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• Knapsack
• Dynamic programming approach to knapsack
• A practical example for knapsack
• Dijkstra’s algorithm revisited
• Dynamic programming idea behind Dijkstra’s algorithm
• How to construct dynamic programming algorithms
• Landing scheduling via dynamic programming
• Travelling salesman 

Lecture 8: dynamic programming

Knapsack problem

How to pack as much value with a weight constraint W?
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Dynamic programming solution of knapsack

Let us index by i the items.
Let us index by j the weight restriction.

Question (to be answered by induction)
- If I can take objects 1, 2, 3, … i, 
- How much value can I take away
- Given that I am restricted to take a maximum weight of j

This question is to be answered by induction, on i AND j

Dynamic programming induction relation
Introduce a quantity d(i,j), indexed by 

- i, the number of items to be taken away
i = 0, 1, 2, … p

- j, the weight restriction
j = 1, 2, …, W

Note that all quantities of this problem have to be integer

Introduce d(i,j), the maximum value of the selected items, if 
we are allowed to take items 1 to i, and we have a weight 
restriction of j

We will thus compute d(i,j) recursively, in an array of 
dimension p x W. 
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Dynamic programming induction relation

maximum value of the selected items, if 
we are allowed to take items 1 to i, and 
we have a weight restriction of j

Dynamic programming induction relation

maximum value of the selected items, if 
we are allowed to take items 1 to i, and 
we have a weight restriction of j

value of for i-1 items, with 
restriction j minus weight 
of object i
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Dynamic programming induction relation

value of for i-1 items, with 
restriction j minus weight 
of object i

+
value of item imaximum value of the selected items, if 

we are allowed to take items 1 to i, and 
we have a weight restriction of j

Dynamic programming induction relation

value of for i-1 items, with 
restriction j minus weight 
of object i

+
value of item imaximum value of the selected items, if 

we are allowed to take items 1 to i, and 
we have a weight restriction of j

keep i-1 items
(do nothing)
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Dynamic programming induction relation

value of for i-1 items, with 
restriction j minus weight 
of object i

+
value of item imaximum value of the selected items, if 

we are allowed to take items 1 to i, and 
we have a weight restriction of j

keep i-1 items
(do nothing)

Dynamic programming induction relation

value of for i-1 items, with 
restriction j minus weight 
of object i

+
value of item imaximum value of the selected items, if 

we are allowed to take items 1 to i, and 
we have a weight restriction of j

keep i-1 items
(do nothing)

Best option: - keep the previous selection ? 
- add the new object ?
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Dynamic programming induction relation

maximum value of the selected items, if 
we are allowed to take items 1 to i, and 
we have a weight restriction of j

value of for i-1 items, with 
restriction j minus weight 
of object i

+
value of item i

Best option: - keep the previous selection ? 
- add the new object ?

keep i-1 items
(do nothing)

What do we do next?

We fill an array of size p x W

Weight = value
p=4
W=11 (arbitrary, but less than 14 obviously) 
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What do we do next?
We fill an array of size p x W

4

3

2

1

1110987654321

Weight restriction j (j=1,2, … , W)

Ite
m

s 
pi

ck
ed

 (i
=1

, 2
, 3

, 4
, …

) 

We fill an array of size p x W

{3,2}{4,2,1}{4,2}{2,1}{4,3,1}{4,3}{3,1}{3}{4,1}{4}{1}

11109876543214

{3,2}{2,1}{2,1}{2,1}{2}{3,1}{3,1}{3}{1}{1}{1}

1188875541113

{2,1}{2,1}{2,1}{2,1}{2}{1}{1}{1}{1}{1}{1}

888871111112

{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}

111111111111

1110987654321

Weight restriction j (j=1,2, … , W)

Ite
m

s 
pi

ck
ed

 (i
=1

, 2
, 3

, 4
, …

) 
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We fill an array of size p x W

{3,2}{4,2,1}{4,2}{2,1}{4,3,1}{4,3}{3,1}{3}{4,1}{4}{1}

11109876543214

{3,2}{2,1}{2,1}{2,1}{2}{3,1}{3,1}{3}{1}{1}{1}

1188875541113

{2,1}{2,1}{2,1}{2,1}{2}{1}{1}{1}{1}{1}{1}

888871111112

{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}

111111111111

1110987654321

Weight restriction j (j=1,2, … , W)

Ite
m

s 
pi

ck
ed

 (i
=1

, 2
, 3

, 4
, …

) 

