Proceedings of the 42nd IEEE
Conference on Decision and Control
Maui, Hawaii USA, December 2003

FrA11-6

MILP formulation and polynomial time algdrithm
for an aircraft scheduling problem!

Alexandre M. Bayen® Claire J. Tomlin3
Dept. of Aeronautics & Astronautics
Stanford University
Stanford, CA 94305-4035

Abstract)

This paper presents a polynomial time algorithm used for solving 2 Mixed
Integer Linear Program (MILP} formulation of a scheduling problem ap-
plicable to Air Traffic Control. We first relate the general MILP (which we
believe to be NP-Hard) to the Air Traffic Control problem, which consists
of performing maneuver assignments to achieve scheduling constraints for
airport arrival traffic. This MILP can be soived with CPLEX, yet there is
no guarantee on the running time. We show that a specific case of this
Air Traffic Control problem, which is of interest in its own right, may be
solved using an exact polynomial-time algorithm. The case of interest con-
sists of finding the largest achievable time separation between aircraft upon
amrival, compatible with airspace restrictions and aircraft performance. Our
algorithm transforms the problem to a single machine scheduling problem,
and then embeds its sclution into a bisection algorithm. We establish the
polynomial complexity of the resulting algorithm by proving an algebraic’
property of its optimal solution. We compare the running times of CPLEX
and our algorithm for 1800 cases with up to 20 aircraft. The results show
numerical evidence of the guaranteed running time of our algorithm, by
contrast with CPLEX whose average performance is good, but also shows
a significant number of instances with unpredictably large computational
time, We perform 8100 additional runs of our algorithm with up to 100
alrcraft, to numerically confirm the predicted worst case running time of
our algorithm,

1 INTRODUCTION

1.1 Origins of the problem

Motivated by the growth of air traffic since the 1940s, the
Federal Aviation Administration (FAA) achieved by the mid
1970’s a semi-automated Air Traffic Control (ATC) system,
based on a combination of radar and computer technologies.
This system has been constantly upgraded since. One of
the newest tools in the ATC system is the NASA-developed
software Center-TRACON Automation System (CTAS) [11],
which helps Air Traffic Controllers manage the increasing

1Research supported by NASA under Grant NCC 2-5422, by ONR
under MURI contract NOOO14-02-1-G720, by DARPA under the Soft-
ware Enabled Control Program (AFRL contract F33615-99-C-3014), and
by a Graduate Fellowship of the Délégation Générale pour 1I' Armement
{France).

2Ph.D. Student, IEEE Student Member, corresponding author. Aero-
nautics and Astronautics, Durand 028, Stanford University, Stan-
ford CA, 94305-4035. Tel: (650)498-0530, Fax: (650)723-3738.
bayenéstanford.edu

3 Assistant Professor, Aeronautics and Astronautics, and by courtesy,
Electrical Engineering; Director, Hybrid Systems Laboratory, Stanford
University, IEEE Member.

4Professor, Management Science and Engineering; Director, Computa-
tional Optimization Laboratory, Stanferd University.

SPh.D. Student, Management Science and Engineering, Stanford Uni-
versity.

0-7803-7924-1/03/$17.00 ©2003 |EEE

5003

.Yinyu Ye! Jiawei Zhang®
Dept. of Management Sci. & Engineering
Stanford University
Stanford, CA 94305-4026

complexity of air traffic flow in the vicinity of large airports.
Besides helping to reduce the workload of the Controllers,
this advisory system also contributes to a more efficient traf-
fic flow management which benefits the passengers and the
airlines, by reducing the delays and improving safety. The
functionalities covered by CTAS and other tools available to
the Air Traffic Controllers include monitoring, alerts, advi-
sories, some planning functionality, as well as information
displays. With regard to planning, CTAS can be used to as-
sign aircraft to particular arrival routes, called arrivals, into
airport vicinities (see Figure 1 for two main arrival routes
into Oakland airport).

Figure 1: Two examples of arrival into the Ozkland airport: Madwin 3
(—yand Locke 1 (—).

Arrival assignment aids the Air Traffic Controller in the
problem of Aow metering, or delivering a prescribed num-
ber of aircraft per vnit time to the airport runway. An Air
Traffic Controller can thus regulate the flow by manually
adjusting the flight plans of individual aircraft, according to
procedures (called playbooks) which have been established
over time to meet the acceptance rates at airports. Exam-
ples of maneuvers used for such adjustments are shown in
[3, 5, 10]. These maneuvers are used to slow down the air-
craft, to increase spacing between it and the previous air-
craft. Much of the Air Traffic Controller’s workload con-
sists of manually calculating these maneuvers for each air-
craft so that the overall flow satisfies the metering condi-
tions. The task of performing arrival assignment and time

mailto:baven@stanford.edu

adjustments on arrivals is sometimes referred to as routing-
sequencing. The algorithm. presented in this paper could
contribute to the automation of this task. ‘

In the current system, Air Traffic Controllers tend to use
only a subset of the maneuvers available to them while me-
tering the flow into the airports: for example, it is often
casier not to change the order of arrival of the aircraft into
an airport, despite the fact that it might reduce the delays.

