Lecture 8: dynamic programming

* Knapsack

» Dynamic programming approach to knapsack

» A practical example for knapsack

* Dijkstra’s algorithm revisited

* Dynamic programming idea behind Dijkstra’s algorithm
* How to construct dynamic programming algorithms

* Landing scheduling via dynamic programming

» Travelling salesman

Knapsack problem

How to pack as much value with a weight constraint W?
max: >y b u;r;

P ”
S.t. Zi‘zl w;r; < 4l

r; €40,1} for all i
p number of items
i index of items

W maximum weicht to be carried
w; welght of object i
w; value of object i

x; decision variable to take (2 = 1) or not to take (; = 0) object ¢

Dynamic programming solution of knapsack

Let us index by i the items.
Let us index by j the weight restriction.

Question (to be answered by induction)
- If I can take objects 1, 2, 3, ... |,
- How much value can | take away
- Given that | am restricted to take a maximum weight of |

This question is to be answered by induction, on i AND |

Dynamic programming induction relation

Introduce a quantity d(i,j), indexed by
- i, the number of items to be taken away
2i=0,1,2,...p
-], the weight restriction
2>j=12,....W
Note that all quantities of this problem have to be integer

Introduce d(i,j), the maximum value of the selected items, if
we are allowed to take items 1 to i, and we have a weight
restriction of j

We will thus compute d(i,j) recursively, in an array of
dimension p x W.

Dynamic programming induction relation

d(i.j)=max{d(i—1,7),u; +d(i — 1,7 — w;)}

)

v

maximum value of the selected items, if
we are allowed to take items 1 to i, and
we have a weight restriction of

Dynamic programming induction relation

d(i,j) =max {d(i —1.7),u; -l—\rl(f' — 1.5 — 'H-’j}}

value of for i-1 items, with
restriction j minus weight
of object i

Dynamic programming induction relation

di.7) =max{d(i —1.7).u; +d(i — 1.7 — w; ‘
(7) { (.f) _‘zrj\ (I./ r}}
value of for i-1 items, with
restriction j minus weight

of object i
+

— value of item |

Dynamic programming induction relation

d(i,j) =max{d(i—1.7),u; +d(i —1,7 —w;)}

keep i-1 items
(do nothing)

Dynamic programming induction relation

d(i.j) =max{d(i—1,7),u; +d(i —1,7 —w;)}

Dynamic programming induction relation

Best option: - keep the previous selection ?
- add the new object ?

_A—
- N\

d(i,j) =max{d(i—1.j),u; +d(i —1,7 —w;)}

Dynamic programming induction relation

Best option: - keep the previous selection ?
- add the new object ?

A
1(4.7) m =1 (i —1.j)\}
ale,) = maxyd{z — 1,7),U; a\e — 1,7 — wy
— j\ J

keep i-1 items value of for i-1 items, with
(do nothing) restriction j minus weight
of object i
+
v — value of item |

maximum value of the selected items, if
we are allowed to take items 1 to i, and
we have a weight restriction of

What do we do next?

We fill an arrav of size p x W

wy = 1
wo =7
wsy — 4
wy — 2
Weight = value

p=4
W=11 (arbitrary, but less than 14 obviously)

d(i,7) =max{d(i —1,7),u; +d(i — 1,7 —w;)}

What do we do next?

We fill an array of size p x W

d(i,7) =max{d(i —1,7),u; +d(i — 1,7 —w;)}

Weight restriction j (j=1,2, ... , W)

—~ 1 2 3 4 5 6 7 8 9 10 11
< 1
o5

N

o

Ty
©

Q

V4

o 3
o

[%2)

£

15

- 4

We fill an array of size p x W

d(i.j) =max{d(i—1.7),u; +d(i —1,7 —w;)}

Weight restriction j (j=1,2, ... , W)

