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Théophile Cabannes∗‡§, Frank Shyu∗, Emily Porter†, Shuai Yao∗, Yexin Wang∗,
Marco Antonio Sangiovanni Vincentelli‡, Stefanus Hinardi∗, Michael Zhao∗, Alexandre M. Bayen∗†

†Department of Civil and Environmental Engineering, University of California at Berkeley, CA
∗Department of Electrical Engineering and Computer Science, University of California at Berkeley, CA

§Department of City, Environment and Transportation, ENPC, France
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Abstract—This article is focused on measuring the impact of
navigational apps on road traffic patterns. We first define the
marginal regret, which characterizes the difference between the
travel time experienced on the most optimal path and the path
of interest between the same origin destination pair. We then
introduce a new metric, the average marginal regret, which is the
average of marginal regret, taken over all possible OD pairs in the
network. We evaluate the average marginal regret in simulations
with varying proportions of app and non-app users (information
vs. no information) using the microsimulation software Aimsun.
We conduct experiments on a benchmark network as well as a
calibrated corridor model of the I-210 in Los Angeles for which
OD demand data is gathered from several sensing sources as well
as actual signal timing plans. In both cases (i.e. the benchmark
and I-210) experiments demonstrate that the use of apps leads to
a system-wide convergence towards Nash equilibrium.

I. INTRODUCTION

The increased use of GPS-enabled navigational applications
(i.e. routing apps) and ensuing political and practical concerns
have become popular topics in media over the last several years
[1], [2], [3], [4], [5]. By extending the regret notion [6] to non-
repeated game, this article introduces a new metric, the average
marginal regret, which quantifies the impact of routing app
usage on the traffic network. It defines the marginal regret
which characterizes the difference between the travel time
experienced on the most optimal path and the path of interest
between the same origin and destination (OD). Then, the
average marginal regret is defined as the average of marginal
regret, taken over all possible OD pairs in the network. One
possible use of the average marginal regret is the quantification
of the gap between the actual behavior of drivers and a purely
selfish behavior (i.e. a Nash equilibrium). We first present the
context and background of this problem and discuss relevant
work in addition to identifying the specific contributions of this
article. We then present our problem framework and define the
average marginal regret. Following this, we show simulation
results for both a benchmark network and a large segment of
the I-210 corridor in LA.

A. Context

1) Traffic congestion and routing apps: Traffic congestion
is an increasingly present condition of urban life in the U.S.
[7]. This congestion in addition to the increased use of routing
apps have resulted in new traffic patterns which we refer to as
cut-through traffic. Cut-through traffic caused by routing apps
has garnered the attention of city residents and officials due

to congestion and safety concerns [8]. Negative externalities
imposed by these routing apps include: increased travel time
for residents, safety concerns for pedestrians in affected ar-
eas, public policy challenges, increased GHG emissions, and
increased rate of infrastructure decay [9], [10].

2) Use of routing apps: The advent of the mobile internet
and corresponding explosion in cell phone use have led to
the popularity of routing apps [11]. These routing apps (e.g.
INRIX, Here, TOmTom, Google, Waze, Apple, etc.) provide
information about the state of the transportation network at a
global scale. In the U.S. at least 60M motorists use Google
Maps/Waze while 40M motorists use Apple Maps [12]. Fur-
thermore, Mobility as a Service (MaaS) companies like Uber
and Lyft use single routing apps for nearly all of their drivers,
of which there are 45, 000 registered in SF alone [13].

3) Selfish routing: Routing apps typically provide vehicles
with shortest paths based on the current state of the network.
We assume that people using apps are routed on the fastest
possible path based on the current state of the network.This is
desirable for individuals looking to minimize their own travel
time. Unfortunately, shortest travel time routing (i.e. “selfish”
routing) does not lead to socially optimal travel patterns [14],
[15]. At best, traffic conditions under selfish routing can
achieve a Nash equilibrium, sometimes also referred to as
Wardrop’s equilibrium in traffic theory [14], [16].