In [5], we study the feasibility of automatically generating -

these flight plan adjustments, in order to meter flow in real
time, even when the system is operating at maximal capac-
ity. The main result of [5] is an algorithm which maps the
set of all possible adjustments of all aircraft to a Mixed In-
teger Linear Program (MILP). The numerical implementa-
tion of this program takes NASA provided air traffic data
(called Enhanced Traffic Management Systemt (ETMS) data
[8]) as input, and generates a schedule for the sequence of
aircraft and, indirectly, the resulting maneuver set that each
aircraft should perform, This resuit supplies the Controller
with directives for each aircraft which optimize the flow -
in some cases, the method suggests switching the order of
aircraft arrival (have one aircraft overtake the other) in order
to improve the wraffic flow. In [5], to solve the MILP in this
numerical implementation, we used CPLEX [13] (the lead-
ing industrial solver for such programs}. Due to the com-
plexity of the underlying mathematical problem, despite the
very good average performance of CPLEX, unpredictable
cases, in which solving the MILP takes an exponentially
large amount of time, occur in practice. This behavior is
undesired for an online implementation of the algorithm,
because the user might have to wait an unacceptable amount
of time before getting an answer. This article proposes an
algorithm for which we provide an upper bound on the run-
ning time of the MILP solution, and which is therefore guar-
anteed to find the exact optimal solution in a time which is
. predictable. Despite the fact that this algorithm was specifi-
cally designed for an ATC problem, it could be modified for

other domains, such as jitter avoidance in networks, or task -

regulation in supply chain management.

1.2 Complexity of the problem, related work

MILP [7] is a powerful mathematical formulation that ex-
tends linear programming to problems with both continu-
ous and integer variables. It appears naturally in various
fields where these two types of variables coexist, for exam-
ple operations research or chemical engineering [15, 12].
It enables inclusion of computational logic [18] into opti-
mization problems, and provides an excellent tool for multi-
vehicle or conflict avoidance problems [16] and discrete
time hybrid systems {6]. Integer programming (and there-
fore MILP) in the general case is NP-Hard {14, 17]. Famous
examples of NP-Hard problems, which can be posed as inte-
ger programs, include facility location, traveling salesman,
knapsack, bin packing {17]. Certain problems which can
be formulated as integer programs (for example max-flow,
min-cut, maximum matching, minimum spanning tree) are
polynomial-time solvable [1]. But a general integer pro-

5004

gramming optimization software such as CPLEX [13] can-
not differentiate between polynomial-time solvable prob-
lems and NP-Hard problems a priori, and might require
exponential time to find the solution of a polynomial-time
solvable problem, as shown in [5]; this article proves that a
specific case of the problem shown in [5] is polynomial-time
solvable by deriving an exact polynomial-time algorithm.

This article is organized as follows. In section 2, we present
the general formulation of the aircraft routing-sequencing
problem, and the specific case of interest. We identify a
closed form solution for the particular case in which the
order of arrival of the aircraft is fixed in advaace. In sec-
tion 3, we use this closed form solution as a stopping con-
dition for a bisection algorithm used to compute the exact
solution of the MILP, The bisection relies on a feasibility
algorithm which is a modification of a known single pro-
cessor scheduling algorithm, derived in the Appendix (with
a numerical example to illustrate its structure). Section 4
presents a numerical implementation of this algorithm, and
extensive comparisons with CPLEX. The bounds on run-
ning time derived for our algorithm are verified in practice
and it is shown to perform much better than CPLEX. Sec-
tion 5 outlines the current state of our research for the gen-
eral version of the problem, as well as preliminary results
for this general problem.

2 PROBLEM FORMULATION

‘We consider N aircraft converging to a single airport. Ait-
craft are indexed by i€ {1,--. ,N}. As a result of ATC
actuation, the set of arrival times for aircraft £ is a union
of intervals called S; := UL, (@i, bik]. For each 7, n;
is the number of intervals of time in which aircraft ¢ can
arrive, These intervals encode a set of maneuvers which
are relatively easy to implement for ATC. Usually, arrival
airports request a time separation A between aircraft (for
example, at most one aircraft every minute). A key ques-
tion for ATC is to know how much buffer time is avail-
able given this set of “ecasy” maneuvers: what is the largest
A that can be achieved? If this largest A is too close to
the request of the airport, ATC might decide to hold air-
craft at predefined locations to ensure a safety buffer in
case of disturbances (such as weather). In mathematical
terms, given {S;}icq1,... . v}, We want to find a N-tuplet
(t1,---,tn) € Hf;l S; of feasible arrival times for the
N aircraft maximizing the minimum time separation A be-
tween all pairs of aircraft:

max: A
st € Urileikbik] i< N (N
It -1, > A j<i<N

In this form, (1) is not a linear program (it is not even con-
vex). It can be rewritten as a MILP, using boolean variables
¢i; which encode the relative order of arrival of aircraft £
and 7, and d;, which encode the chosen arrival interval of

aircraft ¢ (see [5] for more details):

max: A

s.k.: t; Za'i,l 1< N
tiSbi,m ESN
1 2 @i k11 — Ddyg 1SN, k<n; -1
t,;Sbi,k'i'D(l—dik) 1SN k<n; -1
d{kE{O,l} i<N, k<n;—1
ti—thC(l—Cij)—A j<i<N
¢y € {0,1} j<i<N

@

In {2), C and D are “large” constants. Large means that
at least: C' > 2(ma,x:;-v=1 bjn, — minl¥; a;,) and D >
maxlt; max{ain, — @i1,bin, — bi1}. We do not know if
this problem is polynomial-time solvable or not. Given the
similarity with known NP-Hard scheduling problems (for
example, if the separation of the aircraft depends on the air-
craft), we believe that this problem is NP-Hard, but we have
not yet been able to prove this.

