity

distribution over the flagellum that maximizes the mean

forward speed of our structure given that the dynamics are

constrained by the Stokes equations (1).

Due to the complex motion of the structure, the mean

forward speed v is not a quantity that can be obtained in

closed form. However, it can be approximated by considering

the average distance traveled by a particle k, i.e.

v ≈
1

T
||xk(T ) − xk(0)||2.

This is a good approximation for large enough T . Hence, the

following objective functional is defined from considering

the distance traveled by the average among all particles:

J(α) =
1

2

(
||x̄(T ; α) − x̄(0; α)||2

T

)2

(7)

where x̄(t; α) =
∑Nx

i=1 xi(t; α)/Nx, α encodes the design

parameters (in our case, the elasticity distribution over the

flagellum), and Nx is the number of particles in the structure.

The dependency of the trajectories on α is emphasized by

using the notation xi(t; α). The average among all particles

can be thought as a center of mass computation. The design

parameter α only appears explicitly on the computation of

the forces between particles as seen in section II-B. In turn,

these forces specify the velocity flow field that updates the

position of the particles.

Therefore, the optimization problem is posed as the max-

imization of the objective functional given in equation (7)

with constraints given by equation (4), where the forces

and torques are defined by the current configuration of the

structure.

B. Considerations due to Periodic Configuration

Due to the physical nature of the motion, it is expected to

find periodic behavior associated with the configuration of

the structure. This is also observed from the numerical data.

Hence, it can be assumed that the motion of a particle is of

the form

xk(t) = xk(0) + vtê1 + p1(t)ê1 + p2(t)ê2 + p3(t)ê3, (8)

where pi(t) are periodic functions of period τ and p i(0) = 0,

ê1 is the unit vector in the direction of the mean velocity,

and {êi} form an orthonormal basis. This implies

1

T 2
||x̄(T ) − x̄(0)||22 = v2 + O

(
1

T

)
.

Using this result and equation (7), then

J(α) =
1

2
v2 + O

(
1

T

)
.

Note that if T � Nτ , where N is an integer and the motion

is exactly periodic, then the last term vanishes. However,

using this for the adjoint computation would require knowing

τ analytically as a function of α. In order to reduce the

last term in the functional evaluation, T is computed such

that T ≈ Nτ by minimizing the L2 difference between

configurations after some fixed time.

From the previous equation, it also follows that

DαJ(α) = vT (Dαv) + O

(
1

T

)
.

In this case, the last term does not vanish for T = Nτ , but

it becomes a better estimate to vT (Dαv) as T → ∞. The

later is of interest since the goal is to maximize the mean

forward speed.

C. Adjoint Derivation

By perturbing the system and noting that the i-th elasticity

coefficient αi (here we are assuming an ordering of the

coefficients) only appear explicitly in the computation of the

forces, we have

ẋ′

k =
∑3

i=0(D1Ur(xk; xni , Li)x
′

k

+D2Ur(xk; xni , Li)x
′

ni

+D3Ur(xk; xni , Li)L
′

i)

+
∑Nx

j=1(D1Us(xk; xj , fj)x
′

k

+D2Us(xk; xj , fj)x
′

j

+D3Us(xk; xj , fj)f
′

j)
L′

i =
∑

m∈R(DxmLi)x
′

m

f ′

j =
∑Nx

m=1(Dxmfj)x
′

m +
∑Nα

n=1(Dαnfj)α
′

n.

(9)

where it is assumed that the first Nα elasticity coefficients

are the ones used for the optimization, D i stands for the

gradient with respect to the i-th entry, and {x ′

k, f ′

k, L′

k} are

the corresponding first order variations.

By recombining all of these terms the above equation can

be expressed as

ẋ′

k(t) =
∑Nx

i=1 Fk,i(S(t))x′

i(t)

+
∑Nα

j=1 Gk,j(S(t))α′

j

x′

k(0) = 0,

(10)
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where S(t) stands for the configuration of the structure at

time t. Definitions and explicit formulations of Fk,i, Gk,j

are given in Appendix I.

