
Proceedings 01 the 42nd LEEE
Conference on Decision and Contml
Maui, Hawaii USA, December 2003

MILP formulation and polynomial time algorithm
for an aircraft scheduling problem'

Alexandre M. Bayen' Claire J. Tomlin3
Dept. of Aeronautics & Astronautics

Stanford University
Stanford, CA 94305-4035

Abstract
This paper presents a polynomial time algorithm used for solving a Mixed
In te~er Linear Prorram (MILPI formulation of a scheduline mohlem a p

1 INTRODUCTION

1.1 Origins of the problem
Motivated by the growth of air traffic since the 1940% the
Federal Aviation Adminiwarion (FAA) achieved by the mid
1970's a semi-automated Air Traffic Control (ATC) system,
based on a combination of radar and computer technologies.
This system has been constantly upgraded since. One of
the newest tools in the ATC system is the NASA-developed
software Cenrer-TRACONAuronrari~n Sysreni (CTAS) [ll],
which helps Air Traffic Controllers manage the increasing

'Research suppor7ed by NASA under Grant NCC 2-54??, by ONR
under MURl contract NW014-0?-1-07?0, by DARPA under the Son-
ware Enabled Control Bogram (AFRL contract F33615-99-C-3014). and
by a Graduate Fellowship of the Delegation Genersle pour I'Amement
(France).

*Ph.D. Student. IEEE Student Member, corresponding author. Aero-
nautics and Astronautics. Durand 028, Stanford University, Stan-
ford CA. 94305-4035. Tel: (650)498-0530, Fax: (650)723-3738.
baven@stanford.edu

3 A ~ ~ i ~ t a n t Pmfessor, Aeronautics and Aslronautics, and by couneay,
Electrical Engineering: Director, Hybrid Systems Laboratory, Stanford
University, IEEE Member.

4Professor, Management Science and Engineering; Director, Camputa-
tional Optimization Laboratory. Stanford University.

'Ph.D. Student. Management Science and Engineering. Sunford Uni-
versity.

0-7803-7924-1/03/$17.00 02003 IEEE 5003

FrAll-6

, Yinyu Ye4 Jiawei Zhang5
Dept. of Management Sci. & Engineering

Stanford University
Stanford. CA 94305-4026

complexity of air traffic flow in the vicinity of large airports.
Besides helping to reduce the workload of the Controllers,
this advisory system also contributes to a more efficient trai-
fic flow management which benefits the passengers and the
airlines, by reducing the delays and improving safety. The
functionalities covered by CTAS and other tools available to
the Air Traffic Controllers include monitoring, alerts, advi-
sories, some planning functionality, as well as information
displays. With regard to planning, CTAS can be used to as-
sign aircraft to particular arrival routes, called arrivals, into
airport vicinities (see Figure 1 for two main arrival routes
into Oakland airport).

Figure 1: Two examples of anival into the Oakland airport: Madwin 3

Arrival assignment aids the Air Traffic Controller in the
problem of flow metering, or delivering a prescribed nnm-
her of aircraft per unit time to the airport runway. An Air
Traffic Controller can thus regulate the flow by manually
adjusting the flight plans of individual aircraft, according to
procedures (called playbooks) which have been established
over time to meet the acceptance rates at airports. Exam-
ples of maneuvers used for such adjustments are shown in
[3,5, 101. These maneuvers are used to slow down the air-
craft, to increase spacing between it and the previous air-
craft. Much of the Air Traffic Controller's workload con-
sists of manually calculating these maneuvers for each air-
craft so that the overall flow satisfies the metering condi-
tions. The task of performing arrival assignment and time

(-)and Locke I (-.I.

mailto:baven@stanford.edu

adjustments on arrivals is sometimes referred to as muting-
sequencing. The algorithmpresented in this paper could
contribute to the automation of this task.
In the current system, Air Traffic Controllers tend to use
only a subset of the maneuvers available to them while me-
tering the flow into the airports: for example, it is often
easier not to change the order of arrival of the aircraft into
an airpart, despite the fact that it might reduce the delays.
In [5], we study the feasibility of automatically generating
these Eight plan adjustments, in order to meter flow in real
time, even when the system is operating at maximal capac-
ity. The main result of [SI is an algorithm which maps the
set of all possible adjustments of all aircraft to a Mixed In-
teger Linear Pmgram (MILP). The numerical implementa-
tion of this program takes NASA provided air traffic data
(called Enhanced Trafic Management System (ETMS) data
[8]) as input, and generates a schedule for the sequence of
aircraft and, indirectly, the resulting maneuver set that each
aircraft should perform. This result supplies the Controller
with directives for each aircraft which optimize the flow -
in some cases, the method suggests switching the order of
aircrafi arrival (have one aircraft overtake the other) in order
to improve the traffic flow. In [SI, to solve the MILP in this
numerical implementation, we used CPLEX (131 (the lead-
ing industrial solver for such programs). Due to the com-
plexity of the underlying mathematical problem, despite the
very good average performance of CPLEX unpredictable
cases, in which solving the MILP takes an exponentially
large amount of time, occur in practice. This behavior is
undesired for an online implementation of the algorithm,
because the user might have to wait an unacceptable amount
of time before getting an answer. This article proposes an
algorithm for which we provide an upper bound on the run-
ning time of the MILP solution, and which is therefore guar-
anteed to find the exact optimal solution in a time which is
predictable. Despite the fact that this algorithm was specifi-
cally designed for an ATC problem, it could be modified for
other domains, such as jitter avoidance in networks, or task
regulation in supply chain management.