~ 1 2 3 4 5 6 7 8 9 10| 11
< 1 1 1 1 1 1 1 1 1 1 1 1
00: {1y {1y {3y {13 {13 {1} {13 {1 {1} {13 {1}
N 2 1 1 1 1 1 1 7 8 8 8 8
—

4 {1y {1y {1y 3] {13 {1} {2} | {21} | {21} | {21} | {2,1}
3 3 1 1 1 4 5 5 7 8 8 8| 11
X

% {1y {13y {1} {3} (3.1} {31} {2} | {21} | {21} | {21}] {3.2}
@ 4 1 2 3 4 5 6 7 8 9 0| 11
2 {1} {4] {41} {3}] {31} {43} | {431} | {21} | {42} | {421}] {3.2}

We fill an array of size p x W

wy =1, wo =7, w3 =4, wy =2 |

d(i,j) =max{d(i —1.j),u; +d(i —1,5 — w;

Weight restriction j (j=1,2, ... , W)

~ 1 2 3 4 5 6 7 8 9 10 1
< 1 1 1 1 1 1 1 1 1 1 1 1
00: {3 3] {13 {3 {3 {1 {13 (13| 1 {13 1}
N 2 1 1 1 1 1 1 7 8 8 8 8
—

L (3]]] (3] () {1 23| {21}] 21} | {21} {21}
3 3 1 1 1 4 5 5 7 8 8 8| M
X

% {3 3] {13 {33] 3813 381} {2} | {21} | {21} {21} {3,2}
2 4 1 2 3 4 5 6 7 8 9 10 11
8 {1} {4 {41} {3}] {381} {43} | {431}] {211} | {42} | {4,211} {3,2}

We fill an array of size p x W

wy =1, wo =7, w3 =4, wy =2 |

d(i,j) =max{d(i—1.7),u; +d(i —1,7 — w;

Weight restriction j (j=1,2, ... , W)

~ 1 2 3 4 5 6 7 8 9 10| 11
< 1 1 1 1 1 1 1 1 1 1 1 1
00: {1y {1y {3y {13 {13 {1} {13 {1 {1} {13 {1}
N 2 1 1 1 1 1 10 7 8 8 8 8
—

4 {1y {1y {1y 3] {13 {1} *{2} {21} | {21} | {2,1}] {2,1}
2 3 1 1 1 4 5 5 7 8 8 8| 11
X

% {1y {13y {1} {3} (3.1} {31} {2} | {21} | {21} | {21}] {3.2}
@ 4 1 2 3 4 5 6 7 8 9 0| 11
2 {1} {4] {41} {3}] {31} {43} | {431} | {21} | {42} | {421}] {3.2}

We fill an array of size p x W

wy =1, wo =7, w3 =4, wy =2 |

d(i,j) =max{d(i—1.7),u; +d(i — 1,5 — w;

Weight restriction j (j=1,2, ... , W)

~ 1 2| 3| 4| 5| s 7| 8] 9 10| 11
< 1 1 1 1 1 1 1 1 1 1 1 1
™ My Oy O3] 3] (3] M (y]] 1 (] M
N 2 1 1 1 1 1 1 7 8 8 8 8
—

L (y]] O3] () {3 3 (2y| {213 | 213 {21} {21}
D 3 1 1 1 4 5 5 Z Bulen 8 8| 1
¥4

2 My O3] 03] & G| BN 2} | {21} '*‘} {21} | (3,2}
2 4] 1 2| 3| 4| 5] s 7| 8% o 10 1
£ (] {4 {41} {3}] B1}| 43}] (431} {21} | {42} | {421} (3,2}

We fill an array of size p x W

wy =1, wo =7, w3 =4, wy =2 |

d(i,j) = max{d(i—1.7),u; +d(i — 1,5 — w;

Weight restriction j (j=1,2, ... , W)

-~ 1 2 3 4 5 6 7 8 9 10| 11
<r:“ 1 1 1 1 1 1 1 1 1 1 1 1
) (y]] (3] () (3] 13 (y] (3] 413 (y] 3
N 2 1 1 1 1 1 1 7 8 8 8 8
I—", (y]] O3] () {3 3 (2y| 213 | 213 {21} {21}
E 3 1 1 1 4 5 5 7 8 8 8| M
2 My (] (3] Gy B3| B (2y| 213| 213 {21}| 3.2}
£ 4 1 2 3 4 5 6 7 8 9 10| 11
2 (3] 4] {413 (3] 31} {43} 431} | {21} | {42} {421} {3.2}

We fill an array of size p x W

wy =1, wo =7, w3 =4, wy =2 |

1,2,3,4,..)

