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Learning the Dynamics of Arterial Traffic From
Probe Data Using a Dynamic Bayesian Network

Aude Hofleitner, Ryan Herring, Pieter Abbeel, and Alexandre Bayen

Abstract—Estimating and predicting traffic conditions in arte-
rial networks using probe data has proven to be a substantial chal-
lenge. Sparse probe data represent the vast majority of the data
available on arterial roads. This paper proposes a probabilistic
modeling framework for estimating and predicting arterial travel-
time distributions using sparsely observed probe vehicles. We
introduce a model based on hydrodynamic traffic theory to learn
the density of vehicles on arterial road segments, illustrating the
distribution of delay within a road segment. The characterization
of this distribution is essentially to use probe vehicles for traffic es-
timation: Probe vehicles report their location at random locations,
and the travel times between location reports must be properly
scaled to match the map discretization. A dynamic Bayesian net-
work represents the spatiotemporal dependence on the network
and provides a flexible framework to learn traffic dynamics from
historical data and to perform real-time estimation with streaming
data. The model is evaluated using data from a fleet of 500 probe
vehicles in San Francisco, CA, which send Global Positioning
System (GPS) data to our server every minute. The numerical
experiments analyze the learning and estimation capabilities on a
subnetwork with more than 800 links. The sampling rate of the
probe vehicles does not provide detailed information about the
location where vehicles encountered delay or the reason for any
delay (i.e., signal delay, congestion delay, etc.). The model provides
an increase in estimation accuracy of 35% when compared with a
baseline approach to process probe-vehicle data.

Index Terms—Expectation–maximization algorithms, probes,
queuing analysis, real-time systems, statistical learning.

I. INTRODUCTION AND BACKGROUND

TRAFFIC congestion has a significant impact on economic
activity. An essential step toward active congestion control

is the creation of accurate reliable traffic monitoring systems,
leveraging the latest advances in technology and research. His-
torically, traffic monitoring systems have been mostly limited
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Fig. 1. Probe measurements in San Francisco, CA. The small (resp. large) dots
represent the measurement of the location of a taxi, received between midnight
and 7 A.M. (resp. at 7 A.M.).

to highways and have relied on data feeds from a dedicated
sensing infrastructure (loop detectors, radars, etc.). For highway
networks covered by such an infrastructure, it is common
practice to perform both system identification (free-flow speed,
traffic jam density, and flow capacity) and estimation of traffic
state (flow, density, bulk speed, and shockwave location) at a
very fine spatiotemporal scale [5], [46]. These highway traffic
monitoring approaches rely upon both the ubiquity of data and
highway traffic flow models developed over the last half century
[11], [38].

For arterials, traffic monitoring is substantially more difficult:
Probe-vehicle data are the only significant data source available
today with the prospect of global coverage in the future. It
comes from various sources such as fleet vehicles periodically
reporting their location (a rate of 1 min is currently the stan-
dard), smartphones, aftermarket devices, or radio-frequency
identification tags. The features of probe-vehicle data today,
including the lack of ubiquity and a uniform penetration rate
(the percentage of vehicle reporting their location varies across
the network and throughout the day), the variety of data types
and specifications, and the randomness of its spatiotemporal
coverage, make it insufficient for fully characterizing macro-
scopic traffic model parameters and doing state estimation for
large transportation networks. Fig. 1 shows the probe measure-
ments collected on a day from midnight to 7 A.M. by one of
the feeds of the Mobile Millennium system. It also shows a
snapshot of the location of probes at 7 A.M. The figure shows
both the breadth of coverage when aggregating data over long
periods of time and the limited information available at a given

1524-9050/$31.00 © 2012 IEEE



1680 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 13, NO. 4, DECEMBER 2012

point in time, limiting the direct estimation capabilities at a
fine spatiotemporal scale. Traffic models and data assimilation
algorithms must be developed to efficiently transform these data
into reliable traffic information (see, e.g., [28], [35], [44], and
[46] for a discussion on the use of cell phone data for highway
traffic monitoring).

Aside from less abundant sensing compared with exist-
ing highway traffic monitoring systems, the arterial network
presents additional modeling and estimation challenges: The
underlying flow physics that governs them is more complex
because of traffic lights (often with unknown cycles), intersec-
tions, and others [8], [37]. Collecting the detailed parameters of
the arterial road network into an accessible electronic database
would require the cooperation of numerous government agen-
cies, making this information unreliable and tedious to obtain.
This makes the detailed spatiotemporal modeling and esti-
mation approaches developed for highway traffic impractical
for arterials, i.e., at least until the data volume significantly
increases [3], [42], [45].

We are interested in a statistical approach to arterial traffic
estimation based on Dynamic Bayesian Networks (DBNs).
The model characterizes the variability of travel times among
vehicles traveling on the network and the stochasticity of
congestion dynamics on arterial networks. Our approach is
adapted to the only significant data source available today for
arterial estimation: sparse measurements from probe-vehicle
data. We present a brief overview of existing research focused
on statistical approaches for traffic estimation and underline the
contributions of this paper. An extended review of the literature
is available in [20]. Previous research has studied the estimation
and short-term prediction of sensor readings using DBNs [36],
[43] and regression models [40]. These articles assume that
sensors (such as loop detectors) provide measurements with a
fixed frequency at fixed locations. Probe data on arterials are
available at random times and random locations, making this
assumption not applicable for this paper. Other approaches [16],
[22] assume that either a single measurement per time interval
or aggregated measurements per time interval are available
for each road segment of the network (according to the map
discretization). This assumption limits the capacity to represent
the variability of travel times among the vehicles traveling on
the network. Moreover, such approaches are not adapted to
missing data, when no information is available on some parts
of the network. An approach inspired from the Ising model
was developed in [16]. It relies on binary measurements stating
whether traffic is congested or uncongested that are not directly
available from traffic sensors. Transforming traffic data into
binary congested/uncongested values is a difficult process by
itself and has not been specifically addressed in the literature
to our knowledge. Our model offers such a binary quantization
from probe-vehicle travel times. Neural networks and pattern
matching [12] have been used to estimate traffic from Global
Positioning System (GPS) data under the critical assumption
that the velocity is spatially homogeneous and similar among
drivers. This assumption does not take into account the vari-
ability of travel times due to the frequent stops at traffic signals.
High-frequency probe data (one measurement approximately
every 20 s or less) [29] allow for reliable calculation of short-

distance speeds and travel times. In this paper, we specifically
address the processing of sparse probe data where this level of
granularity is not available. Numerous estimation algorithms
from probe-vehicle data rely on the decomposition of path
travel times to individual road segments, also referred to as links
[19], [23]. However, when a vehicle travels more than one link,
the location of its delay is unknown, and this decomposition
can lead to inaccuracies. In this paper, we use probe-vehicle
data without the use of a travel-time decomposition algorithm.