1.2 Complexity of the problem, dated work
M E P [7] is a powerful mathematical formulation that ex-
tends linear programming to problems with both continu-
ous and integer variables. It appears naturally in various
fields where these two types of variables coexist, for exam-
ple operations research or chemical engineering [15, 121.
It enables inclusion of computational logic [181 into opti-
mization problems, and provides an excellent tool for multi-
vehicle or conflict avoidance problems [16] and discrete
time hybrid systems [6]. Integer programming (and there-
fore MILP) in the general case is NP-Hard [14,171. Famous
examples of NP-Hard problems, which can be posed as inte-
ger programs, include facility location, traveling salesman,
knaosack. bin oackinz 1171. Certain Droblems which can

gramming optimization software such as CPLEX [I31 can-
not differentiate between polynomial-time solvable prob-
lems and NP-Hard problems a priori, and might require
exponential time to find the solution of a polynomial-time
solvable.problem, as shown in [5]; this article proves that a
specific case of the problem shown in [5] is polynomial-time
solvable by deriving an exact polynomial-time algorithm.

This article is organized as follows. In section 2, we present
the general formulation of the aircraft routing-sequencing
problem, and the specific case of interest. We identify a
closed form solution for the particular case in which the
order of arrival of the aircraft is fixed in advance. In sec-
tion 3, we use this closed form solution as a stopping con-
dition for a bisection algorithm used to compute the exact
solution of the MEP. The bisection relies on a feasibility
algorithm which is a modification of a known single prc-
cessor scheduling algorithm, derived in the Appendix (with
a numerical example to illustrate its structure). Section 4
presents a numerical implementation of this algorithm, and
extensive comparisons with CPLEX. The bounds on run-
ning time derived for our algorithm are verified in practice
and it is shown to perform much better than CPLEX. Sec-
tion 5 outlines the current state of our research for the gen-
eral version of the problem, as well as preliminary results
for this general problem.

2 PROBLEM FORMULATION

We consider N aircraft converging to a single airport. Air-
craft are indexed by iE {1, . ’ . , N}. As a result of ATC
actuation, the set of arrival times for aircraft i is a union
of intervals called si := Ui:I[a;,kr b i , k] . For each i, ni
is the number of intervals of time in which aircraft i can
arrive. These intervals encode a set of maneuvers which
are relatively easy to implement for ATC. Usually, arrival
airports request a time separation A between aircraft (for
example, at most one aircraft every minute). A key ques-
tion for ATC is to know how much buffer time is avail-
able given this set of “easy” maneuvers: what is the largest
A that can be achieved? If this largest A is too close to
the request of the airport, ATC might decide to hold air-
craft at predefined locations to ensure a safety buffer in
case of disturbances (such as weather). In mathematical
terms, given {Sc}~G~l,...,jq, we want to find a N-tuplet
(tl,. . . , t N) E a=, S; of feasible arrival times for the
N aircraft maximizing the minimum time separation A be-
tween all pairs of aircraft:

max: A

N

SA.: ti E U;Ll[ai,k, bi,k] i I N (1)
It6 - t j (2 A j < i l N

In this form. (1) is not a linear umgram (it is not even con- . - L _ -
be formulated as integer programs (for example max-flow,
min-cut, maximum matching, minimum spanning tree) are
polynomial-time solvable [l]. But a general integer pro-

vex). It can be rewritten as a MILP, using boolean variables
qj which encode the relative order of arrival of aircraft i
and j, and dit which encode the chosen arrival interval of

5004

aircraft i (see [5] for more details):

max: A
s.t. ti 2 a i , l i < N

ti < bi,ni i < N
ti 2 ai.k+i - Ddik i < N , k < n i - l

dik E {o, 1) Z<N, k < n i - l
ti - t j 2 A - Ccij j < i < N
ti - t j 5 C(l -qj) - A j < i < N

ti < bi,k + D(l- d i k) i 5 N , k < ni - 1

cij E IO, 1) j < i S N
(2)

In (2), C and D are "large" constants. Large means that

ma&, max{ai,,< - ai^, bi,,< - bi,l}. We do not know if
this problem is polynomial-time solvable or not. Given the
similarity with known NP-Hard scheduling problems (for
example, if the separation of the aircraft depends on the air-
craft), we believe that this problem is "-Hard, but we have
not yet been able to prove this.