Items picked (i

No uniqueness: could pick also item 2

Weight restriction j (j=1,2, ... , W)

A

1 2 3 4 5 6 7 8 9 10 11

1 1 1 1 1 1 1 1 1 1 1 1
] 4y] {1 {13 1 {13] {1 {13 {1

2 1 1 1 1 1 1 7 8 8 8 8
(3]]] (3] () {1 2} {21}] 21} | {21} {21}

3 1 1 1 4 5 5 7 8 8 8 8
]) {1 8y 313 &1 {23 | {213] {21} {21}] {3.2}

4 1 2 3 4 5 6 7 8 9 10 1
{13] 4] {41} {3}] (381} | {43} {431} | {21} | {42} | {421} {3,2}

What do we do next?

We fill an array of size p x W

d(i.j) =max{d(i—1.7),u; +d(i —1,7 —w;)}
Weight restriction j (j=1,2, ... , W)

=1,2,3,4,..)

Items picked (i

1

2

3

4

5

10

11

10

Final result

Weight restriction j (j=1,2, ... , W)

- 1 2 3 4 5 6 7 8 9 10 &g 11
< 1 1 1 1 1 1 1 1 1 1 1 1
00: {3 3] {13 {3 {3 {1 {13 (1| 1 {13 1}
N 2 1 1 1 1 1 1 7 8 8 8 8
—

L WIERCIERCIERU IR IR {2} | {21} | 21} | {21} {21}
2 3 1 1 1 4 5 5 7 8 8 8| M
X

g_ {3 3] {13 {33 3813 31} {2} | {21} | {21} {21} {3,2}
2 4 1 2 3 4 5 6 7 8 9 10| 11
8 {1} {4 {41}]| {3}] {31} {43} | {431}] {211} | {42} | {4,211} {3,2}

Dynamic programming: main idea

Main idea: when solving an integer program, in order to
avoid enumeration (to expensive computationally),
cut the problem in two and use induction:

At current step: assume you know the best solution at
previous steps

Compute the best solution for the current step, and pair
it with the solution at the previous steps

A more precise definition of dynamic programming will
be given later in class.

11

Dijkstra’s algorithm revisited

begin
S:=0
d(i):=+ for each node i
d(s):=0 and pred(s)=0
while |S|<n do
begin
let i in S* for which d(i)=min{d(j), j in S*}
S =S U {i}
S* = 8*\{i}
for each (i,j) in the graph do R
if d(j)>d(i)+cij
then
d(j):=d(i)+cij
pred(j):=i
end
end W,
end . . , . .
end d(j) = min {d(7),d(i) + ci;}
connected nodes

Core of Dijkstra’s algorithm

d(j) = min {d(7).d(i) + ¢}

connected nodes

—— —

Value at next iteration

best between the previous v
previous iteration Iteration
and whatever is (other path)
best at this iteration

for all connected
node i, compute
the path length to
node i plus the
length from i to j

This is the main idea under dynamic programming algorithms

12

How to construct dynamic programming algorithms

1) View the choice of a feasible solution as a sequence of decisions
occuring in stages, and so that the total cost is the sum of the costs
of individual decisions.

2) Define the state as a summary of all relevant past decisions

3) Determine which state transitions are possible. Let the cost of each
state transition be the cost of the corresponding decision.

4) Write a recursion on the optimal cost from the origin state to a
destination state

Shaded square indicates that time is meant for the algorithm (more
about this in the lab).