The contribution of this paper specifically addresses the
estimation and short-term forecast of the probability distribu-
tion function (pdf) of travel times in the case of noisy sparse
probe data. In particular, we propose a model and an algorithm
for traffic estimation with measurements received at random
locations and random times, which are based on the learning
of the dynamics of congestion on the network. Each observa-
tion, which is defined as two consecutive GPS measurements
including the travel time between these measurements, has a
probability density that depends on 1) the pdf of travel times of
the links traversed and 2) the spatial distribution of vehicles on
each traversed link. The key insight is that, on average, vehi-
cles are more likely to experience delay close to intersections
because of the presence of traffic signals. We assume that the
pdf of travel times on each link of the network depends on the
level of congestion (congestion state) of this link, and we model
and learn the dynamics of congestion on the network using a
DBN. We define a link as the road segment between signalized
intersections; however, this choice of discretization can be more
fine if desired.

This paper is organized as follows. Section II presents
a graphical model representing the dependence between the
travel-time observations and the congestion state of each
link at each time interval and their spatiotemporal evolution.
Section III uses queuing theory to formalize the intuition that
vehicles are more likely to experience delays close to intersec-
tions. We discuss how this information can be used to compute
the pdf of travel times on an arbitrary path from the pdf of
travel times of the links traversed. Leveraging the modeling
assumptions of Section II and the results from Section III, the
DBN represents the probabilistic dynamics of traffic congestion
and the probabilistic observation model of the congestion states
from probe data. We develop an expectation–maximization
(EM) algorithm (see Section IV) for learning the parameters
of the DBN. We perform the expectation step (E step) using
particle filtering and solve a large convex optimization prob-
lem using an interior point method for the maximization step
(M step). After the historical learning of the parameters of
the system’s dynamics, we estimate the current state of the
network and predict the probability of congestion and the pdf
of link travel times from the probe data available in real time.
Finally, we present the results of a case study (see Section V) in
San Francisco, CA, for which a fleet of 500 probe vehicles
provides sparse location measurements [1]. These data are one
of the feeds available in the Mobile Millennium system [4].
The system provides real-time streaming data and a history of
the data collected since October 2009. The initial results indi-
cate that travel-time distributions can be accurately estimated
using sparse GPS data only.
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II. TRAFFIC MODELING ASSUMPTIONS

A. Dynamical Model

Arterial traffic can be viewed as a dynamic stochastic pro-
cess. Our model represents the main characteristics of traf-
fic dynamics while making assumptions necessary for the
tractability of the estimation process. The validity and limita-
tion of the model are further discussed in Section VI, where we
also analyze how the model can be refined or generalized.

1) Time discretization: We model traffic as a discrete-time
dynamical system. We call Δ the time discretization,
which is chosen depending on the data available and
the desired temporal scale of the estimation. This paper
is focused on estimating travel-time distributions when
measurements are sparse. We choose Δ to be equal to
5 min in the numerical experiments as we are inter-
ested in estimating trends rather than fluctuations. For
t ∈ T = {0, . . . , (T − 1)}, time interval t is given by
[t0 + tΔ, t0 + (t+ 1)Δ].

2) Characterization of the state of traffic: For each link
i ∈ I (I is the set of link indices), traffic conditions are
characterized by a discrete random variable (RV) ξi,t. We
denote by si,t ∈ {0, . . . , S − 1} the realization of the RV
ξi,t, representing a discrete congestion state. We choose
a binary representation of traffic states (S = 2), char-
acterizing an undersaturated and a congested state. The
derivations are easily generalized to a finer discretization
of the number of states.

3) Dynamical model: Transitions between time intervals
model information propagation on the road network by
taking into account the spatiotemporal dependence of the
state of the links. We denote by ξI,t (with realization
sI,t ∈ {0, . . . , S − 1}|I|) the state of the network at time
interval t. We call πi the links adjacent to link i, including
link i. We have i′ ∈ πi ⇔ i′ = i, or i′ and i have a com-
mon intersection. The equation of the dynamics is given
by ξi,t = f i

d(ξ
πi,t−1) + εid ∀i ∈ I , where εid represents

the state noise of the dynamical model for link i. The
dynamic equation can also be defined by a set of con-
ditional independence assumptions:1 ξi,t ⊥⊥ ξi

′,t′ |ξπi,t−1

for (t′, i′) ∈ X(i, t), where X(i, t) = {t− 1} × I \ πi ∪
{0, . . . t− 2} × I , and A \B denotes the set A without
the elements of B. The mathematical formulation ex-
presses that, given the state of the neighbors πi at t− 1,
the state of link i at t is independent of the state of
nonneighboring links at t− 1 and is independent of the
state of all links of the network at time intervals prior to
t− 1.

4) Observation model: The system is observed through
noisy point to point travel-time measurements. A map-
matching and path-inference algorithm [30] reconstructs
the path of the vehicle between successive location re-
ports and filters out the GPS noise. The map-matching
algorithm provides the family of links j(k) traversed
between the kth pair of successive location reports and

1For sets of RVs A, B, and C, we denote by A ⊥⊥ B|C that the assertion
“A is conditionally independent of B given C.”