For the present work, we focus on the one interval case
(ni = 1 for all i), and show that this problem is polynomial-
time solvable. In the one interval case, d, disappears, and
the problem becomes:

at least: C t 2(maxr==, bj,N, - mlni,l . N ai,]) and D t

max: A
s.t.: ti 2 ai,] i < N

Theorem 1. It is possible to construct a sequence

pmves rhat
(t l , . . . , t N) Such that (m,t i , . . . , t N) SatiS$es(4), which

ProOf - We prove this theorem by induction an N. For N = 2, the
solution is trivial. For N = 3. we see that the follqwing solution achieves
the optimal:

tl = a l , l
t2 = (b3,l + a1,1)/2 if(b3,1 + a1,1)/2 E Iaz,1,b2,11

= Q2,l if(b3,l +a1,1) /2 < ~ 2 . 1 (7)
= bZ.1 if(b3.1 + ~ 1 , 1) / 2 > b z , ~

t 3 = b3.1

Suppose now that we have proved the propelty up to N, i.e. that (6) is the
solution of (4) for N aircraft. We now prove that (6) is the solution of (4)
for N + 1 akraf t . Call m(k, I) the fallowing quantity. with k and 1 both
in { I , . . . , N + I},andk < 1:

Fi r s t .m(l ,N+l) = m i n { m (l , N) , m i n i e (l ,..., N) (bN &+l-i '.'-"<.')},
We now investigate which of these terms achieves the min form(1, N + I) .

I easel. I f w e h a v e m (l , N + l) = m (l , N) . Wethushavem(1,N) 5
b.v t > - a * , i for all i 5 N (i.e. the arrival interval of aircrafi N + 1 does
not decrease the ovCIall minimum). Take tN+1 = bN+1,1. Now call
bh,, = min{bN+i,l - m (I , N) , b N , i } .

- - bN,i, we have success-
t,v+l satisfies fully constructed (t l , . . . , t N + ,) :

t ~ + i - t,v 2 m (l , N + I) = m(l,N), and for all (i , j) E

(3) I4 If b;u,l
ti 5 bi,i i<N
ti - t j 2 A - CC,
ti - tj I C(l -cij) - A
cij E @,1) j < i < N {I,.. . , N } 2 ~ u c h t h a t i < j , t j - t i > m (l , N) = m (l , N + l) .

j < i < N
j < i < N

If bL,l = bN41.1 - m(l, N) . Let us rename every other bi,l
as bi,l, for i < N. for norational ease. Nay define by: =

2.1 Closed form solution for fixed arrival order
Assume first that the order of anival of the aircraft is known ,.l ("") N--i a priori. Without loss of generality, assume that the aircraft
have been labeled in this order (aircraft 1 anives first. air- ,~

= (b h , , - a.,1) = s; (bN+l.l -;Ff) -'U
- K N N--E

craft 2 anives second, . .). Then, problem (3) reduces to:

ti 5 bi,l i < N

Lemma 1. The opfimal solution A of (4) satisfies A < m.
where

P r o o f - C a l l (k , ~) = ~ g m i n (, , ~ ~ ~ ~ ,,..., (-),i.e.

one pair of aircraft such that (w) = m and k < 1. Suppose that
A > m. Then (1 - k)m < (1 - k)A 5 bj,l - ak.1 = (1 - k)m. The
fin1 inequality is by assumption. The second by definition of A: the best
spacing between aircraft k and 1 is bounded by the mean. The last equality
is by definition of m. This inequality cannot be me. Therefore A 5 m.
0

3-'

which proves E 2 m(l, N) , and therefore the change in bN,, into
bh,, = bN+i,1 - m(l , N) does not decrease (8). We now have suc-
cessfullyconsmcted (t l , . . . ,t,v+1): tN+1 - t N 2 m (l , N + 1) =
m(1, N), and for the N-tuple1 (t l , . . . , t w) , we just proved that >_
m(1, N) isachievable.

(C a s e Z m (l . N + I) = m i n i < N + l (b N ~ + ? , ~ ~ i ~ l) < m(1 .N) .
Obviously. adding a new aircraft has restricted the available spacing of the
others: 31 E { l ; - . ,N)suchthatm(l ,N+l) = m (l , N + l) <
m(L NI.

If I = 1, m(l ,N + 1) = b N + l $ n l ~ ' . The evenly spaced so.
lution is the optimal solution. Let us show it is feasible, i.e. V j E
{Z,... , N } , 01.1 ++(bN+l, l -ai,,) E [a;,,, b;,~]. Ifthis werenot
the case, then, without loss of generalily (since the problem is symmetric),
wewouldhaveal.1 + Y (b N + 1 , , -a,,1) > bl,Dforapmicularjo,
whichwouldmean blO.l-%l ~ b . v i i . i - a u , which is by assumption
wrong. x - 1

5005

If 1 2 2, we can use the symmetry of the problem to Ripiit (the a;,l
and bi,l are inverted)’. and we are now in case 1.