[Introduction to linear optimization, Bertsimas, Tsitsiklis, 1997]

Landing scheduling through dynamic programming

o

R

1 e —_
12143003 — —————@ How to pick a landing time for
1

2:41:009 aircraft 4 each aircraft so that the

o o0 @

minimum separation
between any two aircraft
is a large as possible?

0,,=12:39:00
6,,=12:38:30

8,,=12:38:00
8,,=12:35:30
0,,=12:34:30
8,=12:33:30
8,=12:30:00
8,=12:28:30

aircraft 3

6,=12:27:30 aircraft 2

,=12:20:00 aircraft 1

13

Landing scheduling through dynamic programming

Example of data used for this type of problem:

ATADO0LT 1295 1305 1310 1311 1316 1320 1325 1327 1335
UATLO02 1413 1423 1429 1439 1447 1458 1468 1478 1489
DALO03 1522 1532 1541 1551 1557 1567 1581 1587 1601
UALOD4 1606 1613 1619 1629 1638 1648 1659 1673 1682
COAQ05 1693 1700 1705 1710 1710 1715 1720 1725 1730
SWAODG 1787 1794 1799 1799 1804 1809 1814 1819 1524

[TCSim, T. Callantine, NASA Ames]

Landing scheduling through dynamic programming

0,;=12:44:00
8”5%23588 — How to pick a landing time for
16 = 14694, - — — N
0,,=12:41:00% aircraft 4 ea_crl aircraft so tl'_nat the
minimum separation
8,,=12:39:001 between any two aircraft

8, =12:38:30 ¢ is a large as possible?

0,,=12:38:00

0,,=12:35:30¢ .

8,,=12:34:30 4 alroraft 3

0.=12:33:30 ¢ This looks like a reasonable
9 . . .

0,=12:30:00 ¢ solution.

0,=12:28:30 ¢

12:27:30 aircraft 2
12:24:00 ¢
12:23:30 ¢

e6
0
8
2:21:30 ¢
2:21:00 ¢

=12:20:00 aircraft 1

0,=1
8,=1
6,

Landing scheduling through dynamic programming

tz'.j j-th possible landing time of aircraft i

T number of possible landing times for aircraft i

(5 (3) J) Maximal minimum spacing between any two aircraft, for
J the subset of aircraft 1, 2, ... , i, if the aircraft number i
is assigned the arrival time 7;;

Initialization of the recursion:
- Aircraft 1 should obviously arrive as early as possible

- If aircraft 2 is assigned the j-th arrival time, the spacing
between aircraft i and j is obviously

0(2.7) =ta; —t11

Landing scheduling through dynamic programming

tz’.j j-th possible landing time of aircraft i
T number of possible landing times for aircraft i

) (2 . J) Maximal minimum spacing between any two aircraft, for
' the subset of aircraft 1, 2, ... , i, if the aircraft number i
is assigned the arrival time 7, ;

Initialization of the recursion:

0(2,j) =ta; —t11

Recursion

0(i,7) = Slié}i({rllill{ti,j —ti_1y, 0(1—1,5")}}
§'= ’ :

15

Landing scheduling through dynamic programming

d(i,7) = ﬁlia-}i({min{ti‘j —ti1, 6(i—1,5)}}
jf: ? 3

Recursion is done with variable i, i.e. with the number
of aircraft. For a number i of aircraft, this represents
the largest smallest spacing if aircraft i arrives at time j

t-ij j-th possible landing time of aircraft i
T; number of possible landing times for aircraft i

0 (z . J) Maximal minimum spacing between any two aircraft, for
! the subset of aircraft 1, 2, ... , i, if the aircraft number i
is assigned the arrival time 7, ;

Initialization of the recursion:

§(2,j) =ta; —t11

Landing scheduling through dynamic programming

. Ni—1 : N
d(7,7) = max{min{t; ; —t, 1.+, 6(i— 1.7
(i,7) = maxqmin{ty; —tioy 0, 00— 1,7)}