For the present work, we focus on the one interval case
(n; = 1 for all 7), and show that this problem is polynomial-
time solvable. In the one interval case, d;; disappears, and
the problem becomes:

max: A

s.t.: t,;_>_a,v,1 t< N
tisbi,l ZSN 3
t—t; > A — Cey j<ig<n @

ti—thC(l—Cij)—A]*(ISN
CijE{U,l} j<i<N

2.1 Closed form solution for fixed arrival order
Assume first that the order of arrival of the atrcraft is known
a priori. Without loss of generality, assume that the aircraft
have been labeled in this order (aircraft 1 arrives first, air-
craft 2 arrives second, - - -). Then, problem (3) reduces to:

max: A

s.t.: ti—tz‘_le QSESN (4)
b 2 as IS N
t: < bi i< N

Lemma 1. The optimal solution A of (4) satisfies A < m,
where

bija-eiay .
J___j-—i J1e

bj1—a; 1

T ®)

m= min
wHe{t, - N¥2, i<y

Proof — Caii (&,1} = AN 5yeqy,-. NI, i<y (

one pair of aircraft such that E’-"!:—:""-l-) = mand k < I, Suppose that

A>m Then (I —k)m < ({ ~k)A < b1 —ag,1 = (I — k)m. The
first inequality is by assumption. The second by definition of A: the best
spacing between aircraft k and [is bounded by the mean. The iast equality
is by definition of m. This inequality cannot be true. Therefore A < m.

O

5005

Theorem 1. It is possible 1o construct a sequence
(t1,--- ,tn) such that (m, &y, -+ ,ty) satisfies (4), which
proves that

Proof — We prove this theorem by induction on N. For N = 2, the
solution is trivial, For N = 3, we see that the following solution achieves
the optimal: :

5,1 — 04,1

A= min (b —— (6)
®Ne{t, -, N2, i<y J—1

ti =a1,

ta =(baa1+ai1)/2 W(bay +a11)/2 € laz1,b2.1)
= agt if (b31 +e1,1)/2< az1 7
=ba3 if(ba +21,1)/2> boy

t3 =ba,

Suppose now that we have proved the property up to IV, i.e. that (6) is the
solution of (4) for NV aircraft. We now prove that (6) is the sohrion of (4)
for N + 1 aircraft. Call m{k, [) the following quantity, with k and { both
in{l,-- ,N+1landk <L

mik,f) = min (”J—‘:L) ()
Gugledk, - 012, i<y -z
First, m(1, N+1) = min {m(l,N), min;e(1,:.. N} (%)

We now investigate which of these terms achieves the min for m ({1, N+1).

]fwehave m(l, N+1) = m{1, N). We thus have m{1, N) <

g’%_—:ﬁ forall i € N {i.e. the arrival interval of aircraft N + 1 does
not decrease the overall minimum). Take 41 = bay1,1. Now call

by,1 = min{bn 11 — m{1, N), by 1}

If b.’N,x by 1 success-
fully constructed {t1, v tng1): tN1 satisfies
vyl —ty = m(LN + 1) = m(1,N), and for all (i,j) €
{4,--- ,N}® suchthati < j.t5 — t; > m{1,N) = m{1, N + 1).

we have

If by, = byga,n — m{1, N). Let us rename every other b, 3
as b, for i < N, for notational ease. Now define m by: m

\ by y—a;
min; ¢ 5 (N_,t,_? ’1).
S .
. by —ein Ny —m{L,N) — a3
m = min | ——~——| = min -
<N N-—i <N N -1
Thus i bnt1a—8ia Nyl—i _ m(3i,N)
m = mibicN (N+1l—i N-1 N1
. Nt1—i 1
> m(1, N) mmi(N(N_l.l" - N—i)

which proves m > m(l, N), and therefore the change in by,; into

W1 = b+, — m(1, N) does not decrease (8). We now have suc-
cessfully constructed (£1,--+ ,tn41): tyve1 — v 2 m(L, N + 1) =
m(1l, N), and for the N-uplet (£1,--- , ¢y), we just proved that m. >

m(1, N) is achievable.

. _ e byviii1—aia
m(llN+ 1) = minicny1 (++1:—1—) < m(1,N).
Obwviously, adding a new aircraft has restricted the available spacing of the
others: 3 € {1,--- N} suchthat m({,N + 1) = m(I,N + 1) <
m(1, N).

bny1,1-a1

} Ifl=1m1,N+1) = . The evenly spaced so-
ution is the optimal solution. Let us show it is feasible, ie. Vj €
{2,'- -y N} o1 +J;—1(bN+1,1 -—a1_1) [[aj.lsbjgll- 1If this were not
the case, then, without loss of generality (since the problem is symmetric),
we would have a1 7 + -mﬁl(bN.H,] — a1,1) > b® for a particular jg,
big.1-83.1 < bytra-—eia
Jjo—1 N

which would mean
wrong.

, which is by assumption

If ! > 2, we can use the symmetry of the problem to ﬂip;it (the a1
and &; y are inverted)!, and we are now in case I. [

In case 1 and case 2, we were able to construct a solution such that A, =
m(l, N} for every N. By Lemma 1, this is the best A, i.e. A, that we
O

can achieve, and equation (6) follows.