In case 1 and case 2. we were able to cons~mct a solution such.that An =
m(1, N) for every N. By Lemma I, this is the best An, i.e. A. that we
can achieve, and equation (6) follows. 0

2.2 Transformation of the feasibility problem into a
scheduling problem
The previous section solved for the maximal time separa-
tion between aircraft A in the case of fixed order of arrival.
In the current ATC system, if one interprets as the nom-
inal time of anival of aircraft i, and (ai.1, b i ~] as the set of
possible arrival times with delays, equation (6) predicts the
best available spacing without altering the order of arrival
(first come first served policy). Despite the fact that it is
used almost all the time in practice, this policy is of course
not optimal? We now consider changing the order of ar-
rival of the aircraft. We show that the feasibility problem of
(3) can be reduced to a single processor scheduling problem
with release times and deadlines [14], known to be solvable
in polynomial time [2, 91. The two following problems are
equivalent:

Problem 1: Let A be a given positive number (time separa-
tion). Given a set of N intervals [a;,1, b ; , ~] , ZE 11,. . . , N } ,
find a set { t i } iEIl , . . . ,q such that Vi E 11, ’ ’ N } , t i E
[a,,~, b i ~] andV(i,j) E {l,... ,N}’, s.t. i > j, It; - t j l 2
A.

Problem 2 Let D be a given positive number (processing
time). Let I = 11,. . . , N } be a set of jobs. Let each job
have a release time r; and a deadline d;. Find an ordering
{ t ;) ;cr such that t ; 2 r, (job i cannot start before the re-
lease time r;), t; + D s d i , (job i has to be processed before
the deadline d,) t i < t j + t) 2 t; + D (two jobs cannot
be processed simultaneously).

Solving problem 2 for a given set of [r;, di] and D, is equiv-
alent to finding a feasible solution to our original problem,
with a;,l = ri and bi,l + D = di, A = D. We show in
this paper that the second problem can be solved using an
adaptation of a known scheduling algorithm [9], which we
derive in the Appendix.

3 SCHEDULING ALGORITHM

We call Carlier the algorithm presented in the Appendix.
Carlier solves Problem 2 in Section 2.2. We will use the fol-
lowing notation: Carlier(ri, d<, D) represents the ordering
obtained with release times ri, deadlines di and processing
time D if such a schedule exists.

‘We treat fint the subset 11.. . N + 1) of aircraft (which we can do
using the induction assumption, since 1 > 1. and thus (N + 1 - 1 < NI).
We then complete with the set {I.. . , I - 1). but this time we will be in
case 1 because the argmin of (6) is obtained in the set { I . . . N + I}.

*Take for example al., = 00 : 00 : 00, az,] = 00 : 00 : 30,
b i , l = 00 : 03 : 00, h,i = 00 : 01 : 30. nl = 712 = 1.

Theorem 2. Assume ihai ni = 1 for all iE {l, . . . , N } ,
ai,l E N, b,,l E N, D E N. The following bisection al-
gori?hm converges to the exact soluiion of (3) in a jiniie
number of steps. The time complexiiy of the algoriihm is
O (N 2 log(N)(N+log L)) where L = maxbi,l -mina<,].

Scheduling algorithm

A := & (mwE(l ,... . N I bi,n* - miniG{l,... ,N) a;,l)
if Carlier(ai31, b,,l + A, A) is feasible, return A
while Carlier(a;,l, bi ,] + A, A) not feasible, A := A/2

while ((Z - A) 2 &)
- A := A, B := 2 . A

if Carlier a,,l, bi ,] + e, v) is feasible

etsi

L
A :=

2

E [~,K]nukN_;’ (9)
Acarlier(a,,l, bi,l + A , A) feasible}

Proof - Convergence If A = & [b ~ , , , , - a l ~] is feasible, the
algorithm stops at step 2. This is the ideal case (the largest achievable
spacing is feasible).

Otherwise. let us call A* the optimum of the problem. Let us call v (.)
the order of arrival of the aimaft (aircraft i arrives in position u(i)) . By
Theorem 1, wehave:

Because of the limited possible values of the difference u (j) - u(i) . and
becauseofthefactthatthea;,l,and bi.1 areintegen.equation(9) implies:

. .
where = {f I q E {I,. ..N- I}, p E N) c Q. In step
3, the algorithm will divide A by 2 until it becomes feasible. In step 4,
staning from the last value of step 3. it will approach A* by bisection until
it comes within -& of A*. Then we know that A* € B, XI. Because

of the previous remark on A*. A* E L,X] n l,)~:~ (E) . But this set

conmins at most N - 1 elements since - A 5 &. which are easy
to enumerate (step 5). A* is the largest of them.

Complexity The number of calls 10 Cariier is I for step 2, and N - 1 for
step 5. The wontcase for step 3 is if A has Io be divided by 2 p times until

1 maxb;,l - mina;,l 1 -> -
N - 1 - N - 1 2p

and the same applies for step 4, which gives the following bound for the
number of calls to Carlier:

ThenumberofcallsoftheprocedureCarlieristhlrsO(N+log L),where
L = max bi,l - mina;,]. The complexity of the modified Carlier’s
algorithm is O (N 2 log(N)) (see Appendix I). The complexity of the
algorithmisthus O (N Z log(N)(N + IogL)). 0

Corollary 3. Theorem 2 holds for a;,j E Q, b;,j E Q.