Fig. 2. Two-slice temporal Bayesian network representation of the model of
arterial traffic dynamics. The circular nodes represent the (hidden) traffic states
for each link at each time interval. The square nodes represent travel-time
observations. There is an edge from the state of link i at time t to the state of
link i′ at time t+ 1 if i is a neighbor of i′ (i ∈ πi′ ). Observation Yk , received
at time t, represents the travel time of a probe vehicle on its path, defined by the
set of traversed links j(k) and the distances xs,k and xe,k to the downstream
intersections on the first and last links of the path. There is an edge from the
state of each link in j(k) to Yk .

the distances xs,k and xe,k to the downstream intersection
of the first and last link traversed. Note that the path of
the probe vehicle between consecutive location reports
is fully specified by xs,k, xe,k, and j(k). The travel
time between (xs,k, xe,k) is an RV Yk, with realiza-
tion yk ∈ R. The observation equation is given by Yk =
fo(ξ

j(k),t, xs,k, xe,k) + εYo (ξ
j(k),txs,k, xe,k), where εYo

represents the observation noise, that may depend on the
state of the links of the path and the distance traveled on
each of these links. We assume that the observation noise
is a sum of independent RV representing the observation
noise on each link of the path. The travel time on a
path is then a sum of independent RVs representing the
travel time on each link of the path. The measurements
come from a small subset of vehicles traveling on the net-
work and periodically sending their location in real time.
Measurements from the past are stored and accessible
in real time. The Mobile Millennium system, which has
been developed by the University of California Berkeley
(UC Berkeley) and Nokia [4], provides such data
(see Fig. 1).

B. DBN Representation

The conditional independence introduced by the dynamic
and observation equations are represented with a DBN [13].
DBNs are directed graphical models that represent the complex
interdependence between the hidden state variables ξi,t and the
observations Yk. The graphical structure specifies the condi-
tional independence and provides a compact parameterization
of the model. The model structure does not change over time,
which means that the structure can be fully specified by a
two-slice temporal Bayesian network (2TBN). It is common to
assume that the parameters of the 2TBN do not change, i.e., the
model is time invariant. The structure of the DBN induced by
our assumptions on the dynamic and observation equations is
shown in Fig. 2. The model is fully specified by the following
conditional distributions.

• The transition probabilities: For each link i, we consider
the conditional probability that ξi,t has the realization
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si,t, given the state of its neighbors at the previous time
interval t− 1. The state of a link at time t may depend
on the state of its neighbors in any arbitrary way. Given
that both the number of states and the number of neigh-
bors are finite, the conditional probability is represented
by matrix Ai where, for each row m, Ai(m, 1) (resp.
Ai(m, 2)) represents the probability of being congested
(resp. undersaturated) given the state m of the neighbors,
so that Ai(m, 2) = 1 −Ai(m, 1). One possible choice for
Ai is to consider all the possible state combinations of
the neighbors, as done in [21], but the dimension of Ai

grows exponentially with the number of neighbors, and
the number of parameters to estimate does not reflect the
amount of data available. We consider a more scalable
model in which the state of link i at time interval t de-
pends on the total number of undersaturated links among
neighbors. With this model, there are |πi|+ 1 parameters
to estimate for each link i, where |πi| is the cardinality of
πi. A wide variety of functions of the congestion indices of
the neighbors can be used to predict the state of the link at
the next time interval. Choosing the appropriate function
of the congestion indices is called feature selection [18]
and is not detailed in this paper. We experiment a few other
choices for this function in the numerical analysis.

• The observation conditional probabilities: For each link i
and each state s, we define the pdf of travel times on link i
given the state s. We consider that, conditioned on the state
s, the travel times on each link i are normally distributed
and parameterized by a mean μi,s and a standard deviation
σi,s. The normality assumption is not necessary for the
derivations in the model but improves the computational
efficiency, as discussed in Sections IV and VI. The kth
travel-time measurement yk is specified by the set of
traversed links j(k) and the distance to the downstream
intersection on the first and last links (xs,k and xe,k,
respectively). Given the state of the traversed links, the
travel time on this path is normally distributed and denoted
f(yk|sj(k),t, xs,k, x

e,k). The mean and the variance are the
sum of the mean and of the variance of travel times on
the (partial) links of the path, respectively. Note that probe
vehicles may not report their location at the beginning or
at the end of a link and that we need to properly scale the
travel time on the fraction of link traversed (partial link),
as detailed in Section III.

• The initial state probabilities: For each link i, we call
ci(1) (resp. ci(2)) the probability that link i is congested
(resp. undersaturated) during the first time interval and
have ci(2) = 1 − ci(1).

The specification of the conditional distributions leads to the
following decomposition of the joint probability of the model:

p(s, y|θ)
∏

t∈T \{t0}
i∈I

A(ηi,t−1, si,t)
∏
t∈T

k∈K(t)

f(yk|sj(k),t)
∏
i∈I

ci(si,0)

where ηi,t−1 represents the congestion state of the neighbors of
link i at time interval t− 1.

C. Modeling Partial Link Travel Time Through
Density Estimation

Since probe vehicles send their positions at any location on
the network, the path can start and end at any location. The first
and last links of the corresponding path are not fully traversed
by the vehicle (partial links). In addition to the pdf of travel
times on each link of the network, we need to define the pdf of
travel times on partial links, i.e., the pdf of travel times on link
i between any offsets x1 and x2 (where xm, with m = 1, 2,
represents the distance to the downstream intersection). We call
Y i
x1,x2

as the RV representing the travel time on partial link
i between offsets x1 and x2 (x1 ≥ x2); then, Y i

Li,0 represents
the travel time on link i (between offsets Li, length of link i,
and 0). We assume that there exists αi(x1, x2) such that
Y i
x1,x2

= αi(x1, x2)Y
i
Li,0. The function αi must satisfy the

following conditions.
• The travel time on a partial link is a fraction of the link

travel time: ∀(x1, x2) ∈ [0, L]2, αi(x1, x2) ∈ [0, 1]. If the
partial link spans the entire link, the partial travel time has
the same distribution as the link travel time: αi(Li, 0) = 1.

• If a partial link is included in another partial link, its
travel time should be smaller: ∀x1, x2 	→ αi(x1, x2) is a
decreasing function of x2, and ∀x2, x1 	→ αi(x1, x2) is
an increasing function of x1.

• The probability for a vehicle to experience delay increases
as the location gets closer to the downstream intersection.
For the same distance traveled, travel times are longer
close to the downstream intersection because of the pres-
ence of traffic signals. ∀x1, x2 	→ αi(x1, x2) is a convex
function of x2. Similarly, ∀x2, x1 	→ αi(x1, x2) is a con-
cave function of x1.

