Lecture 1: linear optimization: introduction

- Definition of cost / objective function
- Example of cost functions, affine functions, linear functions
- Definition of constraints
- Example of constraints, linear constraints
- Linear programs
- General form of a linear program
- Sigma notation
- Extended example 1: the transportation problem
- Google maps
- Extended example 2: the shortest path problem

What is optimization?

or

Minimize a cost or objective function (for ex. cost of production)

Maximize a cost or objective function (for ex. profit)

with respect to constraints

- Employee cannot work more than x hours a day
- Only three people can use the same machine at a time
- The pipeline's maximal fuel throughput is y

i.e. find a solution that is optimal within limits given

Example: cost of building a wall	
Cost of a pound of cement (\$ per lb) Cost of a feet of steel beam (\$ per ft) Weight of cement (lb) Length of steel beam (ft)	$a_1 \\ a_2 \\ x_1 \\ x_2$
Total cost (\$) $c(x_1, x_2) =$	$a_1x_1 + a_2x_2$
Note that none of the variables above	has the same unit!
Note however that $\ a_1x_1$ and $\ a_2x_2$ a the same unit	and $c(x_1,x_2)$ have

A constraint is a condition on variables which restricts the values they can take

Your maximal budget for cement is c_{max}

 $a_1 x_1 \le c_{\max}$

Your minimal budget for steel is s_{\min}

 $a_2 x_2 \ge s_{min}$

You want to spend twice as much for steel as for cement

 $a_2 x_2 \ge 2a_1 x_1$

You want to spend a given minimum amount for the wall $~a_{\min}$

 $a_1x_1 + a_2x_2 \ge a_{\min}$

Summary

Your optimization program incorporating all your constraints can be formulated as follows.

 $\begin{array}{ll} \text{Minimize:} & c(x_1, x_2) = a \\ \text{Subject to:} & a_1 x_1 \leq c_{max} \\ & a_2 x_2 \geq s_{min} \end{array}$

$$\begin{split} c(x_1, x_2) &= a_1 x_1 + a_2 x_2 \\ a_1 x_1 &\leq c_{max} \\ a_2 x_2 &\geq s_{min} \\ a_1 x_1 + a_2 x_2 &\geq a_{min} \\ a_2 x_2 &\geq 2a_1 x_1 \end{split}$$

Constraints in the form of equalities (I)

Sometimes, constraints are given in the form of equalities

Example: you want to spend exactly twice as much for steel as for cement:

 $a_2 x_2 = 2a_1 x_1$

This is exactly the same as

 $a_2 x_2 \ge 2a_1 x_1$ and $a_2 x_2 \le 2a_1 x_1$

Constraints in the form of equalities (II)

So you could rewrite the program in the following form:

 $\begin{array}{lll} \mbox{Minimize:} & c(x_1,x_2) = a_1x_1 + a_2x_2 \\ \mbox{Subject to:} & a_1x_1 \leq c_{max} \\ & a_2x_2 \geq s_{min} \\ & a_1x_1 + a_2x_2 \geq a_{min} \\ & a_2x_2 \geq 2a_1x_1 \\ & a_2x_2 \leq 2a_1x_1 \end{array}$

One can thus assume that all constraints are always given in the form of inequalities.

General form for a linear program	
-----------------------------------	--

So you could rewrite the program in the following form:

min:	$c_1x_1 + c_2x_2 + \dots + c_Nx_N$	
s.t.:	$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,j}x_j \dots + a_{1,N}x_N$	$\leq b_1$
	$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,j}x_j \dots + a_{2,N}x_N$	$\leq b_2$
	-	÷
	$a_{M,1}x_1 + a_{M,2}x_2 + \dots + a_{M,j}x_j \dots + a_{M,N}x_N$	$\leq b_M$

Faul S family produces 4 tons of a	apples per day $-s_j$	p = 4
Ron's farm produces 2 tons of a	apples per day s	r = 2
Max's factory needs 1 ton of ap	ples per day d	m = 1
Bob's factory needs 5 tons of a	pples per day d	$_{b} = 5$
George owns both farms and fa of shipping all the apples fro	ctories. He is paying om the farms to the fa	the cost actories.
George owns both farms and fa of shipping all the apples fro The shipping costs for George a	ctories. He is paying om the farms to the fa	the cost actories.
George owns both farms and fa of shipping all the apples fro The shipping costs for George a Paul →Max: 1000\$ per ton	ctories. He is paying om the farms to the farms $c_{pm}=1000$	the cost actories. x_{pm}
George owns both farms and fa of shipping all the apples fro The shipping costs for George a Paul →Max: 1000\$ per ton Ron →Max: 1350\$ per ton	ctories. He is paying on the farms to the far are: $c_{pm} = 1000$ $c_{rm} = 1350$	the cost actories. x_{pm} x_{rm}
George owns both farms and fa of shipping all the apples fro The shipping costs for George a Paul →Max: 1000\$ per ton Ron →Max: 1350\$ per ton Paul →Bob: 1250\$ per ton	ctories. He is paying from the farms to the farms are: $c_{pm} = 1000$ $c_{rm} = 1350$ $c_{pb} = 1250$	the cost actories. x_{pm} x_{rm} x_{pb}

