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Abstract. The LASSO is a widely used shrinkage and selection method for

linear regression. We propose a generalization of the LASSO in which the

l1 penalty is applied on a linear transformation of the regression parameters,
allowing to input prior information on the structure of the problem and to

improve interpretability of the results. We also study time varying system with

an l1-penalty on the variations of the state, leading to estimates that exhibit
few “jumps”. We propose a homotopy algorithm that updates the solution

as additional measurements are available. The algorithm takes advantage of

the sparsity of the solution for computational efficiency and is promising for
mining large datasets. The algorithm is implemented on three experimental

data sets representing applications to traffic estimation from sparsely sampled

probe vehicles, flow estimation in tidal channels and text analysis of on-line
news.

Least-squares regression with l1-norm regularization is known as the LASSO
algorithm [37]. It has generated significant interest in the statistics [37, 10], signal
processing [3, 6, 16] and machine learning [20, 33] communities, in particular for
estimation problems. Adding a l1-penalty usually leads to sparse solutions, which is
a desirable property used to achieve model selection, data compression, or to obtain
interpretable results.

2010 Mathematics Subject Classification. Primary: 49M30, 68W27; Secondary: 68U99.
Key words and phrases. Online estimation, LASSO, convex optimization, algorithm.

503

http://dx.doi.org/10.3934/dcdss.2014.7.503


504 A. HOFLEITNER, T. RABBANI, M. RAFIEE, L. EL GHAOUI AND A. BAYEN

The LASSO can be solved using interior-point methods [25], iterative threshold-
ing algorithms [9, 15], feature-sign search [27], bound optimization methods [13],
incremental methods [5] or gradient projection algorithms [14]. Homotopy algo-
rithms compute the regularization path [34, 12]. They are particularly efficient
when the solution is very sparse [11, 31]. Homotopy algorithms are also powerful to
compute online updates [36, 17] when the training examples are obtained sequen-
tially (one at a time). This method is particularly efficient when the support of the
LASSO solutions at the particular penalty parameter is similar.

At estimation step n, a set In of training examples or observations (yi, ai) ∈
R × Rm, i ∈ In is available. The article presents how to fit a linear model to
estimate the response yi as a function of x ∈ Rm. A linear function of the solution,
K1x, with K1 ∈ Rk×m, is expected to be sparse. The matrix K1 represents inherent
structure of the problem or trend filtering [2, 24]. To achieve this property, an l1
penalty on K1x is added to the least-square estimation problem. The resulting
optimization problem is given by:

minimizex∈Rm

1

2

∑
i∈In

(aTi x− yi)2 + µn||K1x||1 (1)

For other applications, we may be interested in sparse changes between the state
vector and a reference vector xn. To achieve this property, an l1 penalty on the
difference between the state vector x and the reference x is added to the least-square
estimation problem. The estimation problem of xn is defined as:

minimizex∈Rm

1

2

∑
i∈In

(aTi x− yi)2 + µn||x− x̄n||1. (2)

The reference x̄n may change after each estimation. In particular, the model can en-
courage sparse temporal variations to regularize the estimates when measurements
are noisy and the dynamics of the system is slow compared to the sampling rate.
This property is achieved by choosing x̄n = xn−1.

In applications, it is useful to add additional regularization to the optimization
problems (1) and (2). In particular, for the solution of the least-squares estimation
problem to be unique, the matrix ATA should be non singular, which is not always
the case for some applications. Moreover, the regularization term µn||K1x||1 or
µn||x− x̄n||1 is on the sparse structure of the estimate but there is no regularization
to maintain the state estimates close to an a priori value. As done in the Elastic
Net [38], the article investigates the addition of an l2 regularization term with
weighting parameter λ to Equations (1) and (2) to improve estimation capabilities.
This additional term leverages prior information x̂ on the value of the state x (from
historical data for example) to improve the estimation capabilities.

The regularization parameter µn may depend on the number of measurements
|In|. Example choices are µn = |In|µ0 as in [17] or µn =

√
|In|µ0 as in [26]. The

parameter µ0 is chosen via cross-validation, as a trade-off between the structure
imposed by the regularization, and the fit to the data.

The article presents a general data-driven online estimation algorithm which
extends existing work [17, 22] in sparse modeling and estimation. In particular,
the article provides online updates of the solution of the LASSO with a l1 penalty
on the difference between the estimate and a reference point. The reference point
may change at each update. This last property allows to perform estimation in
dynamical system with estimates which exhibit few “jumps” over time. In this



ESTIMATION APPLICATION OF AN ONLINE LASSO HOMOTOPY ALGORITHM 505

case, the penalty is between successive estimate and the reference is updated at
each estimation. The article also presents numerical applications which illustrate
the generality of the algorithm for estimation and learning.

The article is organized as follows. Section 1 reviews the optimality conditions
of the LASSO algorithm and introduces an existing homotopy algorithm [17] to
solve the LASSO problem recursively. Section 2 recalls the results of [22] to update
the solution of the LASSO to add (or remove) p observations. In Section 3, the
algorithm is adapted to produce estimation with the l1 penalty imposed between
the estimate and a reference point which can vary after each estimation. Section 4
illustrates the potential of the algorithm for estimation and learning applications:
traffic estimation from sparsely sampled probe vehicles, flow estimation in tidal
channels and text analysis of on-line news.

1. The LASSO problem. The LASSO problem [37] is defined as follows:

minimizex∈Rm

1

2

n∑
i=1

(aTi x− yi)2 + µn||x||1. (3)

This section summarizes previous work [12, 17] which uses the optimality conditions
to solve this problem. The objective function of (3) is convex and non-smooth since
the l1-norm is not differentiable when there exists an index i such that the ith

element of x (denoted xi) equals zero. There is a global minimum at x if and
only if the subdifferential of the objective function at x contains the 0-vector. The
subdifferential of the l1-norm at x is the following set

∂‖x‖1 =

{
v ∈ Rm :

{
vi = sgn(xi) if |xi| > 0
vi ∈ [−1, 1] if xi = 0

}}
,

where sgn(·) is the sign function. Let A ∈ R|In|×m be the matrix whose ith row is
equal to aTi , and let y = (yi)

T
i∈In be the vector of response variables. The optimality

conditions for (3) are given by

AT (Ax− y) + µnv = 0, v ∈ ∂‖x‖1.