We fill an array of size p x W

{3,2}{4,2,1}{4,2}{2,1}{4,3,1}{4,3}{3,1}{3}{4,1}{4}{1}

11109876543214

{3,2}{2,1}{2,1}{2,1}{2}{3,1}{3,1}{3}{1}{1}{1}

1188875541113

{2,1}{2,1}{2,1}{2,1}{2}{1}{1}{1}{1}{1}{1}

888871111112

{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}

111111111111

1110987654321

Weight restriction j (j=1,2, … , W)

Ite
m

s 
pi

ck
ed

 (i
=1

, 2
, 3

, 4
, …

) 
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We fill an array of size p x W

{3,2}{4,2,1}{4,2}{2,1}{4,3,1}{4,3}{3,1}{3}{4,1}{4}{1}

11109876543214

{3,2}{2,1}{2,1}{2,1}{2}{3,1}{3,1}{3}{1}{1}{1}

1188875541113

{2,1}{2,1}{2,1}{2,1}{2}{1}{1}{1}{1}{1}{1}

888871111112

{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}

111111111111

1110987654321

Weight restriction j (j=1,2, … , W)

Ite
m

s 
pi

ck
ed

 (i
=1

, 2
, 3

, 4
, …

) 

We fill an array of size p x W

{3,2}{4,2,1}{4,2}{2,1}{4,3,1}{4,3}{3,1}{3}{4,1}{4}{1}

11109876543214

{3,2}{2,1}{2,1}{2,1}{2}{3,1}{3,1}{3}{1}{1}{1}
1188875541113

{2,1}{2,1}{2,1}{2,1}{2}{1}{1}{1}{1}{1}{1}

888871111112

{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}

111111111111

1110987654321

Weight restriction j (j=1,2, … , W)

Ite
m

s 
pi

ck
ed

 (i
=1

, 2
, 3

, 4
, …

) 
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We fill an array of size p x W

{3,2}{4,2,1}{4,2}{2,1}{4,3,1}{4,3}{3,1}{3}{4,1}{4}{1}

11109876543214

{3,2}{2,1}{2,1}{2,1}{2}{3,1}{3,1}{3}{1}{1}{1}

888875541113

{2,1}{2,1}{2,1}{2,1}{2}{1}{1}{1}{1}{1}{1}

888871111112

{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}

111111111111

1110987654321

Weight restriction j (j=1,2, … , W)

Ite
m

s 
pi

ck
ed

 (i
=1

, 2
, 3

, 4
, …

) 

No uniqueness: could pick also item 2

What do we do next?
We fill an array of size p x W

4

3

2

1

1110987654321

Weight restriction j (j=1,2, … , W)

Ite
m

s 
pi

ck
ed

 (i
=1

, 2
, 3

, 4
, …

) 
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Final result 

{3,2}{4,2,1}{4,2}{2,1}{4,3,1}{4,3}{3,1}{3}{4,1}{4}{1}

11109876543214

{3,2}{2,1}{2,1}{2,1}{2}{3,1}{3,1}{3}{1}{1}{1}

1188875541113

{2,1}{2,1}{2,1}{2,1}{2}{1}{1}{1}{1}{1}{1}

888871111112

{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}

111111111111

1110987654321

Weight restriction j (j=1,2, … , W)
Ite

m
s 

pi
ck

ed
 (i

=1
, 2

, 3
, 4

, …
) 

Dynamic programming: main idea

Main idea: when solving an integer program, in order to 
avoid enumeration (to expensive computationally), 
cut the problem in two and use induction:

At current step: assume you know the best solution at 
previous steps

Compute the best solution for the current step, and pair 
it with the solution at the previous steps

A more precise definition of dynamic programming will
be given later in class.
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Dijkstra’s algorithm revisited

begin
S:=Ø
d(i):=+∞ for each node i
d(s):=0 and pred(s)=0
while |S|<n do

begin
let i in S* for which d(i)=min{d(j), j in S*}
S = S U {i}
S* = S* \ {i}

for each (i,j) in the graph do
if d(j)>d(i)+cij

then
d(j):=d(i)+cij
pred(j):=i

end
end

end
end

Core of Dijkstra’s algorithm

Value at next iteration

best between the 
previous iteration 
and whatever is 
best at this iteration 

previous 
Iteration
(other path) for all connected 

node i, compute 
the path length to 
node i plus the 
length from i to j

This is the main idea under dynamic programming algorithms
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How to construct dynamic programming algorithms

1) View the choice of a feasible solution as a sequence of decisions 
occuring in stages, and so that the total cost is the sum of the costs 
of individual decisions.