2.2 Transformation of the feasibility problem into a
scheduling problem

The previous section solved for the maxima) time separa-
tion between aircraft A in the case of fixed order of arrival.
In the current ATC system, if one interprets a; ; as the nom-
inal time of arrival of aircraft ¢, and (a;,1, b; 1} as the set of
possible arrival times with delays, equation (6) predicts the
best available spacing without altering the order of arrival
(first come first served policy). Despite the fact that it is
used almost ali the time in practice, this policy is of course
not optimal.? We now consider changing the order of ar-
rival of the aircraft. We show that the feasibility problem of
(3) can be reduced to a single processor scheduling problem
with release times and deadlines [14], known to be solvable
in polynomial time [2, 8]. The two following problems are
equivalent:

Problem 1: Let A be a given positive number (time separa-
tion). Given a set of NV intervals [e; 1. b;,1], i€ {1, -~ ,N},
find a set {f;}ies,..vy such that Vi € {1,---N}L &; €
(@i, bialand V(i, 7) € {1,--- \ N}%, sti > 4, [t —¢;] 2
A

Problem 2: Let D be a given positive number (processing
time). Let I = {1,---, N} be a set of jobs. Let each job
have a release time 7; and a deadline d;. Find an ordering
{ti}icr such that t; > r; (job ¢ cannot start before the re-
* lease time 1;), £; 4+ D < d;, (job 1 has to be processed before
the deadline d;) t; < t; == t; > t; + D (two jobs cannot
be processed simultaneously).

Solving problem 2 for a given set of {r;, d;] and D, is equiv-

alent to finding a feasible solution to our original problem,

with ;1 = ryand by + D = d;, A = D. We show in

this paper that the second problem can be solved using an

_ adaptation of a known scheduling algorithm [9], which we
derive in the Appendix.

3 SCHEDULING ALGORITHM

We call Carlier the algorithm presented in the Appendix.
Carlier solves Problem 2 in Section 2.2. We will use the fol-
lowing notation: Carlier(r;, d;, D) represents the ordering
obtained with release times 7;, deadlines d; and processing
time D if such a schedule exists.

'We treat first the subset {I--- N 4 1} of aircraft (which we can do
using the induction assumption, since ! > 1, and thus (N 41 — | < N)).
We then complete with the set {1--- ,1 — 1}, but this time we will be in
case 1 because the argmin of (6) is obtained in the set {. .- N + 1},

2Take for example a1,; = 00 : 00 : 00, @az,1 = 00 : 00 :
01,1 =00:03:00,b2,3 =00:01:30,n1 =m2=1.

30,

5006

Theorem 2. Assume that n; = 1 for all i€ {1,--- ,N},
air € N by € N, I € N. The following bisection al-
gorithm converges to the exact solution of (3) in a finite
nuniber of steps. The time complexity of the algorithm is
O(N?log{N){N +log L)) where L = max b; ; —min a; ;.

Scheduling algorithm

A = "NITI (maxie{li‘., ’N} bi.ﬂi - min,-e{l,.t. ,N} G,,;‘l)

if Carlier(a; 1,b:2 + A, A) is feasible, return A
while Carlier(a; 1,b;1 + A, A) not feasible, A := A/2
A=A A:=2-A

while ((K- e)

it Carlter(al 1,b + &2 é—E) is feasible
. AYE
A= 22E
else
A= A+A

returnmax { A|A € [A, Al n ' ()
ACarlier(o; 1,b; 1 + A, A) feasible}

Proof — Convergence If A = i< [by,ny ~ @1,1] is feasible, the
algorithm stops at step 2. This is the ideal case (the largest achievable
spacing is feasible).

Otherwise, let us call A* the optimum of the problem. Let us call v(-}
the order of arrival of the aircraft (aircraft { arrives in position (1)) By
w(i),1 = Quli)1

Theorem 1, we have:
m. (b)
m " .
(a)e{1,-,N}2 i<\ v{§) —v{i)

Because of the limited possible values of the difference v(j) - (£), and
because of the fact that the a; 1, and b;,, are integers, equation (9) implies:

A'e[}%

whereUk 1 k {Elqe{l N-1}, p € N} C Q Instep
3, the algorithm will dmde A by 2 until it becomes feasible. In step 4,
starting from the last value of step 3, it will approach A™* by bisection until
it comes within w2 of A*. Then we know that A* € [A, A}. Because

of the previous remark on A®, A* € [4,A] N U () But this set

contains at most N — 1 elements since A — A < A= 1 . which are easy
to enumerate (step 3). A™ is the largest of them.

* __

9)

(10

Complexity The number of calls to Carlier is § for step 2, and N — 1 for
step 5. The worst case for step 3 is if A has to be divided by 2 p times until
1 max bi'1 —mina;; 1
N-17 N-1 pg
and the same applies for step 4, which gives the following bound for the
number of calls to Carlier: 3

N+{ log (max b;,1 — mina;, 1)] n

2
log2
The number of calls of the procedure Carlier is thus O(N + log L), where
L = maxb;; — mina; ;. The complexity of the modified Carlier's
algorithm is O(N?2 [og({¥)) (see Appendix 1). The complexity of the
algorithm is thus O(N? log(NY(N + log L}). a

Corollary 3. Theorem 2 holds for a; ; € Q, b; ; € Q.