’Combining the length of the two intervals might give a better baund
than (1 I) but does not change the complexity.

5006

Proof - Call a; , j = ~ / d and b;,j = ?{/si, and call L the l e s t
common denominator of the q j and si (note ihat L = n,"=, nyil dsi
works as well). Then problem (2) is equivaleni io the following problem:

In (12). Ld/d E N and Lvi l s i E N, so Theorem 2 gives us
a solution (A*, t , , . .. , t N) = (LS*, LE, , . . . ,LON). Therefore,
(S', 81, . . . , B N) solves the problem in Q. 0

4 NUMERICAL PERFORMANCE

The running time of the algorithm is theoretically bounded
above by O(N210g(N)(N + IogL)), where O(.) means
there is a constant in front of N Z log(N)(N + log L) and it
is independent of N and L. In practice, this constant can be
very large, and numerical experiments are needed to assess
the practicality of the method. We simulate a set of 1800
cases and compare the measured CPU time used by our al-
gorithm and that using CPLEX to solve the same problem,
(N E { 2 , . . . ,19}). We run 8100 additional simulations
(N E {no,. . . ,100)) to assess the performance of OUT al-
gorithm in a range of N where CPLEX cannot handle the
computation in real time. We simulate situations in which
N aircraft are within one hour of the destination airport. For
each value of N , we randomly generate intervals [al , l , b , , l]
within one hour of Oakland, with various widths btLl - a,,1
ranging from 30 sec. (almost no possibility to adjust the ar-
rival time of the aircraft) to 15 min. We measure the CPU
time needed by our method to compute the largest available
A* between the aircraft. We run 100 simulations for each
N .

Our algorithm is implemented in MATLAB; the CPLEX so-
lution is coded in AMF'L interfaced with MATLAB, so that
both methods can run from the same application on the same
platform? The results of these runs are shown in Figure 2.
This figure suggests a few comments. The average result
is not representative of the relative performance of the two
algorithms. Looking at Figure 2 (top) would suggest that
CPLEX's performance is much worse than our algorithm
for N 2 14. Figure 2 (bottom) shows that the average is
"polluted" by abnormal runs: in fact for the set of simn-
lations shown here, CPLEX is faster than our algorithm in
85% of the cases, but among the 15% remaining, the CPU
time used by CPLEX exceeds the CPU time used by our al-
gorithm by several orders of magnitude, which increases the
average significantly. We are also aware that there might be
more efficient ways to encode the MILP (2) in CPLEX or
even the one interval version (3). For example, another way . I^\ .

max: A
s*: ti 2 ai,", + X ; ~ ; ' x ; j (a ; , j - a . , j + l) i c N

ti 5 bz,n, + ~ ~ ~ ~ ' z i j (b i , j - b; , j+i) i 5 N
x i j 5 xi j+ l j 5 ni - 2
"ij E {0,1) i 5 N j sn i -1

i 5 N

Regardless of the respective benefits of different MILP for-
mulations of (l), the goal of our algorithm is to provide a
guarantee on running time, which CPLEX does not provide,
as is illustrated by Figure 2.

5 CURRENT WORK, OPEN PROBLEMS

When ni > 1, i.e. each aircraft has multiple possible arrival
intervals, the problem is much harder to solve. Unfortu-
nately, the transformation operated in the one interval case,
to cast our problem into a scheduling problem form, does
not work in the multi-interval case. Even if it did, CTlier's
algorithm does not generalize easily to multiple intervals.
Our current work is focused on solving the multiple interval
case.

The previous algorithm can be adapted to the specific sim-
ation of fixed arrival order (with ni > 1). Instead of using
Carlier as the main subroutine of the scheduling algorithm,
we use a sequential construction subroutine. This subrou-
tine sequentially mes to space aircraft by A in the fixed
order, trying the arrival intervals in increasing order from 1
to n,. The computational cost is therefore linear in the num-
ber of intervals. Calling M = zf, ni, we showed that the
complexity of the algorithm is O(A.i(N 4 log L)) .

The contributions of this paper are thus, three algorithms,
whose complexity is summarized in the following may:

order fixed order not fixed

closed form exact
n; = 1

n; > 1

0 (N logN)(N+logL)

O (M (N + IogL))

N Here, N is the number of aircraft, A l = C , = , n i , and
L = (maw::, bi,,, - min::, ai , l) ,". Besides the bottom
right cell of the array above, several other questions raised
by this problem remain open. If we transform the problem
and assume Si = ai,^, bi.11 4- NT (which physically cor-
responds to an aircraft which could execute a large number
of holding patterns before landing), we still do not h o w
if finding the minimum makespan (landing time of the last
aircraft to land) is polynomial solvable. Furthermore, min-
imizing the total number of holding patterns, minimizing
the total number of aircraft put on a holding pattern, min- ~.
imizins the sum of all times of arrival and minimizing the to encoae [L j IS: - -
total makesvan are not equivalent Dmblems. Our current re-

'The two methods run on the same machine: a SOLARIS 8 workstation
under UNIX (?GB of RAM). The MATLAB implementaiion is quite un-
favorable to our algorithm. MATLAB is notoriously slow for conditional
operation such as"'if',"else" ... Noie ihai the CPLEWAMPL solution nro-

search efforts derived approximation algorithms for [WO of
these four problems ~41, polynomial time algorithms,
for which we guarantee that they converge to a value

cedure is coded separately. and MATLAB is used only as an interface.' within a certain bound of the mathematical optimum.