The function defined by αi(x1, x2) = (x1 − x2)/L
i satisfies

these conditions. However, it assumes that the travel time on a
partial link is proportional to the distance traveled on the link
but does not take into account the presence of traffic signals.
In Section III, we derive a parametric model for αi from a
hydrodynamic model of traffic flow and learn the parameters
from the sparse measurements of probe-vehicle locations: αi

is the cumulative distribution function (cdf) of a specific RV.
For a probe vehicle sampled uniformly in time and reporting
its position while traveling on link i, the RV represents the
position of the vehicle on the link as it reports its location,
and we denote by fX its pdf. Because of the presence of traffic
signals, f is a decreasing function of the distance to the down-
stream intersection (increasing function of the distance from the
upstream intersection). We choose αi(x1, x2) =

∫ x1

x2
fX(x) dx,

which satisfies all the given assumptions.

III. MODELING THE SPATIAL DISTRIBUTION OF

VEHICLES ON AN ARTERIAL LINK

Probe vehicles send periodic location measurements, which
provide two sources of indirect information about the arterial
traffic link parameters. First, as the location measurements are
taken uniformly over time, more densely populated areas of the
link will have more location measurements. Second, the time
spent between two consecutive location measurements provides
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information on the speed at which the vehicle drove through the
corresponding arterial link(s).

We use the first source of information to define how the travel
time on a partial link is related to the travel time on the entire
link and derive the function αi(·, ·) introduced in Section II. We
consider link i during time interval t. For notational simplicity,
we omit the dependence on i and t.

A. Arterial Traffic Flow Model

We model vehicular flow as a continuum and represent
it with macroscopic variables of flow q(x, t) (veh/s), density
ρ(x, t) (veh/m), and velocity v(x, t) (m/s). The definition of
flow gives the following relation between these three variables:
q(x, t) = ρ(x, t) v(x, t). We make the assumption of a triangu-
lar fundamental diagram (FD) parameterized by vf , which is
the free flow speed (m/s); ρmax, which is the jam (maximum)
density (veh/m); and qmax, which is the capacity (veh/m). We
define the critical density ρc = qmax/vf and have the following
expression for the FD:

q(x, t) =

{
vfρ(x, t), if ρ(x, t) ∈ [0, ρc]

qmax
ρmax−ρ(x,t)
ρmax−ρc

, if ρ(x, t) ∈ [ρc, ρmax].

We assume that the characteristics of the traffic light (red
time R and cycle time C) and the arrival rate qa remain constant
during the time interval, leading to a periodic formation and
dissolution of the queues [26]. We define two discrete traffic
regimes, i.e., undersaturated and congested, depending on the
presence (resp. the absence) of a remaining queue when the
signal turns red.
Undersaturated regime: The queue fully dissipates within the

green time. The queue is defined as the spatiotemporal
region where vehicles are stopped on the link and called
the triangular queue, with length lmax.

Congested regime: There exists a part of the queue downstream
of the triangular queue called remaining queue with length
lr corresponding to vehicles that have to stop multiple
times before going through the intersection. All notations
introduced up to here are shown for both regimes in Fig. 3.

B. Probability Distribution of Vehicle Locations

According to the assumptions, the density at location x is
time periodic with period C. The density d(x) at location x is
the temporal average of the density ρ(x, t) at location x and
time t: d(x) = 1/C

∫ C

0 ρ(x, t) dt.
In practice, flow is never perfectly periodic, but we will

assume that the given averaging over a duration C is a good
proxy of a longer average. According to the assumptions, the
density at location x and time t takes one of the three following
values, numbered 1 to 3 for convenience: 1) ρ1 = ρmax, when
vehicles are stopped; 2) ρ2 = ρc when vehicles are dissipat-
ing from a queue; and 3) ρ3 = ρa when vehicles have not
yet stopped in the queue. The average density at location x
is d(x) =

∑3
i=1 βi(x)ρi, where βi(x) represents the fraction

of the cycle time C during which density is equal to ρi at
location x.

Fig. 3. Space–time diagram of vehicle trajectories with uniform arrivals under
(top) an undersaturated traffic regime and (bottom) a congested traffic regime.

When vehicles are sampled uniformly in time, the pdf fX(x)
of observing a vehicle at location x is proportional to the
average density d(x) at location x, with the proportionality
constant given by Z =

∫ L

0 d(x) dx so that fX(x) = d(x)/Z.
1) Undersaturated Regime: Upstream of the maximum

queue length, the density is equal to ρa throughout the entire
cycle. Using the assumption that the FD is triangular and that
the arrival density is constant, the average density linearly
increases from ρa at x = lmax to the value it takes at the
intersection, where x = 0. At the intersection, the density is
ρmax for R seconds, when the light is red. The density is ρc
when the queue dissipates, i.e., during the clearing time τ . The
rest of the cycle has density ρa. The average density at the
intersection is the sum of the arrival, maximum, and critical
densities, which are weighted by the fraction of the cycle during
which each of the densities is experienced. The average den-
sity at the intersection is d(0) = 1/C(Rρmax + τρc + (C −
(R+ τ))ρa). From traffic theory, we have τ = R(ρa/ρc − ρa)
[25]; thus, d(0) = R/Cρmax + ρa. The density at location x is
given by

{
d(x) = ρa, if x ≥ lmax

d(x) = ρa +
R
C ρmax

lmax−x
lmax

, if x ≤ lmax,

i.e., d(x) = ρa +R/C ρmax max(lmax − x, 0)/lmax. The con-
stant Zu =

∫ L

0 d(x) dx is the temporal average of the num-
ber of vehicles on the link and is given by Zu = Lρa +



1684 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 13, NO. 4, DECEMBER 2012

Fig. 4. (Left) Probability distribution of vehicle locations on the link as a function of the distance from the upstream intersection. (Right) Cumulative distribution.

lmax/2R/Cρmax. The pdf of vehicle location fu
X(x) =

d(x)/Zu is given by

fu
X(x) =

ρa
Zu

+
R

CZu
ρmax

max(lmax − x, 0)
lmax

.

