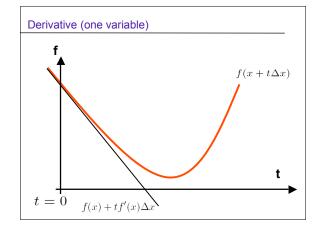
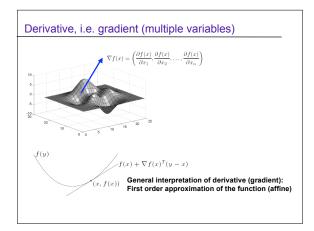
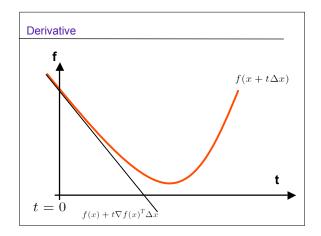
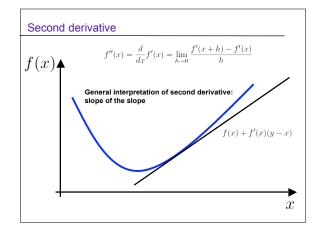
Lecture 12: convergence

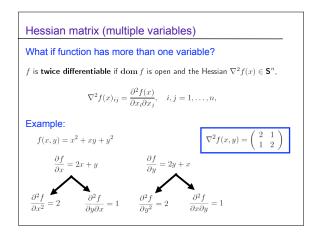
- More about multivariable calculus
- Descent methods
- Backtracking line search
- More about convexity (first and second order)
- Newton step
- Example 1: linear programming (one var., one constr.)
- Example 2: linear programming (one var., two constr.)
- Example 3: linear programming (two var., one constr.)
- Example 4: linear programming (N var., M constr.)

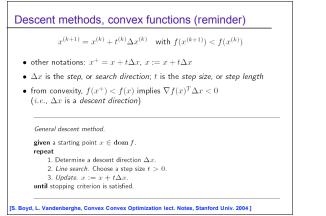


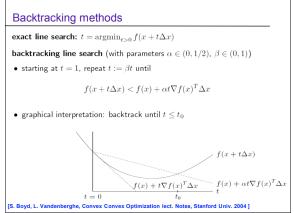


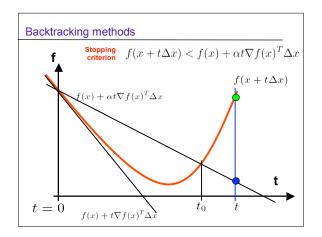


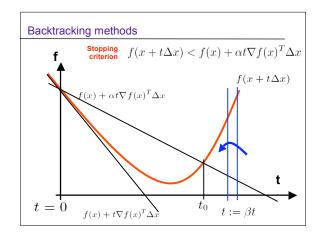


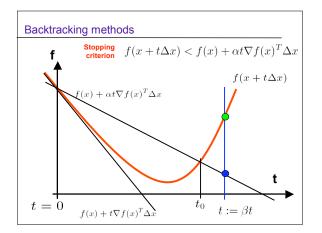


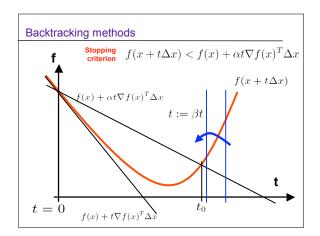


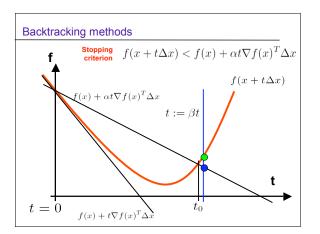


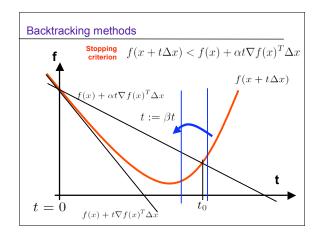


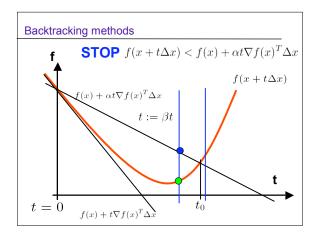


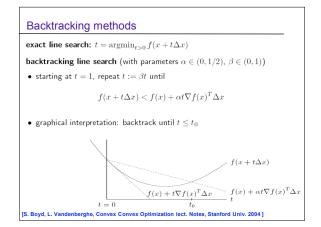


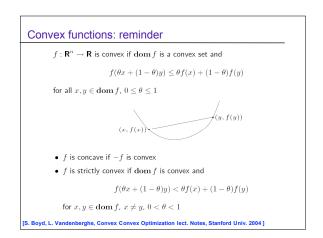


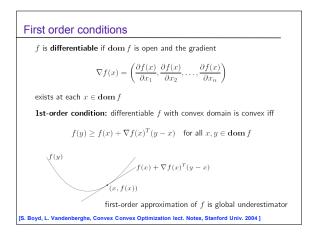












Second order conditions

f is twice differentiable if dom f is open and the Hessian $\nabla^2 f(x) \in S^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n,$$

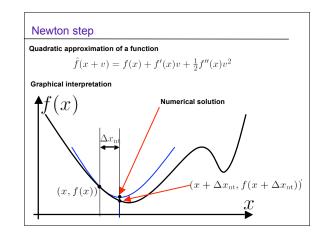
exists at each $x\in \operatorname{\mathbf{dom}} f$

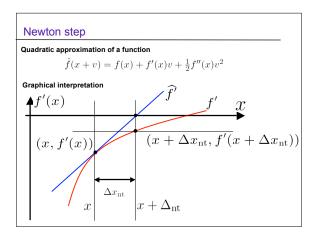
 $\ensuremath{\text{2nd-order conditions:}}$ for twice differentiable f with convex domain