B. Background

This article uses a game theoretic approach to model traffic
using routing games [17]. In numerous traffic network models,
drivers are assumed to possess perfect information over the
state of the network. To model the impact of app usage on
driver behavior, this article separates drivers into two popula-
tions: those who use routing apps (app users) and those who
do not (non-app users) [10], [18]. Extending the concept of
regret from decision and game theory [6], [19], this article
introduces a new concept to evaluate the impact of apps on
traffic patterns: the average marginal regret. Through dynamic
simulations performed with Aimsun [20], this article presents
the evolution of average marginal regret in the network as app
usage increases.

C. Contributions of this article

By assessing the impact of increased app usage on traffic
routing using average marginal regret, this article makes the



following contributions:
1) Extending regret to non-repeated and non-atomic routing

games in the context of traffic assignment.
2) Quantification of the impact of routing apps on the

transportation network with a new metric: the average
marginal regret.

3) Modeling dynamic behaviors of app users and non-app
users in Aimsun.

4) Microsimulations with app and non-app users that
demonstrate that average marginal regret decreases while
app usage increases on both a benchmark network and
the I-210 calibrated corridor model.

II. PROBLEM FRAMEWORK AND AVERAGE MARGINAL

REGRET

A. Mathematical formulation and network notation

We consider a transportation network represented by a
directed graph G = (V, E), where v ∈ V are the vertices
in the network and e ∈ E are the edges. We call the set of
paths without cycles between two nodes o, d ∈ V: Pod. For
all possible paths,

p ∈ P :=
⋃

o,d∈V

Pod

We define the flow using path p as hp (i.e. path flow of path
p). Using this path flow, hp, we also define the path flow
vector, h, as

h := (hp)p∈P

For each path p ∈ P we define the cost function cp(h) of the
path p which gives the path cost given a flow allocation h as:

cp : h→ cp(h)

We define the total cost of the network C(h) as:

C(h) :=
∑
p∈P

hp · cp(h).

B. Traffic assignment problem

The traffic assignment problem consists of assigning vehic-
ular flow to specific routes in a network given OD demand
information [15]. We call the total number of vehicles traveling
from o to d per unit of time rod ≥ 0. From this demand rod ≥ 0
we define the demand matrix: r := (rod) with o, d ∈ V . Given
a demand r ∈ R|V|×|V|≥0 we define the set of feasible path flow
allocations, Hr:

Hr : = {h ∈ R|P|≥0 : ∀rod ∈ r,
∑

p∈Pod

hp = rod}.

We say that a path p is used if hp > 0.
Definition 1 (User equilibrium [15]): For the traffic demand

r, a flow allocation h ∈ Hr is called a user equilibrium if and
only if:

hp · (cp(h)− min
p∈Pod

cp(h)) = 0

∀p ∈ Pod ∀o, d ∈ V

The user equilibrium definition, equivalent to Wardrop’s
first principle, states that the cost on all used paths between

OD pairs are equal and less than the cost which would be
experienced on any unused path between the same origin and
destination [16]. User equilibrium can be seen as an extension
of Nash equilibrium in a game with an uncountable number of
players (i.e. the non atomic routing game [17]).

C. Regret in the context of routing

We now define marginal regret to quantify the difference
between the actual costs in the network and the minimum
costs achieved between OD pairs. We define the minimum cost
between o, d ∈ V as:

πo,d(h) := min
p∈Pod

cp(h).

Definition 2 (Marginal regret): We define the marginal
regret, R (h,p), on path p as

R (h,p) := cp(h)− πo,d(h)

which is the cost a vehicle on path p could have saved by
using the optimal path (i.e. by rerouting).

We call this metric marginal regret because it characterizes,
for a given OD pair, the difference between the travel time
experienced on the most optimal path and the path of interest.
It is important to note that the marginal regret is defined on a
specific path p and for a specific flow allocation h.

This term is used in both decision and game theory to
describe a notion similar to that which we express [21],
[22]. Note that regret has a meaning in repeated game which
is different from how this article defines it. In the context
of repeated games, what we call marginal regret is called
instantaneous regret [23].

Definition 3 (Average marginal regret): We define the av-
erage marginal regret, R (h), as the arithmetic average of
marginal regret weighted by the path flow, taken over all
possible paths in the network:

R (h) :=
1

‖r‖1
·
∑
p∈P

hp ·R (h,p)

‖r‖1 =
∑

o,d∈V

rod.