Definition 1.1 (Active set). The active set a is the set of indices representing
non-zero elements of x. The matrix Aa is a selection of the columns of A in a. The
non-zero coordinates of x are in xa. The index ai references the ith coordinate of
the active set. Since v ∈ ∂‖x‖1, vai = sgn(xai).

Definition 1.2 (Non active set). The non active set na is the set of indices rep-
resenting zero elements of x. The matrix Ana is a selection of the columns of A in
na. It follows that xna is the 0-vector. The index nai references the ith coordinate
of the non active set. Since v ∈ ∂‖x‖1, vnai

∈ [−1, 1].

If the solution is unique, AT
aAa is non-singular1. The optimality conditions read

xa = (AT
aAa)−1(AT

a y − µnva)
−µnvna = AT

na(Aaxa − y)
.

Given the active set and the signs of the coefficients of the solution (and thus
the vector va), the solution x is computed in closed form. When observations come

1The Elastic Net [38] ensures the uniqueness of the solution without requiring ATA to be
non-singular.
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sequentially, a homotopy algorithm [17] solves the LASSO problem recursively by
considering the following problem:

x(t, µ) = arg min
x∈Rm

1

2

∥∥∥∥∥∥
(

A
taTn+1

)
x−

(
y

tyn+1

)∥∥∥∥∥∥
2

2

+ µ ‖x‖1 .

Adding (resp. removing) a point is equivalent to computing the homotopy path
from t = 0 to t = 1 (resp. from t = 1 to t = 0). Varying the regularization
parameter is equivalent to computing the path from µ = µn to µ = µn+1.

2. Recursive LASSO with p new observations, l2 and linear l1 regular-
izations. The section recalls the results presented in [22]. It studies a least square
estimation problem, for which a linear transform of the solution, K1x forK1 ∈ Rk×m

is sparse. The estimate is updated as p new observations (ynew, Anew) ∈ Rp×Rp×m

become available2. The algorithm updates the solution online without having to
fully recompute it at each estimation step. Let x̂ represent a priori information on
the solution, which is used as additional regularization when the matrix A is not
full column rank or is ill conditioned (see the Elastic Net [38] for details). The ma-
trix K1 is assumed to be full row rank, which is the case for numerous applications
including total variation regularization. Each row of K1 corresponds to an infor-
mation on the sparsity structure of the solution. Let K2 ∈ Rm−k×m be such that
K = (KT

1 KT
2 )T is non singular. For example, K2 is such that the columns of KT

2

form a basis for the null-space of K1. The non-singular matrix K defines a change
of variable z = Kx. It is also convenient to define new data matrices B = AK−1,
Bnew = AnewK

−1 and ẑ = Kx̂. The section develops an algorithm which updates
the solution z of

minimize
z∈Rm

1

2

∥∥∥∥∥
(

B
tBnew

)
z −

(
y

tynew

)∥∥∥∥∥
2

2

+µ||(Ik 0k×m−k) z||1 +
λ

2
||z− ẑ||22. (4)

(i) as t varies to add (or remove) observations and (ii) as µ varies to change the
weight of the l1 regularization. The l1 penalization is on the first k coordinates of
z, denoted regularized indices. The last m− k indices are in the active set and are
referred to as the non-regularized indices.

2.1. Add p observations. At t = 0, the solution z(0, µn) is known, and so are the
active set and the signs of the regularized indices of z. Let vai

be the sign of zai
(0) for

the regularized indices and define vai
= 0 for the non-regularized indices. The data

matrices with the new observations are indicated with a tilde: B̃ = (BTBnewT )T

and ỹ = (yT ynewT )T . The optimality conditions of (4) read

B̃T
a (B̃aza(t)− ỹ) + (t2 − 1)BnewT

a (Bnew
a za(t)− ynew) + µnva + λ(za(t)− ẑa) = 0,

(5)

B̃T
na(B̃a za(t)− ỹ) + (t2 − 1)BnewT

na (Bnew
a za(t)− ynew) + µnwna(t)− λẑna = 0.

(6)

where wna(t) is a vector with coordinates in [−1, 1]. Notice that, at t = 0, za(·) and
wna(·) are continuous in t. Let t∗ to be the largest t ∈ [0, 1] such that: (i) for all
t ∈ [0, t∗), for all i in the regularized indices, sgn(za(t)) = sgn(za(0)) and (ii) for all

2The solution can also be updated when some of the observations become obsolete.
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t ∈ [0, t∗), for all i in the non-active set, |wnai(t)| < 1. On this interval, vai is the
sign of zai(t) and Equations (5-6) are valid.

The matrix Q = (B̃T
a B̃a + λI|a|)

−1 is computed from its previous value without
the p new observations using the Woodbury matrix identity (p rank update). Let

z̃a and α be defined as z̃a = Q(B̃T
a ỹ + λẑa − µva) and α = t2 − 1. The singular

value decomposition of Bnew
a QBnewT

a is written Bnew
a QBnewT

a = ΓT ΣΓ. The rotated

data is defined by B
new

= ΓBnew and ynew = Γynew. Similarly, the rotated error is

E = B
new

a z̃a − ynew and U is defined as U = QB
newT

a .

Proposition 1 (Solution path to add p observations [22]). For t ∈ [0, t∗), za(·) is
continuous in t and given by

za(t) = z̃a − (t2 − 1)U
(
I + (t2 − 1)Σ

)−1

E. (7)

Let t0 be the smallest3 t ∈ [0, 1] such that a coordinate of za(t) equals zero, t+ (resp.
t−) the smallest3 t ∈ [0, 1] which sets a coordinate of wna(t) to 1 (resp. to -1). The
transition point t∗ is defined as t∗ = min(t0, t+, t−) and can be computed by solving
p-degree polynomial equations on a bounded interval.

Proof. See [22]. The computation of t0, t+ and t− is given by Lemma 1 and 2.

Let Ui,j denote the element of U on line i and column j and by Ui the ith line of

U , σi is the ith singular value of Σ and Ei is the ith coordinate of E.

Lemma 1 (Computation of t0 [22]). Let t0ai
be the smallest value of t ∈ [0, 1]

which sets the ith coordinate of za (in the regularized indices) to zero. It is given by
t0ai

=
√
α0
ai

+ 1 where α0
ai

is the smallest real valued solution in the interval [-1,0]
of the following p degree polynomial equation in α:

0 = z̃ai

p∏
l=1

(1 + ασl)− α
p∑

j=1

Ui,jĒj

∏
l 6=j

(1 + ασl).