5007

.

Figure 2: Top: CPU time used by our algorithm and by CPLEX to solve
the Same problems. The curve is an average over 100 runs for
each value Of N (1800 NBS far CPLEX, 9900 Nns for our
algorithm). Bottom: Comparison of the results for the first
18W simulations realized. AS can be seen, even for N 2 14,
a significant number of CPLEX computations are faster than
OUT algorithm by at least one order of magnitude.

Acknowledgments

We are grateful to Tom Schouwenm for his help on CPLEX, to Francis
Cam, for his suggestion for the MILP formulation presented at the end of
Section 4, to Dr Gano Chauerji (NASA Ames) for the suggestions which
went into mcdeling this problem. and to R. George Meyer (NASA Ames)
for his suppal in this project

Relerrnces
Ill R. K. AHUJA.T.L. MAGNANTI,IUI~J.B. ORLIN. NehwrkFlow,
l'heo?, Algorithms and Applicotions. Prentice Hall, Upper Saddle River,
NI. 1993.
121 P. BAPTIST€. Polynomial time algorithms for minimizing the
weighted number of late jabs on a single machine when processing times
are equal. Joum. of Scheduling, 2245-252, 1999.
131 A.M. BAYEN, P. GRIEDER. C. 1. TOMLIN, andG. MEYER. Con-
001 theoretic Lagrangian models for sector-basedairtraffic Row. To appear
in the A M Jooumal on Guidance. Dynamics and Coaml, 2003.
141
mation algorithm for scheduling aimaft with holding time. Submitted to
INFOCOM 2004.
[SI A. M. BAYEN and C. 1. TOMLIN. Real-time discrete conml
law synthesis far hybrid systems using MILP applications lo congested
airspaces. In 2W3 Americon Contml Conference, pages 46204626. Den-
ver, CO, May 2003.

A. M. BAYEN, C. 1. TOMIN, Y. YE. and 1. ZHANG. An approxi-

161 A. BEMPORAD. F. BORRELLI. and M. MORARI. Piecewise linear
optimal contr~llers for hybrid systems. In 2 W O A m r i c m Contml CO,+
 CP. pages 1190-1194, Chicago. IL, June ?OM).
171 D. BERTSIMAS and J. N. TSITSIKLIS. bumduction 10 linearopti-
mirnrion. Athena Scientific, Belmont. MA, 1997.
181 K. BILIMORIA, B. SRIDHAH, G. CIIATTERJI. K. SETH. and
S.GRABBE. FACET Future ATM canceprs evaluation 1001. In 3rd
USMEumpe Air Trafic Monngement RBD Seminar, Naples. Ilaly. lune
2001.
191 1. CARLIER. Probltmes d'ordonnancement durdes &gales.
QUESTIO, 5(4):219-229, 1981.
I101 D. DUGAIL, E. FERON, and K. BILIMORIA. Conflict-free confor-
mance to en mute Row-rate constraints. 10 AIAA Conference on Guidance.
Navigation and Contml. Monterey, CA, August2002.
1111 H. ERZBERCER, H. T. DAVIS, and S . M. GREEN. Design of
Center-TRACON Automation System. In AGARD Meeting on Machine
Inteiligence in Air Trafic Ma,mgemenr, Berlin, Germany. May 1993.
1121 C. A. FLOUDAS. Nonlineorondmiied-int~g=gerpmgmmming -fun-
damenrals and applications. Oxford University Press, Oxford, UK, 1995.
1131 R. FOURER, D.M. GAY, and B.W. KERNICHAN. AMPL: (1 model-
ing languagefor nlarherMIicolpmgrnmrIting. Boyd and Fraser, Danvers,
MA, 1999.
1141 M. R. CAREY and D. S . JOHNSON. Computers and i n t m a o b i l i ~ ,
~1 guide 10 the Ilieog ofNP-Completeness. W.H. Freeman and Company.
New York, 1979.
[I51 V. JAIN and 1. E. OROSSMANN. Algorithms for hybrid MILP I
CP models for a c l a s of optimization problems. INFORMS J o u m l on
Computing. 13258-276.2001.
1161 A. RICHARDS, T. SCHOUWENAARS. 1. HOW, and E. FERON.
Spacecrafi trajectory planning with collision and plume avoidance using
mixed-integer linear programming. AL4A Joumol of Guidance. Conrml
and O m i c s . 25(4):755-764,2002.
1171 V. V. VAZIRANI. Appmximion Algorithms. Springer Verlag,
Berlin, Germany, 2001.
1181 H. P. WILLIAMS and S . C. BRAILSFORD. Compulational lo@
and integer programming. In 1. Beasley. editor, Advancer in Linear and
Inleger Pmgramming. pages 249-281. Oxford University Press, 1996.