2) Congested Regime: In the congested regime, the average
density is constant upstream of the maximum queue length, i.e.,
equal to ρa, and increases linearly until the remaining queue. In
the remaining queue, it is constant and equal to R/Cρmax +
(1 −R/C)ρc. The probability distribution of vehicle location
is given by

d(x) = ρa, if x ≥ lmax + lr
d(x) = ρa + d� −x+lmax+lr

lmax
, if x ∈ [lr, lmax + lr],

d(x) = R
C ρmax +

(
1 − R

C

)
ρc, if x ≤ lr

(1)

where d� = (R/Cρmax + (1 −R/C)ρc − ρa). We denote by
Zc the normalizing constant that ensures that the integral of the
function x 	→ d(x)/Zc on [0, L] equals one as follows:

Zc = Lρa +

(
lmax

2
+ lr

)
d�. (2)

The undersaturated regime is a special case of the congested
regime, in which the remaining queue length lr is equal to
zero. We consider the congested regime as the general case
for the spatial distribution of vehicle location. The distribution
is fully determined by three independent parameters, i.e., the
remaining queue length lr, the triangular queue length lmax, and
the normalized arrival density ρ̃a = ρa/Zc, as shown in Fig. 4
(left: pdf; right: cdf), and reads as follows:

f c
X(x) = ρ̃a, if x ≥ lmax + lr
f c
X(x) = ρ̃a +

(lr+lmax)−x
lmax

Δρ̃, if x ∈ [lr, lmax + lr],
f c
X(x) = ρ̃a +Δρ̃, if x ≤ lr

with Δρ̃ =
1 − ρ̃aL

lmax/2 + lr
.

The expression of Δρ̃ is obtained by noticing that∫ L

0 f c
X(x)dx = 1 or by direct computation from (1), by

replacing Zc by its expression (2) and ρa by Zcρ̃a.

C. Density Estimation

We estimate the parameters of the distribution fX by max-
imizing the likelihood of the set of location observations (de-
noted (xo)o∈O) provided by large amounts of historical data:

maximize
ρ̃a,lr,lmax

∑
o∈O

ln (fX(xo)) s.t.

⎧⎨
⎩

0 ≤ ρ̃a ≤ 1
L

lr + lmax ≤ L
0 ≤ lr, 0 < lmax.

The constraints come from the physics of the problem. The
first constraint is equivalent to ρa ≤ Zc/L, where Zc/L is the
average density on the entire link. It illustrates the fact that
the arrival density is inferior to the average density on the link.
The other constraints illustrate that the total queue cannot ex-
tend beyond the length of the link and that the triangular queue
and the remaining queue must be nonnegative. The constraints
on the queue lengths do not limit the generality of the model.
Under spillover conditions (queue length extending beyond
the upstream intersection), we consider that the queue length
extends up to the upstream intersection; the rest of the queue
is accounted for in the upstream links. Tighter bounds on the
parameters can be added to ensure the physical interpretation
of the results.

The objective function is not concave in the optimization
variables. However, the search space is limited (three bounded
parameters), and we perform a grid search followed by a local
gradient ascent for the B best solutions of the grid search. We
used 15 points in each dimension and chose B = 10 in the
numerical experiments as a finer grid did not provide better
results.

IV. TRAVEL-TIME ESTIMATION ALGORITHM

We observe a complex pattern of dependence among the
travel times sent by the probe vehicles and want to learn the
stochastic dependence between these observations to perform
estimation and prediction on the arterial network. Rather than
directly modeling the dependence between the observations,
we introduce the variables (ξi,t), representing the discrete state
of each link at each time interval, and model their dynamic
evolution. They are introduced to exploit the underlying struc-
ture of the dynamical system and to simplify the estimation
task. The variables (ξi,t) are called latent or hidden vari-
ables because they are not directly observed. Conditioned on
(ξi,t), the observation variables are independent. The parameter
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estimation problem would be simplified if we could directly
observe the state variables (ξi,t). Without observing (ξi,t),
the likelihood function is a marginal probability, obtained by
summing (or integrating in the continuous case) over the latent
variables. Marginalization couples the parameters and obscures
the underlying structure of the likelihood function. The EM
algorithm learns the dependence among the observations while
exploiting the structure of the stochastic dynamic evolution
[14]. Given the parameters of the dynamics and the observation
model, we can compute the probability distribution of the latent
variables. Similarly, given the probability distribution of the
latent variables, we can compute the parameters that best ex-
plain the observed data. Section IV-A provides a mathematical
justification for the use of this iterative algorithm. We detail the
steps of the algorithm, i.e., the E step in Section IV-B and the
M step in Section IV-C in the case of traffic estimation.

A. Introduction on the EM Algorithm

The EM algorithm allows us to exploit the underlying struc-
ture of the dynamical model, although the latent variables are
not observed. It is an iterative algorithm consisting in two steps.

• The E step computes the joint probability distribution of
the latent variables given the observed variables and the
current values of the parameters. In the case of a DBN,
this step corresponds to a smoothing step, in which, at each
time t, we estimate the joint probability distribution of the
state variables (ξi,t)i,t. In practice, the smoothing step is
replaced by a filtering step for efficiency. The filtering step
only uses observations received up to (and including) time
t to compute the joint probability distribution of the state
variables (ξi,t)i.

• The M step optimizes the parameters based on the esti-
mation of the joint probability distribution of the latent
variables. This step has the same complexity as if the latent
variables were observed.

Let Y denote the observable RV, with realization y (travel
time from the probe vehicles) and ξ as the latent variables, with
realization s (congestion state of the links of the network). Let
θ be the set of unknown parameters, i.e., θ = {(μi,s, σi,s), i ∈
I, s ∈ {0, . . . , S − 1}} ∪ {Ai, i ∈ I}. The log likelihood of the
data is the log of the marginal probability of the observations
given the parameters, as given in

l(θ; y) = ln (p(y|θ)) = ln

(∑
s

p(s, y|θ)
)
.