If the polynomial equation does not have real valued solutions in [-1,0], set t0ai
= 1.

It follows that t0 is the smallest value of t0ai
in the interval [0, 1].

Proof. See [22].

Let ci denote the ith column of B̃na, di denote the ith row of B
new

na and di,j denote

the element of B
new

na on the ith row and jth column. Let fi be the ith element of

B̃T
naẽ− λẑna and let ẽ be defined as ẽ = B̃az̃a − ỹ.

Lemma 2 (Computation of t+ and t−). The smallest value of t that sets the ith

coordinate of wna to 1 (resp. to -1) is denoted t+nai
(resp. t−nai

). It is given by

t+nai
=
√
α+
nai + 1 (resp. t−nai

=
√
α−nai + 1) where α+

nai
(resp. α+

nai
) is the smallest

real valued solution in the interval [-1,0] of the p degree polynomial equation in α+

(resp. in α−):

(−µ− fi)
p∏

l=1

(1 + α+σl) = α+

p∑
j=1

Ej(di,j − cTi B̃aUj)
∏
l 6=j

(1 + α+σl),

(µ− fi)
p∏

l=1

(1 + α−σl) = α−
p∑

j=1

Ej(di,j − cTi B̃aUj)
∏
l 6=j

(1 + α−σl).

3 If no such t exists, set t0 (resp. t+ and t−) to 1.
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If the polynomial equation does not have real valued solutions in [-1,0], set t+nai
= 1

(resp. t−nai
= 1). It follows that t+ (resp. t−) is the smallest value of t+nai

(resp.
t−nai

) in the interval [0, 1].

Proof. See [22].

Lemma 3 (Update of the active set). When t reaches a transition point, the active
set and signs of the regularized indices are updated as follows: (i) if t∗ = t0, remove
the corresponding coordinate from the active set, (ii) if t∗ = t+ (resp. t∗ = t−), add
the coordinate to the active set and set its sign to positive (resp. to negative).

Proof. See [22].

Algorithm 1 updates the solution when t varies from t = 0 to t = 1. The same
algorithm is relevant to remove p observations by finding the transition points as t
decreases from 1 to 0.

Algorithm 1 Update of the solution to add p observations

Initialize the active set a, non active set na and signs of the regularized indices
va.
t = 0
while t < 1 do

Compute t0, t+ and t− as the smallest value of t0a,i, t
+
na,i and t−na,i in (t, 1]

(Lemma 1-2).
t = min(t0, t+, t−)
if t > 1 then

break;
else if t = t0 then

Add the corresponding index to na and remove it from a and va.
else if t = t+ then

Add the corresponding index to a and remove it from na, set its sign to
positive and add it to va.

else
Add the corresponding index to a and remove it from na, set its sign to
negative and add it to va

end if
Update the matrix Q to account for the updated active set (rank 1 update).

end while
Compute the solution at t = 1.

2.2. Update the regularization parameter. The computation of the regular-
ization path is detailed in [12] and in [38] for the Elastic Net. As done in the
previous step of the algorithm (add p observations), it is necessary to define the
non-regularized indices and set vai

= 0 for these indices to solve (4). The end of
the section details how the algorithms developed in [12] and [38] are adapted to
solve (4).

At µ = µn, the solution z(0, µn) is known, and so are the active set, non active
set and signs of the coordinates of z which are in the active set. The optimality
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conditions read

BT
a (Baza(µ)− y) + µva(µ) + λ(za(µ)− ẑa) = 0, (8)

BT
na(Ba za(µ)− y) + µwna(µ)− λẑna = 0. (9)

where va(µ) is the partial derivative of the l1 norm for the indices in the set a
with entries vai

(µ) = sgn(zai
(µ)) for the regularized indices, vai

= 0 for the non
regularized indices and wna(µ) is a vector with coordinates in [−1, 1]. Let Q be
defined by Q = (BT

a Ba + λI|a|)
−1.

Proposition 2 (Linear dependence in µ). There exists a transition point µ∗ ∈
[µn, µn+1] such that the active set, non active set and signs of the regularized indices
of the solution remain constant for µ ∈ [µn, µ

∗). Let µ0 be the smallest4 µ ∈
[µn, µn+1] such that a coordinate of za(µ) equals zero, µ+ (resp. µ−) the smallest4

µ ∈ [µn, µn+1] which sets a coordinate of wna(µ) to 1 (resp. to -1). The transition
point µ∗ is defined as µ∗ = min(µ0, µ+, µ−). On the interval [µn, µ

∗), vai denotes
the (constant) sign of zai

(µ) for the regularized indices. The estimate za(µ) is affine
in µ and given by

za(µ) = Q(BT
a y + λẑa)− µQva. (10)

Proof. See [22].

As long as the active set and signs of the regularized indices remain constant,
the expression of za(µ) is given by (10).

Lemma 4 (Expression of µ0). Let µ0
ai

denote the value of µ that sets the ith coor-
dinate of za (in the regularized indices) to zero. Let µ+

nai
(resp. µ−nai

) denote the

value of µ that sets the ith coordinate of wna to 1 (resp. to -1). We have

µ0
ai

=[Q(BT
a y + λẑa)]i/[Qva]i

µ+
nai

=

[
BT

na

(
(BaQB

T
a − In)y

)
+ λ(BT

naBaQẑa − ẑna)
]
i

−1 + [BT
naBaQva]i

,

µ−nai
=

[
BT

na

(
(BaQB

T
a − Im)y

)
+ λ(BT

naBaQẑa − ẑna)
]
i

1 + [BT
naBaQva]i

,

where [V ]i denotes the ith coordinate of generic vector V . The first possible tran-
sition point µ0 (resp. µ+ and µ−) is the smallest value of µ0

ai
(resp. µ+

nai
and

µ−nai
) in the interval [µn, µn+1], or µn+1 if, for all indices, µ0

ai
/∈ [µn, µn+1] (resp.

µ+
nai

/∈ [µn, µn+1] and µ−nai
/∈ [µn, µn+1].

Proof. See [22].