Maximal minimum separation between any two aircraft within the
first i-1 aircraft, if aircraft i-1 is assigned arrival time j’

tij j-th possible landing time of aircraft i
T number of possible landing times for aircraft i

5 (z) J) Maximal minimum spacing between any two aircraft, for
! the subset of aircraft 1, 2, ... , i, if the aircraft number i
is assigned the arrival time 7,

Initialization of the recursion:

0(2,7) =ta; —t11

16

Landing scheduling through dynamic programming

6(i,7) = 1%5)1({111111<sz tio1) - 5 —1,7)))
Y

Time separation resulting from assigning aircraft i to its j-th arrival
time and aircraft i-1 to its j’-th arrival time.

t-ij j-th possible landing time of aircraft i
T; number of possible landing times for aircraft i

0 (z . J) Maximal minimum spacing between any two aircraft, for
! the subset of aircraft 1, 2, ... , i, if the aircraft number i
is assigned the arrival time 7, ;

Initialization of the recursion:

§(2,j) =ta; —t11

Landing scheduling through dynamic programming

i1 o y
0(i,j) = 111(1X{111111{t2j tiqr s 0(i — ij)}}
j'= s
For a given j’ (aircraft i-1’ s arrival time), the overall resulting

minimum separation is the worst between
- aircraft i and aircraft i-1

- any two other aircraft within 1, 2, ..., i-1
tij j-th possible landing time of aircraft i
T number of possible landing times for aircraft i

5 (z) J) Maximal minimum spacing between any two aircraft, for
! the subset of aircraft 1, 2, ... , i, if the aircraft number i
is assigned the arrival time 7,

Initialization of the recursion:

0(2,7) =ta; —t11

17

Landing scheduling through dynamic programming

0(i,j) = ﬁia'}i{{lnin{ti,j —ti g, 60— 1,5}

For aircraft i, we have to compute the maximum spacing so far when
trying all possible assignments for the previous i-1 aircraft

t-ij j-th possible landing time of aircraft i
T; number of possible landing times for aircraft i

0 (z . J) Maximal minimum spacing between any two aircraft, for
! the subset of aircraft 1, 2, ... , i, if the aircraft number i
is assigned the arrival time 7, ;

Initialization of the recursion:

§(2,j) =ta; —t11

Landing scheduling through dynamic programming

— Number of possible arrival times for aircraft i-1
T ni—1 . - -/ . ./
6(i,7) = 11’1a}i({1111n{t3-,j —ti1y, 0(i—1,7)}}
j‘ =

For aircraft i, we have to compute the maximum spacing so far when
trying all possible assignments for the previous i-1 aircraft

tij j-th possible landing time of aircraft i
T number of possible landing times for aircraft i

5 (z) J) Maximal minimum spacing between any two aircraft, for
! the subset of aircraft 1, 2, ... , i, if the aircraft number i
is assigned the arrival time 7,

Initialization of the recursion:

0(2,7) =ta; —t11

18

Landing scheduling through dynamic programming

d(i,j) = gﬁjlq{min{tu —tiqy . 6(i—1,5")}}
gttt e 7)

V

The goal of the dynamic algorithm is to compute the largest spacing,
by trying the best among all possible assignments of aircraft i-1
(since this is the induction step between i-1 and i).

t-ij j-th possible landing time of aircraft i

T; number of possible landing times for aircraft i

0 (z . J) Maximal minimum spacing between any two aircraft, for
! the subset of aircraft 1, 2, ... , i, if the aircraft number i
is assigned the arrival time 7, ;

Initialization of the recursion:

§(2,j) =ta; —t11

How to construct dynamic programming algorithms

1) View the choice of a feasible solution as a sequence of decisions
occuring in stages, and so that the total cost is the sum of the costs
of individual decisions.

2) Define the state as a summary of all relevant past decisions

3) Determine which state transitions are possible. Let the cost of each
state transition be the cost of the corresponding decision.