3Combining the length of the two intervals might give a better bound
than (11) but does not change the complexity.

Proof — catta;; = pf/qf and b;, ; rf/s;f, and cali L the least
common denominator of the g7 and 57 (note that L = JT;L; [1}%, ¢ ¢}
works as well). Then problem (2) is equivalent to the following problem:

max.: Lé o o
st: Lo e UTi, [Lpl/el Lrifsl] i< N 12
|L8; — L8;| = L& F<i<N

In (12), Lp{/qf € N and er/sf € N, so Theorem 2 gives us
a solution (A”,81,-- ,tn} = (L&* L8y, --,L8x).
(6*,61,- -+ ,8p) solves the problem in .

Therefore,

O

4 NUMERICAL PERFORMANCE

The running time of the algorithm is theoretically bounded
above by O(NZlog(N)(N + log L)), where O(-) means
there is a constant in front of N2 log(N)(N + log L) and it
is independent of N and L. In practice, this constant can be
very large, and numerical experiments are needed to assess
the practicality of the method. We simulate a set of 1800
cases and compare the measured CPU time used by our al-
gorithm and that using CPLEX to solve the same problem,
(N € {2,---,19}). We run 8100 additional simulations
(N € {20,---,100}) to assess the performance of our al-
gorithm in a range of N where CPLEX cannot handle the
coimputation in real time. We simulate sitnations in which
N aircraft are within one hour of the destination airport. For
each value of NV, we randomly generate intervals [a; 1, b; 1]
within one hour of Oakland, with various widths b; ; — a; 1
ranging from 30 sec. (almost no possibility to adjust the ar-
rival time of the aircraft} to 15 min. We measure the CPU
time needed by our method to compute the largest available
A* between the aircraft. We run 100 simulations for each
N.

Qur algorithm is implemented in MATLAB; the CPLEX so-
lution is coded in AMPL interfaced with MATLAB, so that
both methods can run from the same application on the same
platform.* The results of these runs are shown in Figure 2.
This figure suggests a few comments. The average result
is not representative of the relative performance of the two
algorithms. Looking at Figure 2 (top} would suggest that
CPLEX’s performance is much worse than cur algorithm
for N > 14. Figure 2 (bottom) shows that the average is
“polluted” by abnormal runs: in fact for the set of simu-
lations shown here, CPLEX is faster than our algorithm in
83% of the cases, but among the 15% remaining, the CPU
time nsed by CPLEX exceeds the CPU time used by our al-
gorithm by severa! orders of magnitude, which increases the
average significantly. We are also aware that there might be
more efficient ways to encode the MILP (2) in CPLEX or
even the one interval version (3). For example, another way
to encode (2) is:

4The two methods run on the same machine: a SOLARIS 8 workstation
under UNIX (2GB of RAM). The MATLAB implementation is quile un-
favorable to our algorithm. MATLARB is notoriously slow for conditional
operation such as"if™,"else”... Note that the CPLEX/AMPL solution pro-
cedure is coded separately, and MATLAB is used only as an interface.

5007

max: A

st b2 i, +Z;1;_11 Tif (a,',j - a,-‘j+1) i< N
ti < bin, + D27 T (big = bigg1) i<N
i S X454l i<N j<ni—2
zi; € {0,1} iSN j<ni—1

Regardless of the respective benefits of different MILP for-
maulations of (1), the goal of our algorithm is to provide a
guarantee on running time, which CPLEX does not provide,
as 1s illustrated by Figure 2.

5 CURRENT WORK, OPEN PROBLEMS

When n; > 1, i.e. each aircraft has multiple possible arrival .
intervals, the problem is much harder 10 solve. Unfortu-
nately, the transformation operated in the one interval case,
to cast our problem into a scheduling problem form, does
not work in the multi-interval case. Even if it did, Carlier’s
algorithm does not generalize easily to multiple intervals.
Our current work is focused on solving the multiple interval
case.

The previous algorithm can be adapted to the specific situ-
ation of fixed arrival order (with n; > 1). Instead of using
Carlier as the main subroutine of the scheduling algorithm,
we use a sequential construction subroutine. This subrou-
tine sequentially tries to space aircraft by A in the fixed
order, trying the arrival intervals in increasing order from 1
to 72;. The computational cost is therefore linear in the num-
ber of intervals. Calling M = Zf’;l n;, we showed that the
complexity of the algorithm is O(M (N + log L)).

The coniributions of this paper are thus three algorithms,
whose complexity is summarized in the following array:

order fixed order not fixed
n; =1 O(N*} O ({NV* logN)(N+IogL))
closed form exact
ny>1 | O(M(N +logL)) 7
exact ?

Here, N is the number of aircraft, M = Zf\il ni, and
L = (max}?, b, ~ min}, a;,) /N. Besides the bottom
right cell of the array above, several other questions raised
by this problem remain open. If we transform the problem
and assume S; = [a4,1, bi.1] + NT (which physically cor-
responds to an aircraft which could execute a large number
of holding patterns before landing), we still do not know
if finding the minimum makespan {landing time of the last
aircraft to land) is polynomial solvable. Furthermore, min-
imizing the total number of holding patterns, minimizing
the total number of aircraft put on a holding pattern, min-
imizing the sum of all times of arrival and minimizing the
total makespan are not equivalent problems. Our current re-
search efforts derived approximation algorithms for two of
these four problems [4], i.e. polynomial time algorithms,
for which we can guarantee that they converge to a value
within a certain bound of the mathematical optimum.