Leveraging Proposition 2 and Lemma 4, Algorithm 2 updates the solution z
when µ varies from µ = µn to µ = µn+1. Note that the derivations assume that
µn ≤ µn+1. The same algorithm is relevant if µn ≥ µn+1 by finding the transition
point as the regularization parameter decreases (instead of increases).

Remark 1 (Leveraging the sparsity structure). The matrix Q is efficiently updated
when the active or non active set change or when observations are added/removed
using low rank updates. The numerical implementation updates the Cholesky fac-
torization of Q which provides better numerical stability to the algorithm than
updating Q directly [19].

4 If no such µ exists, set µ0 (resp. µ+ and µ−) to µn+1.
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Algorithm 2 Update of the solution as µ increases from µn to µn+1

Initialize the active set a, non active set na and sign of the regularized indices
va.
µ = µn

while µ < µn+1 do
Compute µ0, µ+ and µ− as the smallest values of µ0

a,i, µ
+
na,i and µ−na,i in

(µ, µn+1] (Lemma 4).
µ = min(µ0, µ+, µ−)
if µ > µn+1 then

break;
else if µ = µ0 then

Add the corresponding index to na and remove it from a and va.
else if µ = µ+ then

Add the corresponding index to a and remove it from na, set its sign to
positive and add it to va.

else
Add the corresponding index to a and remove it from na, set its sign to
negative and add it to va

end if
Update the matrix Q to account for the added (or removed) index in the active
set (rank 1 update).

end while
Compute the solution at µ = µn+1

Remark 2 (Complexity). The complexity of the algorithm depends on the number
of transitions. The theoretical bound on the number of transitions is 3k, where k
is the number of rows of K1. Indeed, each of the first k coordinates of z can
be strictly positive, strictly negative or in the non active set. In practice, it is
much smaller because successive estimates are expected to have a similar support.
Experience with data suggests that the number of transition is linear in the problem
size [35]. A theoretical analysis of the number of transitions is performed in [32].
The transition points are computed according to Lemma 1 and 2 when adding (or
removing) observations and according to Lemma 4 when updating the regularization
parameter µ.

3. Recursive LASSO with varying reference parameter. This section con-
siders the linear regression problem introduced in (2). The problem encourages the
vector xn − x̄n to be sparse. The reference x̄n may change at each iteration. For
example, the choice x̄n = xn−1 leads to sparse variations of the estimate. The
estimate is updated when observations are added (or removed), when the l1 regu-
larization parameter changes or when the reference parameter x̄n changes. In order
to update the solution from previous estimates, the algorithm computes a homo-
topy regularization path, as done in Section 2. After computing the solution xn to
Equation (2), p new observations (ynew, Anew) ∈ Rp × Rp×m, a new penalty coef-
ficient µn+1 and a new reference parameter x̄n+1 (e.g. x̄n+1 = xn) are received 5.
As for Section 2, an additional l2 penalization is added to the objective function of

5Note that not all parameters are required to change at each iteration.
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the LASSO to improve the estimation capabilities [38]. The homotopy algorithm is
derived by introducing the following optimization problem:

x(t, u, µ) = arg min
x∈Rm

1

2

∥∥∥∥∥
(

A
tAnew

)
x−

(
y

tynew

)∥∥∥∥∥
2

2

+µ

∥∥∥∥x− ((1− u)x̄n + ux̄n+1
)∥∥∥∥

1

+
λ

2
||x− x̂||22.

(11)

The definition of Equation (11) leads to x(0, 0, µn) = xn and x(1, 1, µn+1) =
xn+1. The section develops an algorithm that computes a path from xn to xn+1 in
three steps: (i) vary µ from µn to µn+1 to change the weight of the l1 regularization,
(ii) vary t from 0 to 1 to add observations and (iii) vary u from 0 to 1 to update
the reference parameter. Note that the different steps of the algorithm (variation
of µ, t and u) do not need to be performed in a pre-specified order.

The change of the weight of the l1 regularization and the variation of t from 0 to
1 are readily adapted from the computations of Section 2. The section succinctly
presents the required changes for these steps and details the algorithm to update
the reference parameter from x̄n to x̄n+1 (increase u from 0 to 1).

3.1. Update the regularization parameter and add observations. During
the update of the regularization parameter and the addition of observations, the
parameter u remains constant. Assume without loss of generality that the variation
of u is chosen to be performed last and thus u = 0 as the regularization parameter
is updated and the observations added. If the variation of u has started before these
steps occur, replace x̄n by (1− u)x̄n + ux̄n+1 in the following derivations.

To leverage the algorithm developed in Section 2, it is convenient to introduce
the following change of variables: z = x − x̄n, yr = y − Ax̄n, ynew

r = y − Anewx̄n

and ẑ = x̂ − x̄n. For notation consistency, the matrices A and Anew are denoted
B and Bnew respectively (same as for Section 2 with K being the identity matrix).
With this notation, updating the regularization parameter (vary µ) and adding new
observations (vary t) correspond to updating the solution of

minimize
z∈Rm

1

2

∥∥∥∥∥
(

B
tBnew

)
z −

(
yr

tynew
r

)∥∥∥∥∥
2

2

+ µ||Imz||1 + λ||z − ẑ||22, (12)

as µ varies from µn to µn+1 and t from 0 to 1.

3.2. Update the reference parameter. The last step of the algorithm updates
the reference parameter from x̄n to x̄n+1. Let xr(u) be defined by xr(u) = x− [(1−
u)x̄n + ux̄n+1]. It represents the vector which is expected to be sparse because of
the l1-norm penalization. As done in the previous section, assume without loss of
generality that the variation of u is chosen to be performed last. At this step of the
algorithm, the regularization parameter has been updated and the new observations
have been added. In particular, since the observations have been added, the matrix
A and the vector y contain the recently added data.

Define yr = y − Ax̄n, ∆x = x̄n − x̄n+1 and Q = (AT
aAa + λI)−1. Let cj denote

the vector defined by cj = AT
j yr + λ[x̂− x̄n]j , where j represents the set of indices

a or na. With this notation, xr(u) is the minimizer of the optimization problem

minimize
xr∈Rm

1

2
||Axr − yr − u∆x||22 + µn+1||xr||1 +

λ

2
||xr − (x̂− x̄n)− u∆x||22.
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The optimality conditions read

(AT
aAa + λI)xr,a(u)− ca + µva + u

(
AT

a (A∆x) + λ(∆x)a

)
= 0, (13)

AT
naAaxr,a(u)− cna + µwna(u) + u

(
AT

na(A∆x) + λ(∆x)na

)
= 0. (14)

Proposition 3 (Linear dependence in u). There exists a transition point u∗ ∈ [0, 1]
such that the active set, non active set and signs of the regularized indices of the
solution remain constant for u ∈ [0, u∗). On this interval, vai is the (constant) sign
of xr,ai(u). The estimate xr,a(u) is affine in u and given by xr,a(u) = ξ + uχ, with
ξ = Q(ca − µva) and χ = Q

(
AT

a (A∆x) + λ(∆x)a
)
.

