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Motivation

• Modeling the evolution 
of traffic state

• Given observations, 
estimating traffic state

• Given the current 

This is  a complex system

• Given the current 
state, forecasting the 
traffic state

• Routing vehicles on the 
highway network 



Routing example

• Finding the variance minimizing path from 1 to 3 where:    

and

• A priori case: no observations

•The variance of path X-Y is:
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•The variance of path X-Z is:

• Adaptive case: travel time on X is known

•The expected variance on Y is:

•The expected variance on Z is:



Modeling dependencies  of traffic flow

• The traffic state at a given location is determined by the previous traffic 
states at nearby locations .

Xt,i-1 Xt,i Xt,i+1

Xt+1,i

Assume that the state in cell Xt+1,i only 

depends on the state of cells Xt,i-1, Xt,i and 

Xt,i+1.

• The state at each location is generally not known with certainty, so we will 
treat them as random variables

P(Xt+1,i = xt+1,i) is a function of the values Xt,i-1, Xt,i and Xt,i+1

• These random variables are defined by a joint  probability density function



Structure learning problem

• Objective : Given a dataset find the graphical model 
structure which best describes the generative 
distribution

• Method:  Find the maximum likelihood parameters 
and posterior probability for each structure and search 
over the structure space to find the optimal structure

space

time

•The posterior contains an integral that is hard to compute, so we 
approximate it using the following scoring function:

• Bayesian Information Criterion (BIC)

• Where                 are respectively the data, graph structure and 
parameters, d is the number of edges in the graph and m is the number 
of data points per node.



Experiment Setting

• Model the highway network with a 2 dimensional graphical model

• Each node is a random variable representing mean traffic speed over the 
corresponding time-space cell

• Example:
x

Traffic

500 m

• Assumptions: 

• Distribution is jointly Gaussian

• Dependencies are strictly forward in time

t

15 sec



Method Flow Chart for forecast

Structure and 

parameters learning

Historical data

Model assumptions:

•Jointly Gaussian

•Independent contemporary 

states given their parents

Graph structure, parameters with 

maximal score (e.g. BIC score ~ MLE) maximal score (e.g. BIC score ~ MLE) 

on historical data

Forecast
Current data

Posterior forecast given model 

assumptions, current data, graph 

structure, parameters



Forecast experiment

10miles
Northbound

•Traffic estimates from 
the Mobile Millennium 
system

•Real time estimates 
every 30 sec for 400 m 
discretization cells over 
the whole Bay Area 
highway networkhighway network

•The structure is learnt 
on one day of data (Feb 
1st, 2010)

•The forecast is made 
for Feb 2nd, 2010



Experimental results

• 10 minutes forecast at the beginning of afternoon rush hour

• Structure selection allowed to consider 25 neighboring nodes from the 5 
previous time steps, time discretization is 10 minutes

•True value, forecast with training on previous day, forecast with training 
on morning rush hour

Velocity

Space (index)

Traffic



Limitations of the model

• We assumed that the distributions were jointly Gaussian, which restricts 
the model to learning linear relationships between the traffic states, traffic 
flow dependencies are not linear!

•Consider the discretization of the LWR PDE using the Godunov scheme

ρ ρ ρ

q(B,C)q(A,B)
q(ρ)

qM

ρt+1,B = ρt,B + T/x (qt,B – qt,A)

ρt,A

ρt+1,B

ρt,B ρt,C

ρρcritical

free-flow congestion



• The state of node B at time t+1 has a non-linear relationship with the 
state of nodes A,B and C at time t, but the relationship is linear if we 
know whether A, B and C are in free-flow or congestion at time t

• Assuming that there is at most one wave propagating in the network, 
there are eight possible linear equations to consider for ρt+1,B

• Now we reformulate the maximum likelihood function for each cell as 

Improving the model

• Now we reformulate the maximum likelihood function for each cell as 
follows:

where for each data point we now pick from eight different joint 
Gaussians  based on the selection variable S

Xt,A Xt,B Xt,C

Xt+1,B

St+1,C



Closing remarks

• We are currently working on parameter learning for just the complete 
free flow and complete congestion cases. This will be extended to cover 
all eight modes.

• The state space explodes as we increase the number of dependent 
cells. Therefore, a more general formulation is required when extending 
this to structure learning.

• The mode is currently determined by looking at the states of the parent 
cells. However, in certain cases we might not know what the actual state 
is. Such cases will require a mixture model which makes the inference 
problem harder.