. humbser of wiroratt

L L s " i P " L i
o) 20 £ [50 80 £ 0 %0 100
100000 T T T T T T T T T
CPU time (sec,) : . . H . .
H : : . numbet of alrcrsft by the run [
100001213 45 (8 T8 (910, 11,12,13, 14,15, 16 17,1 g

L I I R R

1
i
i
i
i
[SR P A
i
i

$'cﬁedulivn§“ sofit

T

I
i i
i ()
i [
1 [
i i
i [
i [
i P
] |]

ok -

; Iniﬁox _IE r%n

’M‘o 'j;'wn a{;'aoo 1307:'12@ 1400 1500 1800 2000
Figure 2: Top: CPU time used by our algorithm and by CPLEX to solve

the same problems. The curve is an average over 100 runs for
each value of N (1800 runs for CPLEX, 9900 runs for our
algorithm). Bottom: Comparison of the results for the first
1800 simulations realized. As can be seen, even for N > 14,
a significant number of CPLEX computations are faster than
our algorithm by at least one order of magnitude.

Acknowledgments

We are grateful to Tom Schouwenaars for his help on CPLEX, to Francis
Carr, for his suggestion for the MILP formulation presented at the end of
Section 4, to Dr. Gano Chauerji (NASA Ames) for the suggestions which
went into medeling this problem, and to Dr, George Meyer (NASA Ames)
for his support in this project. ‘

References
{1] R. K. AHUIA, T L. MAGNANTI, and J. B. ORLIN. Network Flows,
Theory, Algorithms and Applications. Prentice Hall, Upper Saddle River,
NJ, 1993.
12] P. BAPTISTE. Polynomial time algorithms for minimizing the
weighted number of Iate jobs on a single machine when processing times
are equal. Journ. of Scheduling, 2:245--252, 1999.
[3] A.M. BAYEN, P. GRIEDER, C. J. TOMLIN, and G. MEYER. Con-
rol theoretic Lagrangian models for sector-based air traffic flow. To appear
in the AIAA Journal on Guidance, Dynamics and Control, 2003,
[4] A. M. BaYeN, C. J. TOMIN, Y. YE, and J. ZHANG. An approxi-
mation algorithm for scheduling aircraft with holding time. Submitted to
INFOCOM 2004.
15} A. M. BAYEN and C. J. TOMLIN. Real-time discrete control
law synthesis for hybrid systems using MILP: applications to congested
airspaces. In 2003 American Control Conference, pages 46264626, Den-
ver, CO, May 2003.

5008

[6] A. BEMPORAD, F. BORRELLI, and M. MORARI. Piecewise linear
optimal controliers for hybrid systems. In 2000 American Control Confer-
ence, pages 1190-1194, Chicago, IL, June 2000.

[7] D. BERTSIMAS and 1. N. TSITSIKLIS. Introduction 1o linear opti-
mization. Athena Scientific, Belmont, MA, 1997,

18] K. BILIMORIA, B. SRIDHAR, G. CHATTERII, K. SETH, and
S.GRABBE. FACET: Future ATM concepts evaluation tool. In 3rd
USA/Europe Air Traffic Management R&D Seminar, Naples, Italy, June
2001,

19j J. CARLIER. Problémes d'ordonnancement & durées égales.
QUESTIO, 5(4):219-229, 1981.

{10] D.DUGAIL, E. FERON, and K. BILIMORIA. Conflict-free confor-
mance to en route flow-rate constraints. In AIAA Conference ont Guidance,
Navigation and Control, Monterey, CA, August 2002,

[11] H. ERZBERGER, H. T. Davis, and S. M. GREEN. Design of
Center-TRACON Automation System. In AGARD Meeting on Machine
Intelligence in Air Traffic Management, Berlin, Germany, May 1993,

[12] C. A.FLoUDAS. Nonlinear and mixed-integer programming - fun-
damentals and applications. Qxford University Press, Oxford, UK, 1995.

[13] R FOURER, D.M. Gay, and B.W. KERNIGHAN. AMPL: @ model-
ing language for mathematical programming. Boyd and Fraser, Danvers,
MA, 1999.

[14] M. R. GAREY and D. §. JORNSON. Computers and intractability,
a guide to the theory of NP-Completeness. W.H. Freeman and Company,
New York, 1979.

(151 V. JAIN and 1. E. GROSSMANN. Algorithms for hybrid MILP /
CP models for a class of optimization problems. INFORMS Journal on
Computing, 13:258-276, 2001.

[16] A. RicHARDS, T. SCHOUWENAARS, J. How, and E. FERON,
Spacecraft trajectory planning with collision and plume avoidance using
mixed-integer linear programming. AIAA Journal of Guidance, Control
and Dynamics, 25{4):755-764, 2002,

[17] V. V. VAZIRAN]. Approximation Algorithms. Springer Verlag,
Berlin, Germany, 2001.

(18] H. P. WiLL1AMS and 8. C. BRAILSFORD. Computational logic
and integer programming. In 1. Beasley, editor, Advances in Linear and
Integer Programming, pages 249-281. Oxford University Press, 1996.