Proof. From the optimality conditions, it follows that the function u 7→ xr,a(u) is
affine as long as u 7→ va(u) is constant i.e. as long as the coordinates of u 7→ xr,a(u)
have constant signs and as long as the active set remains constant. Denote by u0

the smallest value of u ∈ [0, 1] such that a coordinate of xr,a(u) equals zero in
Equation (13). The signs of the entries of xr,a(u), and thus the value of va(u),
are constant on [0, u0]. The (constant) value of va(u) on this interval is denoted
va. The optimality condition given in Equation (14) also shows that u 7→ wna(u)
is continuous. A coordinate of the non-active set joins the active set when the
corresponding coordinate of u 7→ wna(u) reaches one in absolute value. Let u+

(resp. u−) be the smallest value of u ∈ [0, 1] such that a coordinate of wna(u)
equals 1 (resp. -1). The non-active set is constant on [0,min(u+, u−)]. The active
set and signs of the coordinates in the active set remain constant on the interval
[0, u∗] where u∗ = min(u?u+, u−).

Lemma 5 (Expression of u0). Let u0
ai

be the value of u that sets the ith coordinate

of xr,a(u) to zero. It is given by u0
ai

= −ξi/χi. The first possible transition point

u0 is the smallest value of u0
ai

in the interval [0, 1], or 1 if, for all i, u0
ai
3 [0, 1].

Proof. The proof is derived from the expression of xr,a(u) given by Equation (13)
for u ∈ [0, u∗].

Lemma 6 (Expression of u+ and u−). Let u+
nai

(resp. u+
nai

) be the value of u that

sets the ith coordinate of wna(u) to 1 (resp. -1), i.e. the value of u for which the
ith coordinate of xr,na enters the active set and becomes positive (resp. negative).
They are given by:

u+
nai

= −
AT

nai
Aaξ − cnai

+ µ

AT
nai

(Aaχ+A∆x−Ac(∆x)c) + λ(∆x)nai

,

u−nai
= −

AT
nai
Aaξ − cnai

− µ
AT

nai
(Aaχ+A∆x−Ac(∆x)c) + λ(∆x)nai

.

The first possible transition point u+ (resp. u−) is the smallest value of u+
nai

(resp.
u−nai

) in the interval [0, 1], or 1 if, for all i, u+
nai
3 [0, 1] (resp. u−nai

3 [0, 1]).

Proof. The proof is derived from the optimality condition given in Equation (14)
and the expression of xr,a(u) for u ∈ [0, u∗].

A transition occurs for the smallest u∗ ∈ [0, 1] such that one component of xr,na
enters the active set or one component of xr,a enters the non-active set. At u = u∗,
update the active and non active sets and search for the next transition point until
u = 1 and the update of the reference parameter is completed.
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Figure 1. Example paths of three probe vehicles on a network. The network

has eleven links. The path of a probe is represented as a vector ai ∈ [0, 1]11

where the jth coordinate of ai represent the fraction of link j traveled by the

probe. The path represented with a solid line is represented with a sparse

vector with non zero coordinates 1, 6 and 9, respectively equal to 0.4, 0.7 and
1 considering that the probe traveled 40% of link 1 and 70% of link 6. The

vector representing the dashed path has non zero coordinates 2, 3, 8 and 11,

respectively equal to 0.3, 1, 0.8 and 1 considering that the probe traveled 30%
of link 2 and 80% of link 8.

4. Numerical results. The potential of the algorithm is illustrated through appli-
cations to traffic estimation from sparsely sampled probe vehicles, flow estimation
in tidal channels and text analysis of on-line news.

4.1. Traffic estimation from sparsely sampled probe vehicles. We first il-
lustrate the algorithm for arterial traffic estimation. At the time when this article
is written, traffic data on arterial networks is mainly provided from probe vehicles
sending their location at a given sampling frequency (common sampling frequen-
cies are around 1 minute). The proportion of sampled vehicles (penetration rate)
rarely exceeds a few percent of the vehicles traveling on the network. Moreover,
traffic signals cause important variation on the travel time experienced on a link of
the network within very short periods of time (depending on whether the vehicle
stopped at the signal or not), while the actual changes in traffic conditions have
slower dynamics. The estimate xn represents the average travel time on each link
of the network at time tn. To filter the travel time fluctuations due to traffic lights
and detect when the level of congestion changes, we are interested in sparse vari-
ations of the travel time on each link. The estimate xn+1 is computed by solving
equation (11) with x̄n = xn−1. The algorithm is initialized using a previous esti-
mate of the mean travel times given by least-squares regression. A historical mean
value of travel times x̂ is used to add a l2 regularization term ||x − x̂||. At each
estimation time, the regularization parameter is updated (from |In|µ0 to |In+1|µ0),
the new data is added and the reference parameter is updated (from x̄n = xn−1 to
x̄n+1 = xn). We use data provided by a fleet of 500 probe vehicles which report
their location every minute, representative of the data available in the Mobile Mil-
lennium system [4]. The estimation is performed in a subnetwork of San Francisco,
CA with more than 800 links.

The duration between two successive location reports ξ1 and ξ2 is an observation
of the travel time yi on the path from ξ1 to ξ2. After using the map-matching and
path-inference algorithm to reconstruct the path of each vehicle [23], each trajectory
(path) is converted in a vector ai ∈ [0, 1]m, where m is the number of links in the
network. The jth coordinate of ai, denoted ai,j , is the fraction of the link traveled
by the probe vehicle. It is computed as the distance traveled on the link divided by
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Figure 2. Variation of the error metrics in function of the regularization
parameters for the l1 and l2 penalization when encouraging sparsity on the

temporal variations of traffic conditions. Both the l1 and l2 regularizations im-

prove the estimation accuracy and the regularization parameters can be chosen
optimally. The three top figures represent the effect of the l1 regularization for

the estimation accuracy. The three bottom figures show the importance of the

additional l2 regularization introduced in Section 2 for the robustness of the
estimation.

the length of the link6. In particular, ai,j = 0 if the vehicle did not travel on link j
and ai,j = 1 if the vehicle fully traversed link j (see Figure 1).