If ξ was observed, the maximum likelihood estimation would
amount to maximizing lc(θ; y, s) = ln(p(y, s|θ)), which is re-
ferred to as the complete log likelihood, because it corresponds
to the log probability of the complete set of RVs for a given
value of the parameter θ. Given that ξ is in fact not observed,
the complete log likelihood is a random quantity and cannot
be directly maximized. Given a distribution, which is denoted
as q(s|y), we define a deterministic function of θ, which is
denoted as 〈lc(θ; y, s)〉q and called the expected complete log
likelihood: It corresponds to the average of the complete log

likelihood, over the realizations of ξ, when q(s|y) is chosen as
the averaging distribution, i.e.,

〈lc(θ; y, s)〉q =
∑
s

q(s|y) ln (p(y, s|θ)) .

We use Jensen’s inequality and have

l(θ; y) ≥
∑
s

q(s|y) ln
(
p(s|y, θ)
q(s|y)

)

=
∑
s

q(s|y) ln p(s, y|θ)−
∑
s

q(s|y) ln q(s|y).

To maximize l(θ; y), we iteratively maximize the right-hand
side by 1) maximizing on the proposal distribution q(s|y) given
the current value of the parameter (E step) and 2) maximizing
on the parameter θ given the proposal distribution (M step).

B. E Step

In the Bayesian approach to dynamic state estimation, one
attempts to construct the probability distribution of the state
(belief state) at time interval t based on all available measure-
ments up to and including time interval t, which is known as
the posterior distribution. The process of estimating the pdf of
the state of the network at time interval t conditioned on the
observations up to time t is called filtering. The E step of the
EM algorithm technically requires smoothing, i.e., estimating
the pdf of the state conditioned on all the observations avail-
able for the experiment. However, the smoothing is typically
replaced by a filtering step for efficiency. Filtering consists of
essentially two stages: prediction and update. The prediction
uses the transition probabilities to compute the belief state from
one measurement to the next. The update operation uses the
latest available measurements to modify the state probability
distribution using the Bayes rule.

The DBN used in this paper is a multiply connected belief
network (at least one pair of variables has more than one
undirected path connecting them), in which probabilistic infer-
ence is NP-hard [10]. In such networks, algorithms performing
probabilistic inference have a time complexity that, in the worst
case, is exponential in the number of hidden variables in the
network. We need approximation algorithms to perform prob-
abilistic inference. Algorithms such as Monte Carlo simulation
[41], variational methods [31], and belief state simplification
[7] are commonly used to approximate probabilistic inference.
We investigate a Monte Carlo simulation approach (particle
filter) described in the following.

Particle filtering is an approximation of a recursive Bayesian
filter algorithm using Monte Carlo simulations, which has
successfully been implemented for highway traffic estimation
[9]. The belief state is represented by a set of random samples
with associated weights (importance weights) such that, as the
number of samples increases, the approximation tends to the
true belief state. We simulate V particles (V = 2000 in
the numerical experiments). Each particle v represents an in-
stantiation of the time evolution of the traffic state of the
network, i.e., a possible succession of traffic states for each
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link and each time interval. A particle v at time t is repre-
sented by a vector of the states of each link and each time
interval (si,t

′
v )i∈I,t′∈{0...t}. At t, each particle has a weight ωt

v

proportional to the probability of having this instantiation of the
state evolution given the available data up to time t. The parti-
cles explore the possible state space and represent the belief
state of the DBN. At time t, the spatiotemporal instantiations
stv = (si,t

′
v )i∈I, t′∈{0...t} of the particles and their associated

importance weight ωt
v form an approximation pV (s

1:t|y1:t, θ)
of the joint probability distribution p(s1:t|y1:t, θ) of the state
of the links up to time t. According to this approximation, the
probability of observing a state s = (si,t)i∈I, t∈{0...T } on the
network throughout its time evolution is

p(s|y, θ) ≈ pV (s|y, θ)

=

V∑
v=1

ωT
v 1s(sv)

where 1s(sv) is equal to 1 if the particle has the state instantia-
tion s and 0 if otherwise. In particular, we define the following
sufficient statistics (SS):

• The path SS is the joint distribution of the states of
the links j(k), on path k, conditioned on the obser-
vations received up to time interval t. It is denoted
as pV (s

j(k),t|y1:t, θ) and is computed by summing the
weights of all the particles for which the links j(k) are
in state sj(k),t ∈ S |j(k)| at t:

pV (s
j(k),t|y1:t, θ) =

V∑
v=1

ωv1sj(k),t

(
sj(k),tv

)
.

• The link SS is the probability of the state of link i at
time t, conditioned on the state of the neighbors πi at
time interval t− 1 and the observations received up to t.
It is denoted as pV (s

i,t|sπi,t−1, y1:t, θ) and is computed
by summing the weights of all the particles for which link
i is in state si,t ∈ S at t and for which the neighbors of
link i are in state sπi,t−1 ∈ S |πi| at t− 1. To compute the
conditional probability, this sum is normalized by the sum
of the weights of the particles for which the neighbors of
link i are in state sπi,t−1.

For each link and each time interval, the number of SS to
compute is exponential in the number of neighbors of the link.
We present a model that overcomes this computational cost
by assuming that the state of a link at time t depends on the
total number of undersaturated neighbors at t− 1, defined by
ηi,t−1 =

∑
i′∈πi

si
′,t−1. The number of SS to compute for link

i is |πi|+ 1 for each time interval, which significantly limits
the complexity. Other functions could be used to compactly
represent the state of the neighbors. We experiment with a few
other choices in the numerical experiments. These functions
do not need to be linear nor 1-D. The SS pV (s

i,t|ηi,t−1, y, θ)
are similarly computed as for pV (s

i,t|sπi,t−1, y, θ): We sum
the weights of the particles for which link i is in state si,t

at time interval t and for which the sum of the congestion of

the neighbors is ηi,t−1 at time interval t− 1 and normalize as
follows:

pV (s
i,t|ηi,t−1, y1:t, θ) =

V∑
v=1

ωt
v1si,t,ηi,t−1

(
si,tv , ηi,t−1

v

)
Z(ηi,t−1)

.

The constant Z(ηi,t−1) = pV (η
i,t−1|y1:t, θ) is computed from

the particles or, with less computational cost, by summing the
joint probabilities pV (s

i,t, ηi,t−1) over the possible states of
link i at time t.

