Lecture 9: introduction to nonlinear optimization

- Convex functions
- Convex sets
- Reminder: derivative
- Gradient descent
- Problems of gradient descent

Definitions / facts, common mistakes

Definitions/facts

- If f is convex, $-f$ is concave
- If f is concave, $-f$ is convex

Common mistakes

- A nonconvex function is not necessarily concave
- A nonconcave function is not necessarily convex
- A function can be neither concave neither convex
- A function can be concave and convex

Functions not defined for all x

Functions not defined for all x (convex)

Functions not defined for all x (convex)

Functions not defined for all x (convex)

Functions not defined for all x (not convex)

Convex sets
Definition:
Convex set: for all A and B
in the set, if A and B are in
the set, $\lambda A+(1-\lambda) B$ is also in
this set, for $0 \leq \lambda \leq 1$

Famous convex sets

Famous non convex sets

Why do we use 'convex' for functions and sets
The epigraph (i.e. points above the graph) of a convex function is a convex set.

Convex function

Non convex function

Convex optimization programs

Convex function

min: $f(x)$
s.t. $\quad g(x) \leq 0$
f and g are convex functions, defined on convex sets

Convex optimization programs are "easy" problems, compared to general optimization programs

Gradient descent (conceptual description)

You want to find the minimum of a function, starting from a guess, assuming that you cannot depict the graph of the function, for example the following function

$$
f(x)=\exp \left(\sin \left(x^{2}\right)\right)+\sqrt{x^{4}+3} \sin \left(\exp \left(-\frac{1}{(1+\epsilon|x|)}\right)\right)
$$

Idea:

1) Make a guess
2) Compute the derivative at this point (i.e. the slope)
3) Follow the direction of the slope (i.e. descend)
4) Stop when the slope is zero, i.e. it does not go downhill

Problem 3: how to hit the wall?