The performance of the model is assessed using cross-validation, randomly split-
ting the observations sent by the probe vehicles between a training set and a valida-
tion set. After learning the travel time estimates on the training set, the validation
set is used to compare the estimates to the travel time observations. The perfor-
mance of the model is compared with a baseline model, which uses the historical
value of the link travel times x̂ as the estimate of the state. Three metrics quantify
the quality of the estimation: the root mean squared error (RMSE), the mean abso-
lute error (MAE) and the mean percentage error (MPE)7. Note that the variability
of arterial travel times (due to traffic signals, pedestians, etc.) leads to important
fluctuations of travel times. This inherent variability in the state of the system
makes the estimation model robust with sparse variations, but is also responsible
for relatively high values of the error metrics.

The numerical analysis assesses the performance of the model and quantifies the
effect of the regularization parameters λ and µ0. The first parameter penalizes
solutions which are far (in the l2-norm sense) from the historical estimate of travel
times x̂. The second parameter imposes sparsity on the variation of the estimate.
The choice of these parameters leads to a compromise between (i) fitting the data,
with risks of overfitting and lack of physical interpretation and (ii) putting too much
weight on the regularization and not estimating accurately the current state of the
system.

The results indicate that both the l1 and the l2 regularization (Figure 2) are
important to improve the estimation capabilities. For a wide range of parameters,

6The coefficients ai,j can account for the fact that travel time on a fraction of the link does

not vary proportionally with the distance traveled as vehicles are more likely to experience delays
close to signalized intersections as demonstrated in [21].

7RMSE =

√∑0
o=1(yo−ŷo)2

O
, MAE =

∑0
o=1 |yo−ŷo|

O
, MPE = 1

O

∑0
o=1

|yo−ŷo|
yo

.
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Figure 3. Qualitative evolution of the travel time estimates on different

links of the network. The l1 regularization provides more stable estimates that
represent the dynamics of traffic more accurately and increase the physical

interpretation. The left figure shows that the estimation with l2 regularization

leads to estimates that are not physically possible (negative travel times), while
the estimate with l1 regularization remains within feasible bounds. On all

figures, the l2 estimate is noisy while the additional l1 regularization remains

constant between each temporal transitions in traffic conditions.

the results are significantly better than the baseline model. The results also under-
line the importance of the additional l2 regularization to improve the robustness
of the algorithm. Figure 3 illustrates that in addition to improving the estimation
capabilities, the algorithm produces results that are easier to interpret. Arterial
traffic is highly variable and the variability often prevents the interpretation of the
results. This model estimates the trends in travel times on the links of the network,
while filtering the variability due to the signal dynamics.

4.2. Water flow estimation in tidal channels. In this section, we present an
application of the LASSO to estimate water flow (discharge) in tidal channels. More
precisely, having measurements of the flow at a given location in a channel with tidal
forcing, the goal is to estimate the flow at any desired location in the channel. We
first derive a transfer function representation of flow in the z domain using the
linearized Saint-Venant equations. The derived transfer function corresponds to a
multi-input multi-output (MIMO) system whose outputs are the available measure-
ments and the inputs are the flow and stage at the location where an estimate is
desired. The estimation problem is then posed as an input estimation problem.
After parametrizing the inputs using the dominant tidal modes, we use recursive
LASSO to estimate the unknown parameters, i.e. the mode amplitudes, recursively.
The l1-norm penalty that we consider in LASSO is the difference between the deci-
sion variables and the optimal solution at the previous time step. LASSO enforces
a sparse variation in the estimated parameters and it essentially updates the most
dominant modes at every time step.

While more traditional state estimation methods such as Kalman filtering could
be used to estimate the flow everywhere throughout the channel, the proposed
method is particularly useful when estimates of the flow are desired only at a specific
location along the channel.

4.2.1. Flow model: Linearized Saint-Venant equations. The Saint-Venant model is
among the most common models used for modeling the flow in open channels and
irrigation systems [7], [8]. In the one dimensional case, Saint-Venant equations are
two coupled first-order hyperbolic partial differential equations (PDE) derived from
conservation of mass and momentum. In cases where a linear model is needed,
these equations are linearized around a steady state (backwater curve) [30], [28].
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The linearized Saint-Venant equations are as follows:

T0(l)
∂h

∂t
+
∂q

∂l
= 0 (15)

∂q

∂t
+ 2V0(l)

∂q

∂l
− β0(l)q

+ (C0(l)2 − V0(l)2)T0(l)
∂h

∂l
− γ0(l)h = 0 (16)

with

γ0 = V 2
0

dT0

dl
+ gT0

(
κSf0 + Sb − (1 + 2F 2

0 )
dH0

dl

)
(17)

β0 =
2g

V0

(
F 2

0

dH0

dl
− Sf0

)
(18)

κ = 7/3− 4A0/(3T0P0)∂P0/∂H (19)

for (l, t) ∈ (0, L) × <+, where L is the river reach (m), Q0(l) is the steady-state
discharge or flow (m

3
/s), H0(l) is the steady-state stage or water-depth (m), V0(l) =

Q0(l)/A0(l) is the steady-state average velocity across cross section A0(l), q(l, t)
and h(l, t) are the deviation of flow and stage from the steady state, T (l) is the free
surface width (m), D = A/T is the hydraulic depth m, C0 =

√
gH0 is the wave

celerity, F0 = V0/C0 is the Froude number, Sf0(l) is the steady-state friction slope
(m/m), Sb is the bed slope (m/m), g is the gravitational acceleration (m/s2).

The friction slope is empirically modeled by the Manning-Strickler’s formula [29]:

Sf0 =
m2Q2

0P
4/3
0

A
10/3
0

(20)

with P0(l) being the wetted perimeter and m the Manning’s roughness coefficient
(sm−1/3).