Using these SS, the expected complete log likelihood
〈lc(θ; y, s)〉pV

is given by∑
t∈T \{0}
si,t∈S

∑
ηi,t−1

pV (s
i,t|ηi,t−1, y1:t, θ) ln

(
A(ηi,t−1, si,t)

)

+
∑
t∈T

k∈K(t)

∑
sj(k),t

pV (s
j(k),t|y1:t, θ) ln f(yk|sj(k),tθ)

where sj(k),t ∈ {0, . . . , S − 1}|j(k)|, ηi,t−1 ∈ {0, . . . , |πi|},
K(t) is the set of paths from probe vehicles received during
time interval t, and f(yk|sj(k),t, θ) is the density of probability
of the travel time yk on the links of the path j(k) that are in state
sj(k),t. The mean and variance of travel times are computed by
summing the mean and variance travel times of the (partial)
links of the path. We recall that the mean and variance of travel
times on partial link i are scaled according to the function αi.
In the first sum, we remove 0 from the set T since there is no
transition prior to t0. To compute the SS, the filtering step is
performed with the particles as follows:

• Update at t: Compute the posterior distribution using the
measurements of time interval t. For each particle, ωt

v is
multiplied by the probability of each measurement given
the states ξi,tv of the particle. The weights are normalized
so that they sum to 1.

• Prediction at t+ 1: Predict the state distribution for time
interval t+ 1 using the transition probabilities. For each
link i and each particle v, we sample the state ξi,t+1

v given
the states ξπi,t

v (or any function of the states such as the
sum of the congestion states) of its neighbors at time
t according to the transition probabilities, i.e., the state
si,t+1 is chosen with probability A(si,t+1|ξπi,t

v ).

This algorithm is known as a sequential importance sampling
(SIS) particle filter [2]. A common problem with the SIS parti-
cle filter is the degeneracy phenomenon [15], [17]. After a few
iterations, all but one particle have negligible weights. A large
computational effort is devoted to updating particles whose
contribution to the posterior distribution is almost zero. To
reduce the effects of degeneracy, we resample the particles after
the update step. The modified algorithm is known as sequential
importance resampling or sampling importance resampling.
To resample the particles, V particles are successively chosen
randomly (with replacement) with a probability equal to its
weight (the weights sum to 1). The new set of particles all
have a weight equal to 1/V and is used to compute the a priori
probability distribution of the states at time interval t+ 1.
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Fig. 5. Resampling algorithm: Each particle is represented by a circle with a diameter proportional to its weight. Each particle is chosen with a probability
proportional to its weight, put in the new set of particles with weight 1/V , and then replaced. This process is repeated V times. The intuition is that particles with
a large weight are likely to be chosen several times, whereas particles with a small weight might not be present after the resampling step.

C. M Step: Update of the Model Parameters

The M step maximizes the expected complete log likelihood
with respect to θ, representing the parameters of both the
dynamics (transition probability matrices Ai, i ∈ I) and the
observations (parameters of the travel-time distributions, which
are conditioned on the state of the link). Given the structure of
the complete log likelihood, this optimization can be indepen-
dently performed for each transition probability matrix Ai and
for the parameters of the joint Gaussian distribution. Note that
because travel-time observations may span several links, the
estimation of the travel-time distribution couples all the links
of the network.

• The transition probability matrices are updated by max-
imizing with respect to the entries of Ai under the con-
straint that Ai is a stochastic matrix (all the lines have
nonnegative entries and sum to 1). For the line j repre-
senting the transition probability when the neighbors are
in state m ∈ {0, . . . , S − 1}|πi|, we have

Ai(m, s) ∝
∑

t∈T \{0}

pV (s
i,t = s|sπi,t−1 = m, y1:t, θ)

where the proportionality constant is computed for all
m such that

∑
s A

i(m, s) = 1. A similar expression is
obtained if the transitions depend on any functions of the
states, such as the number of undersaturated neighbors.

• Given the discrete state of link i at time interval t, the
travel time on link i, i.e., Y i,t, is normally distributed.
Remember that the pdf of a partial travel time is com-
puted from the pdf of a link travel time using the scal-
ing function αi(·, ·) shown in Section III, although the
dependence does not explicitly appear for notational sim-
plicity. The travel times are independent RV: Given the
state s of the network at time t, Y I,t is a multivariate
Gaussian variable with mean μs = (μi,si i ∈ I) and co-
variance Σs = diag((σi,si)2 : i ∈ I), where si is the ith
coordinate of s and represents the state of link i. The
M step updates the mean μ = (μi,s i ∈ I, s ∈ {0, . . . ,
S − 1}). We also use the notation Σ = diag((σi,s)2 : i ∈
I, s ∈ {0, . . . , S − 1}). It is the solution of the following
optimization problem:

minimize
μ∈R|S|×|I|

∑
k t∈T

k∈K(t)

∑
sj(k),t

pV (s
j(k),t|y, θ)

×(yk − μsj(k),t

)T (Σsj(k),t

)−1(yk − μsj(k),t

).

Given that Σsj(k),t
is positive definite for all k, the objective

function is convex in μ. However, the objective function is not
jointly convex in μ and Σ, and we only optimize on μ; the
variances are estimated once at the beginning of the algorithm
using a Gaussian mixture with two components. The number
of variables grows linearly with the number of links. We add
constraints to limit the feasible set to physically relevant values
and implement an interior point algorithm [6].

Algorithm 1 Maximum likelihood estimation of the param-
eters of the dynamic and observation models.

Initialize the parameters: (μi,s, σi,s)i,s, (Ai)i.
EM algorithm for parameter estimation in DBN
while The algorithm has not converged do

E Step (Section IV-B)
Initialize the E Step: Simulate samples with weight
ωv = 1/V representing the state of the network
at the initial time given the initial state probabilities.
for t ∈ T do

Update: For each travel-time observation, multiply
the weight of each particle with the probability
of the observation given the state of the particle:
ωv ← ωv

∏
k fYk

(yk|ξj(k),tv )
Normalize: divide the weight of each particle by the
sum of the weights.
Resample the particles to avoid degeneracy (see
Fig. 5 and details in [2], [33]).
Predict: For each link i and each particle v, sample
the state at time interval t+ 1 using the transition
probabilities Ai.

end for
M Step (Section IV-C)
Update the transition probabilities Ai, i ∈ I .
Update the parameters of the observation model.

end while

V. EXPERIMENTS

The model formalizes an intuitive representation of the
propagation of congestion throughout the network. This paper
proposes a learning algorithm of the dynamics of traffic on a
network and a real-time estimation framework. Our numerical
results are organized as follows. First, we validate the use of
the model shown in Section III, which is denoted as the density
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Fig. 6. Subnetwork of San Francisco used for validation.

model, to derive temporal averages of the probability distribu-
tion of vehicle locations and use it for scaling partial travel
time. Second, we validate the DBN presented in this paper.
Using cross-validation, we test the estimation and prediction
accuracy of the model for different time horizons. We compare
our results to a baseline model and investigate how the use of
the density model improves the results. We also validate the
pdf of travel times learned by the model. The estimation of
the travel-time distribution (rather than mean values only) is
crucial in arterial networks to accurately describe the variability
of travel times.