The first variation of the energy functional given in equa-

tion (7) is given by

J ′(α) =
1

NxT 2

Nx∑

i=1

(x̄(T ) − x̄(0))
T

x′

i(T ). (11)

The adjoint state yk(t) is defined in order to obtain an

analytical expression in terms of α′

k. Multiplying both sides

of equation (10) by the transpose of the corresponding adjoint

state and integrating over time, then
∫ T

0 yT
k (t)ẋ′

k(t) dt = yT
k (T )x′

k(T ) −
∫ T

0 ẏT
k (t)x′

k(t) dt∫ T

0 yT
k (t)ẋ′

k(t) dt =
∫ T

0 yT
k (t)

∑Nx

i=1 Fk,i(S(t))x′

i(t) dt

+
∫ T

0 yT
k (t)

∑Nα

j=1 Gk,j(S(t))α′

j dt.

By summing over all particles, then
∑Nx

k=1 yT
k (T )x′

k(T ) =
∑Nx

i=1

∫ T

0 ẏT
i (t)x′

i(t) dt

+
∑Nx

i=1

∫ T

0

∑Nx

k=1 yT
k (t)Fk,i(S(t))x′

i(t) dt

+
∑Nα

j=1

∫ T

0

∑Nx

k=1 yT
k (t)Gk,j(S(t)) dt α′

j∑Nx

k=1 yT
k (T )x′

k(T ) =
∑Nx

i=1

∫ T

0
(ẏi(t)+

+
∑Nx

k=1 FT
k,i(S(t))yk)T x′

i(t) dt

+
∑Nα

j=1

(∫ T

0

∑Nx

k=1 GT
k,j(S(t))yk(t) dt

)
α′

j .

And, by choosing

ẏi(t) = −
∑Nx

k=1 FT
k,i(S(t))yk(t)

yi(T ) = x̄(T ) − x̄(0),

and using equation (11), this gives

J ′(α) =
1

NxT 2

Nα∑

j=1

(∫ T

0

Nx∑

k=1

GT
k,j(S(t))yk(t) dt

)
α′

j .

By defining zk(t) � yk(T − t), F̄k,i(t) � FT
k,i(S(T − t)),

and Ḡk,j(t) � GT
k,j(S(T − t)), then

żi(t) =
∑Nx

k=1 F̄k,i(t)zk(t)
zi(0) = x̄(T ) − x̄(0),

(12)

and

J ′(α) =
1

NxT 2

Nα∑

j=1

(∫ T

0

Nx∑

k=1

Ḡk,j(t)zk(t) dt

)
α′

j .

Hence, it is possible to identify the gradient of the cost

functional as:

∂J

∂αj
(α) =

1

NxT 2

∫ T

0

Nx∑

k=1

Ḡk,j(t)zk(t) dt. (13)

This result can now be used in any gradient ascent algorithm

(as it is also illustrated in [9], [15], [16]) to maximize the

desired functional. In order to keep the design parameter α
with positive components (since negative elasticity does not

make physical sense), we will also add a barrier term to our

functional:

B =
λ

Nα

Nα∑

j=1

log(αj), (14)

where λ is a fixed constant.

D. Optimization Results

As described in section II-B, the flagellum is discretized

using triangular cross sections perpendicular to the helix

centerline of the structure. The spring connections defined

can be categorized into 4 types (see figure 4): cross sectional

(between particles in the same cross-section), longitudinal

(between corresponding particles in the following cross-

section), diagonal and anti-diagonal (between any other

particles in the following cross-section that has not been

connected yet). We distinguish between three components in

each category due to triangular cross sections in our model.

For the optimization process, each of these types of spring

connections is initialized to the same constant elasticity

value. The gradient is computed by using equations (12)-

(13), and then used to update the elasticity coefficients

by gradient ascent. The optimal distribution yields a 76%
increase of the mean forward speed over the initial uniform

distribution.

Figure 6 shows the elasticity distribution for the different

components along the flagellum after convergence of the

algorithm. We observe a large increase on the longitudinal

coefficients, while a decrease along the diagonals. Since the

longitudinal springs have the effect of mantaining the length

of the flagellum constant, and the diagonals can be associated

to the torsion of the flagellum, then the optimal distribution

allows for more torsion on the structure while enforcing a

constant length. We also note that there is little variation on

the cross-sectional coefficents and torward the end of the

flagellum.
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Fig. 6. Plots of the elasticity components along the flagellum. The x-axis
depicts the relative position along the arc-length of the flagellum where 0 is
at the base and 1 is at the end. The y-axis is the magnitude of the gradient
component relative to the initial uniform distribution. Due to triangular
cross sections, there are three components for each gradient category. This
components are illustrated in figure 4.