4.2.2. Transfer function derivation. To obtain the open-loop transfer matrix of the
system, we follow the same method as introduced in [30]. Applying the z-transform
to equations (16) and (15) and rearranging terms, we obtain the following ordinary
differential equation

d

dl

(
qz(l)
hz(l)

)
= Az(l)

(
qz(l)
hz(l)

)
(21)

with

Az(l) =
0 −T0(l)( z−1

∆tz )

−( z−1
∆tz ) + β0(l)

T0(l)(C0(l)2 − V0(l)2)

2V0(l)T0(l)( z−1
∆tz ) + γ0(l)

T0(l)(C0(l)2 − V0(l)2)

 (22)

Defining ζ(l) = (qz(l), hz(l))T , the differential equation (21) has a solution of the
form

ζ(l) = Γz(l, 0)ζ0 (23)

For the case of uniform flow, Az does not depend on l and consequently the
solution to the differential equation can be calculated analytically and we will have

Γz(l, 0) = eAzl (24)
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To solve the differential equation for a general case, the method introduced in [30]
can be used. Using this method, the interval [0, l] is divided to smaller intervals 0 =
l0 < l1 < · · · < ln = l, lk+1 = lk +Lk over which the flow can be approximated by
uniform flow and after solving the differential equation over the small intervals, the
overall transfer matrix is obtained by multiplying the individual transfer matrices,
i.e. we can write

Γz(l, 0) =

n∏
k=1

eAzlk (25)

Approximating the matrix exponentials with the first m terms, we have

eAzlk = I + (Azlk) +
1

2!
(Azlk)2 + · · ·+ 1

m!
(Azlk)m (26)

This will result in a transfer matrix Γz(l, 0) whose entries are polynomials of
degree nm in z. This transfer matrix relates the upstream discharge and stage with
the discharge and stage at any location along the channel.

With the location at which estimates of discharge is desired and the locations of
the available measurements fixed, we can carry out the same procedure as above to
obtain transfer matrices between the desired discharge, qd, and each measurement,
yi.

4.2.3. Estimation set-up. In channels with tidal forcing, the flow and stage can be
considered as the superposition of the dominant modes of the tides and accordingly
qd and hd can be parameterized as follows

qd(k) = a0 +

Nmodes∑
i=1

aicos(wik) + bisin(wik) (27)

hd(k) = c0 +

Nmodes∑
i=1

cicos(wik) + disin(wik) (28)

where Nmodes is the number of dominant modes considered.
With the above parametrization of Qd and Hd, the estimation problem boils

down to estimation of the coefficients ai, bi, ci, di for i = 1, · · · , Nmodes.
Let us define

u(k) = (qd(k), hd(k))T (29)

xq = (a0, a1, · · · , aNmodes, b1, · · · , bNmodes)
T (30)

xh = (c0, c1, · · · , cNmodes, d1, · · · , dNmodes)
T (31)

C(k) = (1, cos(w1k), · · · , cos(wNmodes
k),

sin(w1k), · · · , sin(wNmodes
k)) (32)

and let y(k) = (y1(k), · · · , yp(k))T be the vector of deviation of p available mea-
surements from their corresponding steady state at time step k. We can now write

yi(k) =qd ∗ gqi + hd ∗ ghi + e(k)

=

mn∑
j=1

C(k − j)xqgqi (j) + C(k − j)xhghi (j) + e(k) (33)

where {gqi (j)}mn
j=1 and {ghi (j)}mn

j=1 are the impulse responses of Gq
i (z) and Gh

i (z),
respectively, and e(k) represents the error and ∗ represents convolution.
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Figure 4. Channel used for implementation.

We can write equation (33) in compact form as follows

yi(k) = Ai(k)x+ e(k) (34)

where

Ai(k) =

mn∑
j=1

[
C(k − j)gqi (j) C(k − j)ghi (j)

]
(35)

We formulate the estimation problem as the following optimization problem

x̂K = arg min
x
‖ Ax− y ‖22 +µK ‖ x− x̂K−1 ‖1 (36)

where

A = [A1(1)T , · · · , Ap(1)T , · · · , A1(K)T , · · · , Ap(K)T ]T (37)

y = (y1(1), · · · , yp(1), · · · , y1(K), · · · , yp(K))T (38)

The l1-norm penalty enforces the variations of the estimates to be sparse. In
other words, at each time step, the amplitudes corresponding to the more significant
modes are updated.

4.2.4. Implementation. We implement the method on a 23.4 km long channel in
Sacramento-San Joaquin Delta in northern California which is a complex network
of over 1150 km of tidally influenced channels and sloughs which cover 738,000
acres of land. The Delta is of great significance in the state of California as it is the
main source of drinking water for more than 20 million Californians and it is the
source of irrigation of most of California’s farmland. The channel chosen for the
implementation is located on the southern side of Sacramento as shown in Figure
4.

The Delta Simulation Model II (DSM2) is used as the flow model to obtain the
measurements of the flow used for performing the estimation and also to evaluate
the quality of the estimates. DSM2 is a one-dimensional mathematical model of the
flow in Sacramento-San Joaquin Delta which has been developed in the California
Department of Water Resources (DWR). DSM2 uses measurements from USGS
sensors as boundary conditions and provides discharge and stage at any location
within the Delta. More detailed information about DSM2 can be found in [1].

To perform the estimation, we run DSM2 based on historical data starting August
10, 2006 until August 12, 2006. We consider a case in which estimations of the
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Figure 6. The estimated and true flow at location 1.

discharge at location 1 is desired when the flow measurements at location 2 are
available. To obtain a parametrization of discharge and stage, we perform a spectral
analysis of the downstream flow and we use the first eight dominant modes to
parametrize the discharge. Figure 5 shows the power spectrum of the downstream
discharge for the month of July 2006. We perform the estimation for 200 time steps
with temporal step size of 15 minutes. Figure 6 shows the estimated flow at location
1 and the ground truth, i.e. the flow obtained from DSM2.