Definition 4 (Relative average marginal regret): We define
the relative average marginal regret as

R̄ (h) :=

∑
p∈P

hp ·R (h,p)∑
p∈P

hp · cp(h)

which is the average marginal regret of an OD pair normalized
by the average travel time of the OD pair.
The relative average marginal regret is unitless and represents
the percent delay. The relative average marginal regret is
useful for comparing regret between different OD pairs, since
these ODs might contain travel times of vastly different time
scales.

D. Properties of the average marginal regret

We note by Definition 3 that when the network is in a state
of user equilibrium the average marginal regret, R (h), is zero.



Proof 1: Given feasible path flows h ∈ Hr positive marginal
regret R (h,p) ≥ 0 for all paths p ∈ P we see that if R (h) =
0, then we have:

hp · (cp(h)− min
p∈Pod

cp(h)) = 0 (1)

which defines a user equilibrium as per Definition 1.
Note that the average marginal regret can be interpreted

from a probabilistic point of view. If we randomly choose a
vehicle (i.e. an infinitesimal fraction of path flow) the expected
cost it can save by changing its path choice is the average of
the marginal regret of all vehicles.

In a state of social optimality, the average marginal regret,
R (h), might not be zero. By definition, in a socially optimal
state the total cost of the network, C(h), is minimum. How-
ever, given a specific OD pair, some vehicles can experience
a travel time greater than that on the best path between this
OD pair which results in R (h) ≥ 0. This non-zero regret is
due to the difference between a social optimum and a Nash
equilibrium [24].

Throughout the remainder of this article, average marginal
regret will be used to evaluate the impact of routing apps on
traffic. We assume that people aim to minimize their own travel
time, therefore, in the remainder of this article, the cost of a
path consists the travel time of this path.

III. EXPERIMENTAL ASSESSMENT OF THE IMPACT OF APPS

ON TRAFFIC

A. Dynamic simulation with Aimsun

To evaluate the impact of routing apps on traffic we perform
microsimulations using Aimsun. Aimsun uses a car following
model to describe the movement of individual vehicles through
a network. We explicitly model the effect of information on
routing behavior by considering app users and non-app users.

We differentiate app users from non-app users in the scenar-
ios by prescribing different routing behavior between the two
groups. App users choose the lowest cost paths (i.e. lowest
travel time) with high probability and are allowed to change
paths throughout the simulation as path costs change due to
congestion. We assume that apps give the fastest route and app
users follow the recommendation of the apps. Non-app users
follow prescribed paths. Their prescribed paths are determined
by solving the static user equilibrium problem for the same
demand. We assume that non-app users mainly follow road
signs. So, they follow a prescribed path. We also assume that
these paths induced by the road signs are designed to be the
path obtained by solving the static user equilibrium. Therefore,
non-app users are required to follow the paths that were found
by solving the static user equilibrium problem. Non-app users
are unable to change routes during the simulation since they
are following predetermined routes.

Since path costs (i.e./ path travel times) are an essential
component of app user behavior, these costs have to be updated
frequently in order to guarantee that vehicles are routed based
on up-to-date travel time information. A high cost cycle (e.g.
20 minutes in a 60 minute simulation) will lead to undesired
effects. For instance, assume that a path has low travel time (i.e.
a low cost) due to low traffic flow. App users will start routing
themselves onto the path, which will lead to the congestion of

Fig. 1. Illustration of the benchmark network with the location of the
accident shown in black.

Fig. 2. The benchmark network scenario without an accident shows
the decreases in average marginal regret as the percentage of app users
in the network increases. The average marginal regret indicates that
the traffic state converges to a user equilibrium as more drivers use
routing apps.

the path. However, the cost of the path is not updated (since
the cost cycle is high) so app users will continue to route onto
the path, further worsening the congestion. To prevent such
effects, we use a one minute cost cycle time.