2) Define the state as a summary of all relevant past decisions

3) Determine which state transitions are possible. Let the cost of each
state transition be the cost of the corresponding decision.

4) Write a recursion on the optimal cost from the origin state to a 
destination state

Shaded square indicates that time is meant for the algorithm (more 
about this in the lab).

[Introduction to linear optimization, Bertsimas, Tsitsiklis, 1997]

Landing scheduling through dynamic programming

aircraft 1

aircraft 2

aircraft 3

aircraft 4

θ1 =12:20:00

θ2 =12:21:00
θ3 =12:21:30

θ4 =12:23:30
θ5 =12:24:00

θ6 =12:27:30

θ7 =12:28:30
θ8 =12:30:00
θ9 =12:33:30

θ10 =12:34:30
θ11 =12:35:30
θ12 =12:38:00

θ13 =12:38:30
θ14 =12:39:00

θ15 =12:41:00
θ16 =12:42:00
θ17 =12:43:00
θ18 =12:44:00

How to pick a landing time for 
each aircraft so that the 
minimum separation
between any two aircraft
is a large as possible?
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Landing scheduling through dynamic programming

Example of data used for this type of problem:

[TCSim, T. Callantine, NASA Ames]

Landing scheduling through dynamic programming

aircraft 1

aircraft 2

aircraft 3

aircraft 4

θ1 =12:20:00

θ2 =12:21:00
θ3 =12:21:30

θ4 =12:23:30
θ5 =12:24:00

θ6 =12:27:30

θ7 =12:28:30
θ8 =12:30:00
θ9 =12:33:30

θ10 =12:34:30
θ11 =12:35:30
θ12 =12:38:00

θ13 =12:38:30
θ14 =12:39:00

θ15 =12:41:00
θ16 =12:42:00
θ17 =12:43:00
θ18 =12:44:00

How to pick a landing time for 
each aircraft so that the 
minimum separation
between any two aircraft
is a large as possible?

This looks like a reasonable
solution.
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Landing scheduling through dynamic programming

j-th possible landing time of aircraft i

number of possible landing times for aircraft i

Maximal minimum spacing between any two aircraft, for 
the subset of aircraft 1, 2, … , i, if the aircraft number i 
is assigned the arrival time 

Initialization of the recursion: 
- Aircraft 1 should obviously arrive as early as possible
- If aircraft 2 is assigned the j-th arrival time, the spacing

between aircraft i and j is obviously

Landing scheduling through dynamic programming

j-th possible landing time of aircraft i

number of possible landing times for aircraft i

Maximal minimum spacing between any two aircraft, for 
the subset of aircraft 1, 2, … , i, if the aircraft number i 
is assigned the arrival time 

Initialization of the recursion: 

Recursion
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Landing scheduling through dynamic programming

j-th possible landing time of aircraft i

number of possible landing times for aircraft i

Maximal minimum spacing between any two aircraft, for 
the subset of aircraft 1, 2, … , i, if the aircraft number i 
is assigned the arrival time 

Initialization of the recursion: 

Recursion is done with variable i, i.e. with the number 
of aircraft.  For a number i of aircraft, this represents 
the largest smallest spacing if aircraft i arrives at time j

Landing scheduling through dynamic programming

j-th possible landing time of aircraft i

number of possible landing times for aircraft i

Maximal minimum spacing between any two aircraft, for 
the subset of aircraft 1, 2, … , i, if the aircraft number i 
is assigned the arrival time 

Initialization of the recursion: 

Maximal minimum separation between any two aircraft within the 
first i-1 aircraft, if aircraft i-1 is assigned arrival time j’
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Landing scheduling through dynamic programming

j-th possible landing time of aircraft i

number of possible landing times for aircraft i

Maximal minimum spacing between any two aircraft, for 
the subset of aircraft 1, 2, … , i, if the aircraft number i 
is assigned the arrival time 

Initialization of the recursion: 

Time separation resulting from assigning aircraft i to its j-th arrival 
time and aircraft i-1 to its j’-th arrival time. 