4.3. Statistical analysis of news. In this application [18], we use the LASSO
problem to find an image of a specific topic such as image of countries (Greece,
Japan, India etc.) in the news media. We represent the image by k uni-gram words
chosen from the dictionary of all used words (around 130, 000) as shown in figure
7. Usually k is between 10 and 50 (in figure 7 we take k = 14) so the list of words
can be manageable by a human reader. We obtain such list by solving a LASSO
problem of the form

min
x∈Rm

(1/2) ‖Ax− y‖22 + µ ‖x‖1 ,

where A and y are the problem data, and µ is the regularization parameter. Each
row of A corresponds to one document, like a headline and/or the first paragraph
of a news article. We index all the words in the dictionary from 1 to m, where m is
the total number of words used in the entire news corpus. We construct each row
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Figure 7. The plot shows the associations amongst countries using sparse

Principal Component Analysis (PCA). The size of the ball of each country
is proportional to the frequency of its occurrence in the text corpus. For

each country, (in this figure we show Greece) we compute the image words

using LASSO as shown in the top-right corner of the figure. The image words
are considered “signatures” or unique to the country of interest. The data

sources are taken from Headline news from wall Street Journal, Washington
Post, Associated Press, Financial Times, Reuters, BBC, USA Today, CNN,

CNBC, CBA, Vancouver Sun, and The Australian between October 01, 2011

and December 03, 2011. In total, there are 540,759 news feeds (observations)
and 133,512 words used (features).

of A by assigning the number of times the word appears or the words frequencies in
each document to the index of each vocabulary term. For example, if document i
mentions the word “China” 12 times, and the index of China in our dictionary is j,
then we assign the jth element of row i the value A(i, j) = 12. We construct the label
vector y based on the topic we are interested in finding its image. For example, if we
are interested in finding the words that are associated with Greece, we assign to the
ith element of y the frequency of the term Greece in document i, i.e. if Greece was
mentioned 5 times in the ith document then y(i) = 5. By this construction we have
A ∈ Rn×m, and y ∈ Rn. The LASSO problem can be thought of as a surrogate that
allows us to predict the frequency of our topic-word by using only the frequencies
of k other words in the entire dictionary. This LASSO regression tells us that our
topic-word can be associated to those k words, as these words are good predictors
of the appearance of our topic-word. The number k of words representing our topic
are obtained by controlling the regularization parameter, which in turn effects the
number of non-zeros in the solution. Once the LASSO problem is solved we display
the results as shown in the top-right corner of figure 7.

We use the on-line LASSO algorithm described in equation (2) with x̄n = 0 and
λ = 0 to update the LASSO solution when a news headline becomes available. We
typically assign µ = 0.3µmax with µmax = ||AT y||∞. Table 1 summarizes the LASSO
results for the countries United States, China, Egypt, Japan, Iraq, in addition to
Greece during the period between October and December of 2011. The list of words
for each country summarizes the issues that each country was dealing with during
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Country: United States China Egypt Japan Iraq Greece

word 1: iraq beijing mubarak tokyo iraqi athens
word 2: united chinese cairo fukushima troops greek
word 3: american yuan rulers tsunami baghdad bailout
word 4: obama trade brotherhood yen withdrawal referendum
word 5: china growth egyptian japanese kurdish papandreou
word 6: pakistan currency military olympus war prime
word 7: iran us elections noda veteran euro
word 8: military shanghai clashes reactor biden italy
word 9: clinton manufacturing civilian plant us austerity
word 10: reuters wal-mart parlimentary nuclear militar crisis
word 11: economy inflation israel toyota end european
word 12: stocks hong kong protesters intervention iran leaders

Table 1. Summary of the LASSO results for the countries: United
States, China, Egypt, Japan, Iraq, and Greece during the period
between October and December of 2011.

that time period. For example, the exit of US troops from Iraq had effected the
LASSO solution of both countries by selecting the terms: troops, withdrawal, end,
war, veteran and others. The aftermath of Japan’s tsunami also had its effect
on the words selected by the LASSO like reactor, plan, nuclear, and Fukushima.
The Arab-spring and political changes in Egypt were also communicated by the
LASSO solution through the words: elections, civilians, clashes, protesters, and
military. China’s image words selected by the LASSO were more concerned with
the economy like trade, growth, currency, manufacturing, and inflation. Greek’s
image words were mostly related to the bailout and the economic crisis is facing.

The construction of the matrix A affects the LASSO solution shown in table 1.
Better results can be obtained by scaling this matrix, for example we can discourage
the word “greek” from appearing as an image word of Greece by multiplying the
column or feature corresponding to “greek” by a small number. This method can
also be used to discourage other uninformative words (e.g. articles, pronouns) from
appearing in the final LASSO solution. Using the on-line LASSO algorithm suits our
recursive nature of updates obtained from new headlines, regardless of the scaling
needed to construct the problem data. Constructing the problem data with proper
scaling and defining uninformative words for the purpose of improving the results
of the LASSO is out of the scope of this article and a subject of future research.

5. Conclusion and discussion. The article extends existing online-algorithm to
update the solution of linear regression problems with a large class of l1 and l2
regularizations as new observations become available. The l1-norm regularization
improves the estimation capabilities and the interpretability of the results by ex-
hibiting and exploiting the underlying sparsity structure of the problem. The ad-
ditional l2-norm regularization increases the robustness of the estimator and limits
numerical issues. The algorithm provides the ability to (i) impose sparsity on a
linear function of the estimate, (ii) update the solution online by computing a ho-
motopy as new measurements become available (or as old measurements become
obsolete) and (iii) impose sparsity on the variations of the state with respect to
a reference parameter which can be updated at any time, for example to impose
sparsity on successive estimates.

The homotopy algorithm leverages the sparsity of the solution to reduce the
computational complexity and is thus particularly efficient when the solution is
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sparse. The computational costs at each transition point is kept low by updating
the matrix inverses with low-rank updates. The number of transition points and
active indices varies with the parameter µ. As µ increases, the number of transition
points and active indices decreases, improving the computational efficiency of the
algorithm.

The generality of this algorithm is illustrated through its application for diverse
real-world problems. In particular, we apply this generalized LASSO algorithm
to real-time traffic estimation from streaming probe vehicle data in large urban
networks, providing significant improvement of the estimation capabilities and an
automatic detection of congestion changes across the network. We also applied
the algorithm to estimate flow in a tidal channel. Given flow measurements at a
location in the channel, we used the linearized Saint-Venant equations to obtain
the transfer matrix between the flow at any desired location and the measurements.
After parametrizing the flow considering the dominant tidal modes, we applied
LASSO to estimate the unknown parameters. In the statistical analysis of online-
news application, the LASSO algorithm was used to uncover statistical associations
of words in a text corpus obtained from headlines of news articles. We presented the
formulation of the LASSO problem, construction of the data matrices and illustrated
how the online-homotopy algorithm is suited for this application.
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