Since the optimization involves the motion of the average

particle, it is useful to analyze the trajectory traced by it.

In figure 7 we observe two trajetories on the xy-plane. On

the top, it is observed the trajectory for the initial uniform

distribution (before any gradient updates). On the bottom, the

trajectory for the optimal distribution is shown. It is observed
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Fig. 7. Trajectories on the xy plane of the average particle before
optimization (top-left) and after (bottom-left), and their corresponding (not
at scale) motion configurations (right).

that there is no noticeable change on the frequency of rotation

on these helical paths. Some statistics comparing these two

paths are shown in table I.

TABLE I

STATISTISTIC ON PATH FOR MEAN PARTICLE AFTER OPTIMIZATION

Relative change from Initial

Mean Forward Speed +76 %
Frequency of Oscillation +12 %
Amplitude of Oscillation − 31 %

There is also a noticeable difference between the configu-

rations of the bacterial structure during motion. On the top-

right of figure 7, the plot shows a configuration of the struc-

ture during motion before any gradient update is applied. On

the bottom-right of the same figure, a configuration during

motion after optimization is shown. There is a noticeable

increase on the pitch of the helical structure.

IV. CONCLUSIONS AND FUTURE WORK

The motion modeling section successfully simulates bac-

terial forward motion and change of orientation by reversing

the torque for a single-flagellum organism. For the optimiza-

tion part of this paper, the aim was to maximize the forward

speed in terms of the elasticity distribution on the flagellum.

By use of the adjoint method, it was shown how to come up

with an appropriate estimate for the gradient of the forward

speed. This estimate of the gradient was also successfully

used for computing elasticity distributions that a yield higher

speed. This analysis can easily be extended to optimizing

structural shape of the flagellum.

The model can be improved by including other boundary

conditions that are more suitable such as planes with no-

slip boundary conditions, in which case this simulations can

be directly compared to experimental results such as the

ones presented by B. Behkam et al. [8]. There is also the

possibility of including control mechanisms for trajectory

tracking in this model. This could be particularly interesting

for the design of nanobots.
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APPENDIX I

COMPUTING Fk,i AND Gk,j

By identifying the coefficient of α′

n in equation (9) to the

coefficients in equation (10), it can be observed that

Nα∑

n=1

Gk,n(S(t))α′

n =

Nx∑

j=1

D3Us(xk; xj , fj)

Nα∑

n=1

(Dαnfj)α
′

n

Gk,n(S(t)) =

Nx∑

j=1

D3Us(xk; xj , fj)Dαnfj .
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460



In the model, particles are joined by spring connections, and

the total force applied at a particle location is the sum of the

forces due to the springs connected to it, as seen in equation

(5). Hence, Dαnfj is 0 if the n-th spring (with elasticity αn)

is not connected to xj . Therefore, by defining v(n) to be the

set of particles connected by the spring with coefficient αn,

then we obtain

Gk,n(S(t)) =
∑

j∈v(n)

D3Us(xk; xj , fj)Dαnfj . (15)

By identification of the coefficients of x′

i between equa-

tions (9) and (10), it can be concluded that
∑Nx

n=1 Fk,n(S(t))x′

n =
∑3

i=0[D1Ur(xk; xni , Li)x
′

k

+D2Ur(xk; xni , Li)x
′

ni

+D3Ur(xk; xni , Li)
∑

m∈B(DxmLi)x
′

m]

+
∑Nx

j=1[D1Us(xk; xj , fj)x
′

k + D2Us(xk; xj , fj)x
′

j

+D3Us(xk; xj , fj)
∑Nx

m=1(Dxmfj)x
′

m]

Then,

Fk,n(S(t)) =
∑3

i=0 D1Ur(xk; xni , Li)[If k = n]
+D2Ur(xk; xn, Ln)[If n ∈ R]

+
∑3

i=0 D3Ur(xk; xni , Li)DxnLi[If n ∈ R]

+
∑Nx

j=1 D1Us(xk; xj , fj)[If k = n]

+D2Us(xk; xn, fn)
+

∑
j∈c(n) D3Us(xk; xj , fj)Dxnfj

+D3Us(xk; xn, fn)Dxnfn,
(16)

where c(n) is the set of particles connected to xn by some

spring. For the last two term we used the fact that Dxnfj

is nonzero only for those forces for which xn is part of the

computation, i.e. the set c(n) ∪ {xn}.