APPENDIX
This Appendix presents our modified version of Carlier's
algorithm 191 for solving the feasibility of problem (3) for
a given A, when n, = 1. We present this complete algo-
rithm and our proof of convergence and of solution proper-
ties (which is a modified version of Carlier's). The problem
solved by Carlier is the following.

Let I be a set of jobs. We want tofnd an ordering [ordon-
nancenientl7 = (t i) i c I such that

1. ti 2 ai, job i cannot Stan before time ai.
2. ti + D 5 b,, job i cannot end after time b,.
3. ti < t j ==+. t j 2 ti + D: two jobs cannot be executed

simultaneously.

A few definitions and some notation need to be given and
will be used in the algorithm below. The algorithm re-
cursively builds an ordering 'P satisfying the conditions
above, where the recursion is run on x which represents time
(therefore, x will be proceed from mini ai to m a j b j) .

K, = {ilai + D 5 x} is the set of jobs which can he
finished before time 2.
Let 7% he an ordering of the jobs constructed by the
algorithm; we call U, the set of jobs ordered by 'P:
U, = {ili ordered by P}.

5008

Proof - The prwf is done by induction on x. Obviously. V x E H = K, - U,-D is the set of jobs which can be
finished before time x (i.e. from Kz), which have not
been ordered by (i.e. not in L'-D).
m: most urgent job of H m = argminhEH bh.

The delay of an ordering 7 (with set of indices U) is:
y = ma.xuEU(tu + D). The delay of 7 is the time
this ordering takes to complete.
An ordering 7 (with corresponding set of indices U)
active as follows: an ordering 7 (with corresponding
set of indices U) is said to he active iff there does
not exist a job w in the complement a of U such that
max,,U(t, + D) >~ b, - D. In other words, there
does not exist a job w in the complement of U which
cannot be processed before its deadline b, because
w cannot start before the completion time (delay) of
the jobs in U . Mathematically, it equivalently reads:
max,,o(tu + D) I min,,gb, - D.
An ordering 7 (with corresponding set of indices U)
is said to be x-active iff it is active and has a delay
less than x .

+ m} is the ordering obtained by adding the
most urgent job m to the ordering 7z-D, if m is exe-
cuted as soon as possible. As soon as possible means
the job m should stan at t , = mm{a,, y}, where
y = m a , , in I=-D (tu + D) is the delay of the order-
ing T Z - O .

T (x) is the set of orderings which are active and
which have a delay less than x .

Definition 1. (Carlier) 77te operator "preferable to" t is
defined the following way: for two sets U and V of elements
ofl. U ? v if..

I . p = IUI 2 T = (VI
2. b,, I bo, , . . . ,bu7 I bu7 ifb,, 5 b,, . . . 5 b,, and

Theorem 4 (after Carlier [91). Vz E
{mini,, a;, . . . ,max;EI b;}, the set 'Tz constructed
by fhe algorithm below is x-active and is preferable to any
other x-acfive ordering.

b,, I bv2 . . I b,,. ~

Algorithm Carlier(a,, bi, D)

1

2

Vx E {miniEl a; , . . ,miniEl a; + D - I}
7 2 := 0 , U, := 0

for x = miniEl ai + D : maxiE, b,
3

i f H = 0
4 7 2 = 7 z - D

else
5 m = argminhEH bh
6 if
7 else 7" = 72-l

end

K, := {ila; + D I x}, H = I(, - U,-D

+ m} is active Tz = { 7 * - D + m}

end
if U, # I no solution else return 'Tz end E

{minier a,, . . , minis1 aI + D - 1). the pmpeny is m e , sin& I* :=
0 and U% := 0.

Suppox the propeny is true for all z 5 x - 1. We want to show that it is
true for I=. There are two cases:

m H = 0 .

We know that K, C U,-D because Kz - U,-D = 0. Since the set of
jobsorderedattimex-Disal mostthenumberofjobsthatcon beordued
at time x - D, l J -0 C K,-D E K,, because Kz is monotonically
increasing. Combining the above inclusions. we have K, = U,_D. This
means that all jobs execufable hefare time z are ordered by U,-D (i.e. by

E T (x) .
This implies that

m H # 0 .

H contains at least one element which can be finished before x not ordered
byU,-~.Let7'={7"-~+m);letIbeanyorderinginT(x),and
call 1 the last jab which was ordered by 7, and I - { l) the ordering
obtained by withdrawing job 1 from 7, U the set ofjobs ordered by 7.