APPENDIX

This Appendix presents our modified version of Carlier’s
algorithm [9] for solving the feasibility of problem (3) for
a given A, when n; = 1. We present this complete algo-
rithm and our proof of convergence and of solution proper-
ties (which is a modified version of Carlier’s). The problem
solved by Carlier is the following.

Let I be a set of jobs. We want to find an ordering [ordon-
nancement] T = (t;)ieg such that

1. t; 2 a4, job i cannot start before time a;.

2. t; +.D < by, job i cannot end after time b;.

3t <tj = t; > i+ D: rwo jobs cannot be executed
simultaneously.

A few definitions and some notation need to be given and
will be used in the algorithm below. The algorithm re-
cursively builds an ordering 77 satisfying the conditions
above, where the recursion is run on which represents time
(therefore, x will be proceed from min; a; to max; b;).

e K, = {ila; + D < z} is the set of jobs which can be
finished before time .
e Let T be an ordering of the jobs constructed by the

algorithm; we call [/ the set of jobs ordered by 77:
U, = {i|¢ ordered by T*}.

e H = K, — U, p is the set of jobs which can be

finished before time x (i.e. from K), which have not
been ordered by 75~ (i.e. notin U,_p).

e m: most urgent job of H: m = arg minpe g ba.
e The delay of an ordering T (with set of indices U) is:

y = max,cy(ty + D). The delay of T is the time
this ordering takes to complete.

e An ordering T (with corresponding set of indices U)

active as follows: an ordering T (with corresponding
set of indices U) is said to be active iff there does
not exist a job w in the complement 7 of U such that
maxyer (ty + D) > by, — D. In other words, there
does not exist a job w in the complement of U/ which
cannot be processed before its deadline b,, because
w cannot start before the completion time (delay) of
the jobs in UU. Mathematically, it equivalently reads:
maXyey{t, + D) < min, .7 by, — D.

An ordering T (with corresponding set of indices U7)
ts said to be x-active iff it is active and has a delay
less than x.

{T*=% + m} is the ordering obtained by adding the
most urgent job 7 to the ordering 722, if m is exe-
cuted as soon as possible. As soon as possible means
the job m should start at ¢, = max{an,y}, where
Y = MaX, ;, 7+-o{t, + D) is the delay of the order-
ing 752,

T(z) is the set of orderings which are active and
which have a delay less than z.

Definition 1. (Carlier) The operator “preferable to” = is
defined the following way: for two sets I and V' of elements
of LU>Vif

Lp=Ul2r=|V|

2- bu; S bvn"' 1bu,n S bvr ‘fbul

Theorem 4
{min;e; a;,-- -, maxier b},

<

buy *++ < by, and
by, Kby Kby, |
(after Carlier [9]).
the set T=

Yz €
constructed

by the algorithm below is z-active and is preferable to any
other x-active ordering.

Algorithm Catlier(a,, b;, D)

1 Vr€ {minjera:, -+ ,minera; + D — 1}
T =0, U;:=0
2 forz= mingey a; + D maXic! b;
3 Ke={ilai+D<z}, H=K,~U,_p
ifH=0
4 TT — Tz—D
else
5 m = arg minpe gy by,
6 if {T72=0 + m} is active T® = {770 4 m}
7 elsg 7% = 751
end
end
8 if I, # I no solution else return 77 end

5009

Proof — The proof is done by induction on z. Obviously, ¥z €
{min;er @i, -+, minser a; + D — 1}, the property is true, since T* :=
Pand U, := 0.

Suppose the property is true for all z < z — 1. We want 10 show that it is
true for 7%, There are two cases:

Gz -0

We know that Kz C U,_ p because Ky — Uz_p = 0. Since the set of
jobs ordered at time x— D is at most the number of jobs that can be ordered
attime » — D, Up_p C K;.p C K, because K, is monatonically
increasing. Combining the above inclusions, we have K, = U,_p. This
means that all jobs executable before time z are ordered by U, _ p (i.e. by
75Dy Also, TP € T(x — D) C T(z), therefore 75~ € T(x).
This implies that 72~ is a maximal element of T{z) for ».

G o

H contains at least one element which can be finished before z not ordered
by Uz—p. Let 77 = {72 4 m}; let T be any ordering in T'(x}, and
call { the last job which was ordered by 7', and 7 ~ {!} the ordering
obtained by withdrawing job { from 7", U the set of jobs ordered by 7T,

e We first show that if 77 is active, then 7' = 7. We use Carlier’s
[9] lemma on the precrder =
Lemma: (Carlier [9]) Let C and E be two sets such that C > E.
letu ¢ Candv ¢ E. Suppose that Vw € C, by < bw. Then
{vjuce={pjue 0O '
We can apply the previous lemma to the present problem: take I =
Kz C=Uz_p, E =U—{l},u = m,v =L Inthe following,
the complement of a set K C 1 is defined as K = I\K. Clearly,
u g C,v ¢ E Yw e C, b, < by because by construction,
m = u is the most urgent job. Finally Uz_p = UV — {{} by the
induction assumption. Therefore 7/ = T, that is, 7" is preferable
to any element of T'(z). Since T’ is active, it must also be z-
active. To see this, we need to prove that the delay of T is less
than . Calling y the delay of 7®~ 2, we have y <. z — D. Since
y< minwea:-z—_f by — D, because T5=2 is z — D active and

m € T*~D 1 K, m can be executed before z, i.e. t, + D <
2. In conclusion, T’ is z-active and preferable to all elements of
T(z).

e Second, we show that if 77 is not active, then 7% = T=~1, we
want to show that vI° ¢ T(z), 7=~ = 7.