B. Scenario setup

We conduct simulations on two networks, the first of which
is a benchmark shown in Fig. 1. We demonstrate the use
of average marginal regret on the benchmark network in
order to show how it can be calculated and interpreted. In
the benchmark network we consider the general impact of
increased app usage on the state of the network in addition
to the impact of a capacity decrease due to an accident.

The second network that we consider is the I-210 corridor
in LA. The Aimsun model of the I-210 is part of an ongoing
project to build a calibrated corridor model [25]. Data from the
California DOT freeway loop sensors and city traffic studies
are used to establish realistic OD demand. Traffic control plans
from the California DOT, Arcadia, and Pasadena are incor-
porated into the model. The Connected Corridors project is a
fundamental component of creating response plans for incident
response and congestion mitigation in the I-210 corridor. As
a result, the Aimsun model of the I-210 realistically simulates
the evolution of traffic over the network.

For the both the benchmark network and the I-210 corridor
simulation, we consider only impact of increased app usage and
use the average marginal regret to quantify the evolution of the
traffic state. In both networks, we fix the demand between OD
pairs and perturb the percentage of app users between a single



Fig. 3. The benchmark network scenario with an accident shows the
decreases in average marginal regret as the percentage of app users
in the network increases. Top: Path flow. Middle: Path travel time.
Bottom: Absolute and relative average marginal regret. The average
marginal regret decreases with the increase of app usage: traffic state
converges to a user equilibrium as more drivers use routing apps. Note
how the average marginal regret of the accident scenario is higher
than that of the scenario without accident under the same percentage
of app usage.

OD pair, starting with 10% app users and increase to 90%,
using 10% increments. Negative externalities of app usage have
previously been shown using static traffic assignment models
and field data from the I-210 corridor [18].

C. Benchmark Network: No Accident

The benchmark network is shown in Fig. 1. In this case
no accident occurs. The network consists of a single OD pair
connected by three paths: the top path (blue), the middle path
(red), and the bottom path (green). The common links (i.e.,
road sectors) shared by the three paths have three lanes, while
the links owned exclusively by the paths have one lane each,
with no traffic controls at intersections between the links. With
every lane having the identical capacity of 2000 veh/hr,

Fig. 4. Evolution of average marginal regret in the benchmark network
with an accident. The accident start and end time are marked by black
dashes. The accident leads to an increase in average marginal regret
as vehicles on the middle path (red) suffer a higher delay than vehicles
traveling on the top path (blue). Best viewed in color.

all links in this scenario have capacities of 2000 veh/hr.
We perform a 6-hour simulation in which the demand of
2667 veh/hr exceeds capacity of the links, hence causing
congestion.

We observe that the dynamic routing behavior of app users
allows them to reroute to avoid this congestion. The bottom
path (green) is never used because its travel time is so much
longer than that of the other two paths. The results shown
in Fig. 2 indicate that the average marginal regret decreases
as the number of app users in the network increases, which
demonstrates that the network is converging to a state of user
equilibrium.

D. Benchmark Network: Accident

The scenario involving an accident on the benchmark net-
work is shown in Fig. 1. It is nearly identical to the simple
benchmark scenario, however the common links (shown in
orange in Fig. 1) has six lanes, with the remaining links
exclusive to the three paths having two lanes. The number
of lanes for each link are increased in this scenario in order
to ensure that the middle path (red) can still be used after
the occurrence of the accident. We again perform a 6-hour
simulation with demand of 2667 veh/hr. The accident occurs
2 hours after the simulation begins and lasts for 2 hours. There
are 2 hours at the end of the simulation during which all roads
are again operating at full capacity.

The major differences between the results obtained with the
accident and the results obtained without the accident are the
trends in path flow and path travel time. We can see in Fig. 3
that the path flow of the bottom path, illustrated in green,
decreases as the percentage of app users increases. Since the
bottom path (green) is considered an alternative path and hence
should accommodate increased path flow as the percentage of
app users increases, such phenomenon is counterintuitive. This
can be explained by congestion at the common link, colored in
orange in Fig. 1, which creates a barrier that blocks vehicles
from rerouting themselves onto the top path (blue). Therefore,
many app users are forced to take the bottom path (green)
after a long wait at the intersection. As the percentage of app
users increases, the congestion in the middle path is mollified,
therefore decreasing the number of vehicles that are forced



