Lecture 10: descent methods

* Generic descent algorithm
» Generalization to multiple dimensions

* Problems of descent methods, possible improvements

* Fixes
* Local minima

Gradient descent (reminder)

Minimum of a function is found by following the slope of the function
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Gradient descent (illustration)
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Gradient descent (illustration)
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Gradient descent (illustration)

—

-
(@)

f(x)

N WA OO N ®©
t

fm) , |

Gradient descent (illustration)

-
o

N WA O N ® ©
t

fm) , L

1 2 3 4 5Mg 7 8 9

10 11 12

-
>




Gradient descent: algorithm

Start with a point (guess)

Repeat
Determine a descent direction
Choose a step
Update

Until stopping criterion is satisfied
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Gradient descent: algorithm

Start with a point (guess)

Repeat
Determine a descent direction
Choose a step
Update

Until stopping criterion is satisfied

Direction: downhill
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Gradient descent: algorithm

Start with a point (guess)

Repeat
Determine a descent direction
Choose a step
Update

Until stopping criterion is satisfied
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Gradient descent: algorithm

Start with a point (guess)

Repeat
Determine a descent direction
Choose a step
Update

Until stopping criterion is satisfied
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Gradient descent: algorithm

Start with a point (guess)

Repeat
Determine a descent direction
Choose a step
Update

Until stopping criterion is satisfied
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Stop when “close”
from minimum

Gradient descent: algorithm

Start with a point (guess)

Repeat
Determine a descent direction
Choose a step
Update

Until stopping criterion is satisfied
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guess =X

direction = -f'(x)
step=h>0
x:=x—hf'(x)
f'(x)~0




Example of 2D gradient: pic of the MATLAB demo

lllustration of the gradient in 2D
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Example of 2D gradient: pic of the MATLAB demo

lllustration of the gradient in 2D

Example of 2D gradient: pic of the MATLAB demo

Definition of the gradient in 2D

of(x,y)

Viy) =1 o/liy

dy

This is just a genaralization of the derivative in two dimensions.
This can be generalized to any dimension.




Example of 2D gradient: pic of the MATLAB demo

lllustration of the gradient in 2D

Example of 2D gradient: pic of the MATLAB demo

Gradient descent works in 2D




Generalization to multiple dimensions

Start with a point (guess)

Repeat
Determine a descent direction
Choose a step
Update

Until stopping criterion is satisfied
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Generalization to multiple dimensions

Start with a point (guess)

Repeat
Determine a descent direction
Choose a step
Update

Until stopping criterion is satisfied
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Generalization to multiple dimensions

Start with a point (guess)

Repeat
Determine a descent direction
Choose a step
Update

Until stopping criterion is satisfied
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Generalization to multiple dimensions

Start with a point (guess)

Repeat
Determine a descent direction
Choose a step
Update

Until stopping criterion is satisfied
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Generalization to multiple dimensions

Start with a point (guess)

Repeat
Determine a descent direction
Choose a step
Update

Until stopping criterion is satisfied

Stop when “close”
from minimum

Generalization to multiple dimensions

Start with a point (guess) guess =X
Repeat
Determine a descent direction direction = -f(x)
Choose a step step=h>0
Update x:=x—h Vf'(x)
Until stopping criterion is satisfied V' (x)~0
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Multiple dimensions

Everything that you have seen with derivatives can be generalized
with the gradient.

For the descent method, f'(x) can be replaced by
of (xy)
(o _ ox
Vf(l ’ .l/) — df(x,y)

dy

In two dimensions, and by

Vfi(ry,xo, - x5, ,xN) =

in N dimensions.

Example of 2D gradient: MATLAB demo

The cost to buy a portfolio is:
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If you want to minimize the price to buy your portfolio, you
need to compute the gradient of its price:
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Problem 1: choice of the step

When updating the current computation:
- small steps: inefficient
- large steps: potentially bad results
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Problem 1: choice of the step

When updating the current computation:
- small steps: inefficient
- large steps: potentially bad results
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Problem 2: « ping pong effect »
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[S. Boyd, L. Vandenberghe, Convex Convex Optimization lect. Notes, Stanford Univ. 2004 ]

Problem 2: « ping pong effect »

f(r1.20) = 13T =01 | jwy=3wy—0.1 4 0.1

backtracking line search exact line search

[S. Boyd, L. Vandenberghe, Convex Convex Optimization lect. Notes, Stanford Univ. 2004 ]
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Problem 2: (other norm dependent issues)

x1+3x9—0.] x1—3x9—0.] —x1—0.]
f(1171,£172):€71+3q2 Ol_+_€71 3xo )l—l—ff r1—0.1

[S. Boyd, L. Vandenberghe, Convex Convex Optimization lect. Notes, Stanford Univ. 2004 ]

Problem 3: stopping criterion

Intuitive criterion:
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In multiple dimensions:

IVl <e

Or equivalently
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Rarely used in practice.
More about this in EE227A (convex optimization, Prof. L. El Ghaoui).




Fixes

Several methods exist to address this problem
- Line search methods, in particular

- Backtracking line search

- Exact line search

- Normalized steepest descent

- Newton steps

Fundamental problem of the method: local minima

Local minima: pic of the MATLAB demo
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converge to a local minimum
15+ -

ol ‘\ a

5 10 15 20 25 30 35 40 45 50

20}

17



Local minima: pic of the MATLAB demo

View of the algorithm is « myopic »
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