- If max,eg7(ty + D) < x ~ 1, this result is immediate by
induction.

- Ortherwise max,c7(¢t, + D) = z. We call { the last job

ordered by 7 (see Figure 3). By induction, we know that
T#=D » T~ {1}. This implies * T — {I} = T3 D.
Because {772 +m} is not active, 3% € {T=—0 + m}
such that by — I) < 2. We have W € T since otherwise
 can only start after x (the delay of T or by — D 2 =,
which is a contradiction. Thus, @ must have been processed
before r and w € K. Since m was the most urgent task
added 10 75—, by, < by < @ + D (that is, both m and
i are in K'x when m is added).
Now we have:r m € 7*—D and @ € T%~LD. Since
T —{i} P 72D, T — {I} contains at least two jobs i
and 7, indexed by the order b; < by, such that b; < bm <
r+ Dand b; < by < z -+ D. Furthermore, since both ¢
and j are in T — {{}, one of them must be scheduled after
I, say job j, with completion time at least x + D. This im-
plies b; > z+ D, which contradicts the previous inequality.
Therefore there cannot be 7 € T'(z) of exact delay z.

We have proved that regardless of how T was constructed, it is always
2-active, and orders more jobs than any other z-active ordering 7. If a

SCarlieralsoshows A= B =+ B » A.

solution to the original problem exists (i.e. the problem is feasible), we
know that the algorithm will find it, because for any z, it finds one z-active
ordering with the maximal number of jobs. It suffices to mafch x until

max;er bi. a
bm—D by
o B0
o —————— 4 = | 7
ey |— + -+ — f—* E ! D {T7°7 +m}
TI—D wm !

Figure 3: Case 2 from the proof of Theorem 4, with {72 +
m} not active. Orderings 7 of delay z exactly and
{7~ P + m} atiteration . The last job { of 7 is such
thatt: + D = =z,

Theorem 5. 1. The computational complexity of calculat-
ing T* at each step is O(N). 2. It is possible to nodify the
algorithm such that the overall computational complexiry is
O(N®).

Proof — In step 3, the computational complexity of calculating Kz,
for all z from min;ey a; + D 1o max;cr b; is G(N) (since it requires
stepping through all a;). Therefore, in the for loop of step 2. it is O(1).
The computation of H is at most O(N), if the two sets Kz and U;_p
are construcied with increasing indices (i.e. the sets are indexed such
that performing Ky — U;_p only requires checking the upper indices
of Kz and U,_p). All other operations are O(1) except computing
m = argMinsep br. The cost of computing T¥ is thus O(N). It
suffices to compute the 7% for g = a; + kD, withi € T = {1,...,N}
andk € I = {0,..., N — 1}. The wotal number of z is N2, which gives

the algerithm a complexity of O{N'3). O
[= K 7 [m [ac Uy Tx |
5 1 1 yes 1]
0 1 T Yos T [
7 2 12 1 s 1 0
T T 1T T ves | 1 T
] 3 T3 i yes | 1]
10 12 2 2 yes 13 [E]
11)2 2 2 yes 12 [
12 123 23 E] s 13 07
13 123 23 E] 28 13 [kl
] 1234 334 4 _yes 14 [E]
i3 12345 343 4 VS 124 asig
15[12345 335 |4 ves | 124 0510
i | 1333% T35 14 yes | 134 0732
18 123345 245 E] 5 13 2712
19 2345 235 3 [0 134 9712
20 2343 £ 3 0 134 0712
21 2333 35 3 0 134 D732
12 21345 25 E] yes 13453 071217
23 11345 25 3 yes 134% 071217
24 12345 25 5 yes 1345 071217
25 11345 2 5 yes 348 071217
26 11345 25 5 yes 1345 071217
27 13345 E 2 0 1345 071217
a8 12345 E] 2 TO 13458 071217
=l 133456 28 [yes 13456 072121724
30 123456 26 3 yes 13456 07121724
K] 123458) [yes 13456 07121724
3 | 103336 | 38 g yes | 13456 071317 3%
33 123456 16 & yes 13456 07121724
34 123158 2 2 yes 1345621 07121724 %

Table 1: Detzils of the computations in'the modified Carlier’s algorithm,

We run Carlier’s numerical example on the present algo-
rithm as an illustration of the algorithm, Consider six jobs,
with following release times: @y = 0, a3 = 2, a3 = 7,
ay = 9, a5 = 10, ag = 24, and the following deadlines:
by = 32, bo = 35, by = 22, by = 20, b5 = 23, b = 30.
The processing time of each job is D = 5, The following
array now shows the results obtained on this example, with

5010

the algorithm above. For z = 19, {714 + 3} = {1,4,3} is
not active, according to the definition of active: the delay of
this ordering is 19. This does not enable the later schedul-
ing of job number 5: b; = 23 < 19+ D = 24. Therefore,
Tio = Tig. Similarly, for z = 20, U5 = {1,2,4},m = 3,
but {1,2,4 + 3} is not active, because its delay is 20, and
bs = 23 < 20 + D = 25. {Ty5 + m} is not active, there-
fore Tog = Tig. The same is trve for J3;. For x = 22, it
becomes active again, and the jobs can be added properly
until ¢ = 34. (see Table I).