Landing scheduling through dynamic programming

j-th possible landing time of aircraft i

number of possible landing times for aircraft i

Maximal minimum spacing between any two aircraft, for 
the subset of aircraft 1, 2, … , i, if the aircraft number i 
is assigned the arrival time 

Initialization of the recursion: 

For a given j’ (aircraft i-1’ s arrival time), the overall resulting 
minimum separation is the worst between

- aircraft i and aircraft i-1
- any two other aircraft within 1, 2, ..., i-1
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Landing scheduling through dynamic programming

j-th possible landing time of aircraft i

number of possible landing times for aircraft i

Maximal minimum spacing between any two aircraft, for 
the subset of aircraft 1, 2, … , i, if the aircraft number i 
is assigned the arrival time 

Initialization of the recursion: 

For aircraft i, we have to compute the maximum spacing so far when 
trying all possible assignments for the previous i-1 aircraft 

Landing scheduling through dynamic programming

j-th possible landing time of aircraft i

number of possible landing times for aircraft i

Maximal minimum spacing between any two aircraft, for 
the subset of aircraft 1, 2, … , i, if the aircraft number i 
is assigned the arrival time 

Initialization of the recursion: 

Number of possible arrival times for aircraft i-1

For aircraft i, we have to compute the maximum spacing so far when 
trying all possible assignments for the previous i-1 aircraft 
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Landing scheduling through dynamic programming

j-th possible landing time of aircraft i

number of possible landing times for aircraft i

Maximal minimum spacing between any two aircraft, for 
the subset of aircraft 1, 2, … , i, if the aircraft number i 
is assigned the arrival time 

Initialization of the recursion: 

The goal of the dynamic algorithm is to compute the largest spacing, 
by trying the best among all possible assignments of aircraft i-1 
(since this is the induction step between i-1 and i). 

How to construct dynamic programming algorithms

1) View the choice of a feasible solution as a sequence of decisions 
occuring in stages, and so that the total cost is the sum of the costs 
of individual decisions.

2) Define the state as a summary of all relevant past decisions

3) Determine which state transitions are possible. Let the cost of each
state transition be the cost of the corresponding decision.

4) Write a recursion on the optimal cost from the origin state to a 
destination state

Shaded square indicates that time is meant for the algorithm (more 
about this in the lab).

[Introduction to linear optimization, Bertsimas, Tsitsiklis, 1997]
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Traveling salesman
What is the shortest path to loop through N cities?

[http://www.informatik.uni-leipzig.de/~meiler] [http://www.superbasescientific.com/]

Traveling salesman: engineering applications
What is the shortest path to loop through N cities?

500 cities, random solution!

[http://www.logicalgenetics.com/]
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Traveling salesman: engineering applications
What is the shortest path to loop through N cities?

500 cities, a better solution!

[http://www.logicalgenetics.com/]

Traveling salesman: engineering applications
What is the shortest path to loop through N cities?

500 cities, a much better solution!

[http://www.logicalgenetics.com/]
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Traveling salesman: dynamic programming solution

subset of cities including
city 1 (departure city)

City 1

subset of cities including
city 1 (departure city)

City 1

a city in S

a city in S

Traveling salesman: dynamic programming solution

Induction is done on S
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subset of cities including
city 1 (departure city)

City 1

a city in S

a city in S

Induction is done on S

Traveling salesman: dynamic programming solution

shortest path
from city 1 to 
city k that visits all 
nodes in S 

subset of cities including
city 1 (departure city)

a city in S

Induction is done on S

shortest path from
city 1 to city k that
visits all nodes in S 

cost to go from city 
m to city k 

Traveling salesman: dynamic programming solution

Where m is a node
in S, but not k 

Cost to go from m to kShortest way to go to m 
without going through k
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subset of cities including
city 1 (departure city)

a city in S

Induction is done on S

shortest path from
city 1 to city k that
visits all nodes in S 

cost to go from city 
m to city k 

Traveling salesman: dynamic programming solution

Where m is a node
in S, but not k 

Best over all possible m (not equal to k)

subset of cities including
city 1 (departure city)

a city in S

Induction is done on S

shortest path from
city 1 to city k that
visits all nodes in S 

cost to go from city 
m to city k 

Traveling salesman: dynamic programming solution

Where m is a node
in S, but not k 

Cost to go from city 1 to city 1: zero
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How to construct dynamic programming algorithms

1) View the choice of a feasible solution as a sequence of decisions 
occuring in stages, and so that the total cost is the sum of the costs 
of individual decisions.

2) Define the state as a summary of all relevant past decisions

3) Determine which state transitions are possible. Let the cost of each
state transition be the cost of the corresponding decision.

4) Write a recursion on the optimal cost from the origin state to a 
destination state

Shaded square indicates that time is meant for the algorithm (more 
about this in the lab).

[Introduction to linear optimization, Bertsimas, Tsitsiklis, 1997]