• f is convex if and only if

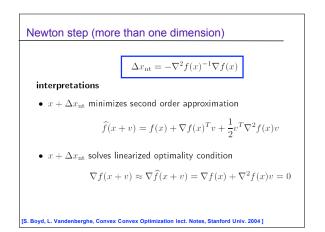
$$\nabla^2 f(x) \succeq 0 \quad \text{for all } x \in \operatorname{\mathbf{dom}} f$$

• if $\nabla^2 f(x) \succ 0$ for all $x \in \operatorname{dom} f$, then f is strictly convex [S. Boyd, L. Vandenberghe, Convex Convex Optimization lect. Notes, Stanford Univ. 2004]



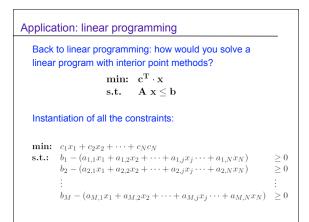


Newton step			
Quadratic approximation of a function			
$\hat{f}(x+v) = f(x) + f'(x)v + \frac{1}{2}f''(x)v^2$			
Find the minimum of $\hat{f}(x+v)$ with respect to v			
$\hat{f}'(x+v) = f'(x) + v f''(x)$ $\hat{f}'(x+v) = 0 \iff v = -\frac{f'(x)}{2}$			
$\hat{f}'(x+v) = 0 \Leftrightarrow v = -\frac{f'(x)}{f''(x)}$ Newton step: $\Delta x_{nt} = -\frac{f'(x)}{f''(x)}$			

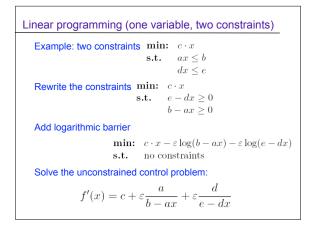


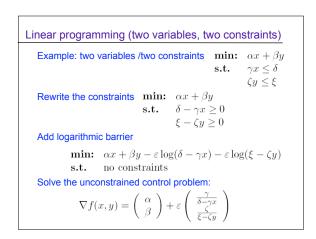
Vewtor	n step descent algori	thm
General a	gorithm:	
repeat 1. C 2. S 3. L	tarting point $x \in \text{dom } f$, to ompute the Newton step and $\Delta x_{\text{nt}} := -\nabla^2 f(x)^{-1} \nabla f(x)$ topping criterion. quit if $\lambda^2/2$ ine search. Choose step size t pdate. $x := x + t \Delta x_{\text{nt}}$.	decrement.); $\lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x)$ $\leq \epsilon.$

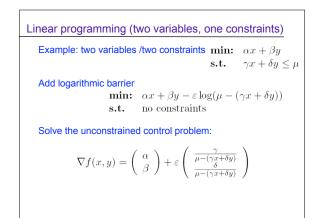
Application: linear programmingBack to linear programming: how would you solve a
linear program with interior point methods?min: $c^{T} \cdot x$
s.t.A $x \leq b$ Instantiation of all the constraints:min: $c_{1}x_{1} + c_{2}x_{2} + \dots + c_{N}c_{N}$
s.t.: $a_{1,1}x_{1} + a_{1,2}x_{2} + \dots + a_{1,j}x_{j} \dots + a_{1,N}x_{N} \leq b_{1}$
 $a_{2,1}x_{1} + a_{2,2}x_{2} + \dots + a_{2,j}x_{j} \dots + a_{2,N}x_{N} \leq b_{2}$
 \vdots
 $a_{M,1}x_{1} + a_{M,2}x_{2} + \dots + a_{M,j}x_{j} \dots + a_{M,N}x_{N} \leq b_{M}$



Linear programming (one variable, one constraint)			
Example: one constraint min: $c \cdot x$ s.t. $ax < b$			
Rewrite the constraint min: $c \cdot x$			
s.t. $b - ax \ge 0$ Add logarithmic barrier min: $c \cdot x - \varepsilon \log(b - ax)$			
s.t. no constraints			
Solve the unconstrained control problem:			
$f'(x) = c + \frac{a}{b - ax}$			







Linear programming (N variables, M constraints)					
Exam min:	ple: two variables /two constraints $c_1x_1 + c_2x_2 + \cdots + c_Nc_N$				
s.t.:	$ \begin{array}{l} a_{1,1}x_1 + a_{1,2}x_2 + \cdots + a_{1,j}x_j \cdots + a_{1,N}x_N \\ a_{2,1}x_1 + a_{2,2}x_2 + \cdots + a_{2,j}x_j \cdots + a_{2,N}x_N \\ \vdots \\ a_{M,1}x_1 + a_{M,2}x_2 + \cdots + a_{M,j}x_j \cdots + a_{M,N}x_N \end{array} $	$ \leq b_1 \\ \leq b_2 \\ \vdots \\ \leq b_M $			
Rewrite the constraints					
min:	$c_1x_1 + c_2x_2 + \dots + c_Nc_N$				
s.t.:	$ \begin{aligned} & b_1 - (a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,j}x_j \dots + a_{1,N}x_N) \\ & b_2 - (a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,j}x_j \dots + a_{2,N}x_N) \\ & \vdots \\ & b_M - (a_{M,1}x_1 + a_{M,2}x_2 + \dots + a_{M,j}x_j \dots + a_{M,N}x_N) \end{aligned} $	$ \begin{array}{l} \geq 0 \\ \geq 0 \\ \vdots \\ r_N) \end{array} \ge 0 $			