APPENDIX II

LIST OF DERIVATIVES OF FUNCTIONS

All the derivatives required for the above computations are

defined in this Appendix.

A. Derivatives of rotlet component

The expression for the velocity contribution from the rotlet

solutions is given in equation (3) by

Ur(xk; xni , Li) =
(2r2

kni
+ 5δ2)

16π(r2
kni

+ δ2)5/2
[Li × (xk − xni)],

where rkni is the euclidean distance between xk and xni ,

and δ is the regularization parameter.

Hence,

D1Ur(xk; xni , Li) = −
(6r2

kni
+21δ2)

16π(r2

kni
+δ2)7/2

[Li × (xk − xni)]

·(xk − xni)
T +

(2r2

kni
+5δ2)

16π(r2

kni
+δ2)5/2

L̂i,

where L̂i is the skew symmetric operator ̂ applied to the

vector Li. Also,

D2Ur(xk; xni , Li) = −D1Ur(xk, xni , Li).

And,

D3Ur(xk; xni , Li) = −
(2r2

kni
+ 5δ2)

16π(r2
kni

+ δ2)5/2
̂(xk − xni).

B. Derivatives of Stokeslet component

The expression for the velocity contribution from the rotlet

solutions is given in equation (2) by

Us(xk; xi, fi) =
(r2

ki+2δ2)

8π(r2

ki+δ2)3/2
fi +

[fT
i (xk−xi)]

8π(r2

ki+δ2)3/2
(xk − xi).

Hence,

D1Us(xk; xi, fi) = −
(r2

ki+4δ2)

8π(r2

ki+δ2)5/2
fi(xk − xi)

T

+ 1
8π(r2

ki+δ2)3/2
(xk − xi)f

T
i

−
3[fT

i (xk−xi)]

8π(r2

ki+δ2)5/2
(xk − xi)(xk − xi)

T

+
[fT

i (xk−xi)]

8π(r2

ki+δ2)3/2
I.

Also,

D2Us(xk; xi, fi) = −D1Us(xk, xi, fi).

And,

D3Us(xk; xi, fi) =
(r2

ki+2δ2)

8π(r2

ki+δ2)3/2
I

+ 1
8π(r2

ki+δ2)3/2
(xk − xi)(xk − xi)

T .

C. Derivatives of the torques

The torques, as given in equation (6), are defined as

Li = σi
p

||p||
,

where p � (xn0
−(xn1

+xn2
+xn3

)/3), σi is the magnitude

of the torque, nj ∈ R are the indexes of the points used for

computing the direction of the torque and where the torques

are applied.

Clearly, if k /∈ R then Dxk
Li = 0. In the case that k = n0,

then

Dxn0
Li =

σi

||p||
I −

σi

||p||3
p pT .

Also,

Dxn1
Li = Dxn2

Li = Dxn3
Li = −

1

3
Dxn0

Li.

D. Derivatives of the forces

The forces are also defined in equation (5) as

fi =
∑

n∈c(i)

αin

(
1 −

r0,in

rin

)
(xn − xi)

where αin is the elasticity constant between xn and xi, and

r0,in is the rest length between xn and xi.

Clearly, if k /∈ c(i) and k 	= i then Dxk
fi = 0. Otherwise,

for k ∈ c(i)

Dxk
fi = αik

(
r0,ik

r3

ik

)
(xk − xi)(xk − xi)

T

+αik

(
1 −

r0,ik

rik

)
I.

And,

Dxifi = −
∑

k∈c(i)

Dxk
fi

We also have that

Dαinfi =

(
1 −

r0,in

rin

)
(xn − xi),

for αin connecting xn to xi. In general, if αk does not

connect any node to xi, then Dαk
fi = 0.
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