4) Write a recursion on the optimal cost from the origin state to a
destination state

Shaded square indicates that time is meant for the algorithm (more
about this in the lab).

[Introduction to linear optimization, Bertsimas, Tsitsiklis, 1997]

19

Traveling salesman

What is the shortest path to loop through N cities?

= —-

[http://lwww.informatik.uni-leipzig.de/~meiler] [http://www.superbasescientific.com/]

Traveling salesman: engineering applications

What is the shortest path to loop through N cities?

500 cities, random solution!

[http://www.logicalgenetics.com/]

20

Traveling salesman: engineering applications

What is the shortest path to loop through N cities?

500 cities, a better solution!

[http://www.logicalgenetics.com/]

Traveling salesman: engineering applications

What is the shortest path to loop through N cities?

500 cities, a much better solution!

L

[http://www.logicalgenetics.com/] a Ca h

21

Traveling salesman: dynamic programming solution

C(S. k) = mé%i\%k} (C(S\{k},m) + coi)

S subset of cities including
city 1 (departure city)

) \ &
20 P b AR
SR AR s & .1_7
Clty 1 _ o U; ’/I__I‘?’{‘ ,f'i. |

Traveling salesman: dynamic programming solution

C(S k) = mgg,i\gk} (CS\{k},m) + cpr)

S subset of cities including
city 1 (departure city)

' \ [
! -
k acityinS “ *Fy 5{—{ e £\.;, o ’
= < = fl U* ’,/L_{ ’ ;.i' |

City 1 3.4 e 2R /.J_';f.

. . \ Lo ; \I %
wenfis LN

e |
% " e [
Induction is done on S &/-.’”ZL',‘;.‘;‘ 4&,{-’ J«,‘,f_‘f

22

Traveling salesman: dynamic programming solution

C(S, k) = -mé%i\lhr} (C(S\{k},m)+ cop)

S subset of cities including
city 1 (departure city)

k acityinS

C(S, k) City 1
shortest path
from city 1 to

city k that visits all
nodesin S

acityinS

Induction is done on S

Traveling salesman: dynamic programming solution

meS\{k} \

C(S, k)= min (C(S\{k},m)+ cnr)
v J/ \)

Shortest way to go tom Cost to go from m to k
without going through k

C(S, k) shortest path from Cmk cost to go from city
city 1 to city k that m to city k

visits all nodes in S .
Where m is a node

S subset of cities including in S. but not k

city 1 (departure city)
k acityinS

Induction is done on S

23

Traveling salesman: dynamic programming solution

C(S. k)= min (C(S\{k}.m)+ i
(S4)= i (CS\(k)m) + o)
Y

Best over all possible m (not equal to k)

g

C'(S. k) shortest path from Cmk cost to go from city
city 1 to city k that m to city k
visits all nodes in S
S subset of cities including

city 1 (departure city)

Where m is a node
in S, but not k

k acityinS

Induction is done on S

Traveling salesman: dynamic programming solution

C(S, k)= min (C(S\{k},m)+ cnr)

meS\{k}

C({l }’ 1) =0 Cost to go from city 1 to city 1: zero

C(S, k) shortest path from Cmk cost to go from city
city 1 to city k that m to city k

visits all nodes in S .
Where m is a node

S subset of cities including in S. but not k

city 1 (departure city)
k acityinS

Induction is done on S

24

How to construct dynamic programming algorithms

1) View the choice of a feasible solution as a sequence of decisions
occuring in stages, and so that the total cost is the sum of the costs
of individual decisions.

2) Define the state as a summary of all relevant past decisions

3) Determine which state transitions are possible. Let the cost of each
state transition be the cost of the corresponding decision.

4) Write a recursion on the optimal cost from the origin state to a
destination state

Shaded square indicates that time is meant for the algorithm (more
about this in the lab).

[Introduction to linear optimization, Bertsimas, Tsitsiklis, 1997]

25