We first show that if 7' is active. then 7' 5 I . We use Carlier's
191 lemma on the prearder t:
Lemma: (Carlier [91) Let C and E be W O setssuch that C t E.
Let U 4 C and z) E. Suppose that Vw E C, b, 5 b,. Then
{ U) U C t { V) U E . a
We can apply the previous lemma to the present problem: mke I =
K,. C = U=-D, E = U - { l } , U = m, U = 1. In the following,
the complement of a set K-L I is defined as ?? = I\K. Clearly.
U E, Vw E C. b, 5 b, because by consmction,
m = U is the most urgent job. Finally U=-D t U - { I) by the
induction assumption. Therefore I' t I , that is, I' is preferable
to any element of T(x). Since I' is active, it must also be x-
active. To see this. we need to prove that the delay of I' is less
than I. Calling y the delay of we have y 5 z - D. Since
y 5 is x - D active and

m E n K,, m can be executed before z. i.e. t , + D 5
x. In conclusion, 7' is x-active and preferable to all elements of

Second, we show that if 7' is not active, then I' = T=-'. We
want to show that Q'T E T(x), I=-' t I.

Also. 7z-D E T(x - D) C T (x) , therefore
is a maximal element of 7(x) for t.

C, v

b, - D. because -

T (x) .

- If max,,T(t, + D) 5 x - 1, this result is immediate by
induction.

- Otherwise max,eT(t, + D) = x. We call 1 the last job
ordered by I (see Figure 3). By induction, we know that
I"-D t 7 - { l] . This implies 7 - { l) t
Because{7'-D+m)isnotactive,3ZE {7"-O + m)
such that - D < x. We have iij E 7 since otherwise
iij can only stan after x (the delay of 7) or h r - D 2 x.
which is a convadiction. Thus. iijmusf have been pmces.%A
before x and 1 6 K,. Since m was the most urgent task
added to 7=-D, b, 5 b < x + D (that is, both m and
iijiare in Kz when m is added).

--

__ -
Now we have: m E 7 Z - O and iij E Since
7 - { l) P T=-D, I - (1) contains at least two jobs i
and j , indexed by the order bi 5 b i . such that b, 5 b, <
___ _____

x + D and b& < z + D. Fkhermore. sinFe both i
and j are in I - { l) , one of them must be scheduled after
1, say job j , with completion time at k a t x + D. This im-
plies b j 2 x+D, whichcontradicts the previous inequality.
Therefore there cannot be I E T (x) of exact delay x.

We have prow3 that regardless of how I' was consmcted, it is always
2-active, and orden more jobs than any other 2-active ordering 7. If a

5Carlier also shows A t B + B x.
5009

solution to the original problem exists (i t . the problem IS feasible). we
know that the algorithm will find it. because for any z, it finds one z-active
ordering with the maximal number of jobs. It suffices to march z until

m u t e r b,. 0

... 1 I ,&!I 1
; ; D : i

(7Z-D + m) e.. I T
~ , .

7 ~ - D m

Figure 3 Case 2 from the proof of Theorem 4, with [7T-D +
m} not active. Orderings 7 of delay x exactly and
{‘T”-D+m}atiterationx. Thelastjoblof7issuch
thattz + D = x.

Theorem 5. 1. The computational coniplexig of calculat-
ing at each step is O (N) . 2. It is possible ro modify the
algorithm such that the overall computational complexig is
o(~3) .

Proof - In step 3, the computational complexity of dculating K,.
for all z from minier a, + D to m a x i E l b; is O (N) (since if requires
stepping through all a,). Therefore, in the tor loop of step 2, it is O(1).
The computation of H is at most O (N) , if the two sets K, and V=-D
are consmcred with increasing indices (i.e. the sets are indexed such
that performing K . - U=-D only requires checking the upper indices
of K. and U,-D). All other operations are O(1) except computing

m = argminheH bh. The cost of computing 7= is thus O (N) . It
suffices to compute the 7” for z = a, + kD. with i E I = 11,. . . , N}
and k E I = 10,. . . , N - I}. The total number of z is N2, which gives

0 the algorithm a complexity of O (N 3) .

r . I X I H [m l n . l U , I T. I

Table 1: Details ofthe computations in the modified Carlier‘s algorithm.

We run Carlier’s numerical example on the present algo-
rithm as an illustration of the algorithm. Consider six jobs,
with following release times: a, = 0, a2 = 2, a3 = 7,
a4 = 9, a5 = 10, a6 = 24, and the following deadlines:

The processing time of each job is D = 5. The following
array now shows the results obtained on this example, with

bi = 32, bz = 35, b3 = 22, bq = 20, 65 = 23, be = 30.

501 0

the algorithm above. For x = 19, {Z4 + 3) = {l, 4,3} is
not active, according to the definition of active: the delay of
this ordering is 19. This does not enable the later schedul-
ing of job number 5: bs = 23 < 19 + D = 24. Therefore,
%7;9 = Z8. Similarly, for 5 = 20, U,, = {1,2,4}, m = 3,
but {1 ,2 ,4 + 3) is not active, because its delay is 20, and
b5 = 23 < 20 + D = 25. {Zs + m} is not active, there-
fore 50 = zg. The same is true for ?&. For x = 22, it
becomes active again, and the jobs can be added properly
until x = 34. (see Table 1).