Fig. 5. Top: The I-210 corridor in LA on which we perform Aimsun simulations. Bottom: The OD pair for which we perturb the number of
app users. Best viewed in color.

to take the bottom path. Between the two heavily used paths
(red and blue) we see a convergence in path flow and path
travel time as the number of app users in the network increases.
This is reasonable because the system is approaching a state
of user equilibrium as more vehicles have access to travel time
information. We also show the average marginal regret over
time in the case of an accident in Fig. 3 which demonstrates
that the experienced average marginal regret is less severe
when there are a large number of app users in the network.

E. I-210 Corridor: No Accident

We conduct simulations similar to those on the benchmark
network on the I-210 corridor shown in Fig. 5. The I-210 corri-
dor is composed of over 4, 000 OD pairs and more than 10, 000
links. There are four major highways in the I-210 corridor,
namely the East/West-bound I-210, the North/South-bound I-
605, the North/South-bound California 101, and the East/West-
bound I-134. Background flow from a typical weekday (6:00
AM - 7:00 AM) is obtained from PeMS and city data collected
for the Connected Corridors project [26]. During these peak
hours over 75, 000 vehicles enter the network hourly. As in the
benchmark scenario, we fix the demand between OD pairs and
then perturb the percentage of app users users between a single
OD as shown in Figure 5. We start with 10% app users and
increase to 90% using 10% increments. We focus our analysis
on a single OD pair because the complexity of the network is
high and therefore results are difficult to interpret when all OD
pairs are perturbed simultaneously.

We consider an OD pair that connects a freeway origin
and a local destination as shown in Fig. 5. Since vehicles
traveling between freeway and local ODs must use local (i.e.,

non freeway) links they are more incentivized to find routes
with lower travel time. Furthermore, we choose to observe OD
pairs with a high demand, over 250 veh/hr. We do this to
ensure that perturbing the percentage of app users traveling
between the OD pair creates a large enough impact on the
network to demonstrate the use of the average marginal regret.
In consideration of these two criteria, we observe the OD pair
illustrated in Fig. 5.

We perturb the number of app users between this OD
pair from 10% to 90% with results shown in Fig. 6. As
described previously, non-app users follow paths determined
by computing a static user equilibrium in the network given
the same demand. Similar to the results in the benchmark
network, we observe that the path flows and travel times of the
main path (freeway) and alternative paths (shown in orange and
green in Fig. 5) converge as the number of app users between
the specific OD pair increases. The average marginal regret
shown in Fig. 6 also decreases as the percentage of app users
increases. However, there are some slight increases in average
marginal regret, specifically at 50%, 80%, and 90% app users.
This phenomenon may be caused by the cost (i.e., travel time)
of a path which is calculated based on the current network
state instead of the future or predicted state. As a result, large
numbers of app users will reroute themselves onto alternative
routes with low costs before the costs of these alternatives are
updated, leading to a travel time longer than expected.

IV. CONCLUSION

This article assesses the impact of app use on traffic patterns.
In particular, after extending regret to non repeated games, we
define the average marginal regret. Average marginal regret



Fig. 6. I-210 network without accident. Top: Path flow on the main
path (freeway shown in blue in Fig. 5) and all alternative paths (shown
in orange and green in Fig. 5). Middle: Path travel time convergence
between the main freeway path and all alternative paths. Bottom:
Absolute and relative average marginal regret as percentage of app
users in the network increases.

quantifies the time a driver could expect to save by having
information about the state of the overall network. We use
dynamic simulations conducted in Aimsun to show that regret
decreases when app usage increase. On a benchmark network
we demonstrate that 1) traffic tends to converge to a Nash
equilibrium when app usage increases and 2) regret upon the
occurrence of an accident is reduced when there are a large
percentage of app users. We also show results for dynamic
simulations run at scale on the I-210 corridor in LA which
indicate a similar decrease in average marginal regret as the
percentage of app users traveling between the considered OD
pair increases. Experiments on both the benchmark network
and the I-210 demonstrate that increased app usage leads to a
system-wide convergence to Nash equilibrium.
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