A. Validation of the Density Model

Experimental setup: We use data collected by one of the
feeds of the Mobile Millennium system: a fleet of 500 vehicles
reporting their location every minute in San Francisco, CA.
This paper focuses on a subnetwork of San Francisco (see
Fig. 6) with 815 links and 527 intersections (more than 12.6 km
of roadway). A historical interval is a tuple consisting of a day
of the week, a start time, and an end time. For each historical
interval and each link, we aggregate the locations reported by
the vehicles and learn the parameters of the density model.
We focus our numerical results on 15-min intervals represent-
ing Tuesdays from 4 P.M. to 8 P.M., i.e., (Tuesday, 4 P.M.,
4:15 P.M.), . . ., (Tuesday, 7:45 P.M., 8 P.M.).

Description of the statistical test of the model:
For each link and each historical interval, we use the
Kolmogorov–Smirnov (K–S) statistics to test if the locations
of the probe vehicles are distributed according to the density
model [39]. The K–S statistic is computed as the maximum
difference between the empirical and the hypothetical cdf
(density model). In contrast with other tests (e.g., T-test that
tests uniquely the mean or the chi-squared test that assumes
that the data is normally distributed), the K–S test is a standard
nonparametric test to state whether samples are distributed
according to a hypothetical distribution. We use this test to
accept (or reject) the null hypothesis H0: “The measurements

TABLE I
OUTCOME OF STATISTICAL TESTS

TABLE II
PERCENTAGE OF POSITIVE K–S TESTS FOR DIFFERENT VALUES OF α

AND THE TWO HYPOTHESIS (DENSITY MODEL OR

UNIFORM DISTRIBUTION)

of probe vehicles are distributed according to the density
model.” When performing a statistical test, four situations
described in Table I arise. The performance of a statistical test
is defined by its statistical significance (1 − α, where α is the
probability to reject H0 when it is actually true) and statistical
power (1 − β, where β is the probability to accept H0 when
it is actually false). The p-value is used to decide if we accept
or reject the null hypothesis H0. Low p-values indicate that
the data do not follow the proposed distribution. We reject
hypothesis H0 at the α significance level if the p-value is
smaller than α and accept it otherwise. The parameter α is
commonly set to values ranging from 0.001 to 0.1 and often
set to α = 0.05. Smaller levels of α increase confidence in the
determination of significance but increase the risk of Type II
errors, and therefore have less statistical power. The K–S
test has a probability of Type II error β that tends to zero as
the number of samples tends to infinity. Since the number of
samples is finite, we maintain the power of the statistical test
by 1) not testing links that do not have enough measurements,
2) experimenting with different levels of significance, and
3) reporting the p-value for each decision.

We want to validate the capability of the density model
to properly scale travel time on portions of arterial links. In
particular, we want to show that vehicles are not uniformly dis-
tributed along the link since they are more likely to experience
delay close to the downstream intersection. To illustrate this
reasoning, we also perform the K–S test with a null hypothesis
being that measurements are uniformly distributed along the
link. We compare the results of the test on both hypotheses
in Table II.

The results indicate that, for a majority of arterial links, the
average location of vehicles is an RV that follows the density
model. The spatial distribution of vehicle location is better
represented by the density model than by a uniform distribu-
tion. A graphical representation of the data provides valuable
qualitative information: For different links of the network, we
represent the cumulative locations reported by the vehicles.2 We

2The cumulative locations are computed as follows: 1) We order the locations
reported by the probe vehicles; and 2) we plot the points (xi, i/N) for i =
1 . . . N , where N is the number of locations collected for the link and historic
interval, and xi is the ith location on the link (in meters from the upstream
intersection).
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Fig. 7. Empirical and proposal cdf of the average vehicle locations. (Top)
Link with a p-value equal to 0.09. The model predicts a sharp increase in the
density of measurements toward the downstream extremity of the link, but no
measurements are received on the last 15 m of the link. The digital map does not
model the width of the road or the intersection, which might explain the absence
of measurements on the last 15 m. (Bottom) Link with p-value equal to 0.33.
The model learns the characteristics of the distribution of vehicle locations.
We read an estimate of the historical queue length (around 30 m) that provides
information on the average congestion of the link.

Fig. 8. Detecting signal locations using the average spatial distribution of
vehicles. The figure show an example of a very low p-value for a link of the
network. Analyzing the results, we realized that a signal was missing in the
database, explaining the poor fit of the model.

also represent the empirical (Kaplan–Meier) cdf [32] and the
proposed cdf. In Fig. 7, we show the cumulative distributions
obtained for two links of the network during the first historical
interval. The first link shows a good qualitative fit. However,
the p-value is only 0.091. The map discretization does not take
into account the width of intersections and may be the reason
why no measurements are received on the last 15 m of the
link. The second link has an average p-value. In both cases, the
data follows the sharp increase in the density of measurements
close to the downstream intersection, as predicted by the model
because of the presence of a traffic signal. The model also
provides an estimate of the historical queue length on each
link of the network that can be used for planning and network
congestion analysis.

The analysis of the links with low p-values is also informative
and valuable. Fig. 8 shows the result for a link with a p-value
equal to 6.8 × 10−4. We expect sharp increases in the density
of measurements to occur upstream of traffic signals. The map
database, provided to us by NAVTEQ, contains attributes of the
transportation network, such as road characteristics, presence of
traffic lights, and so on. On this link, the cumulative distribution
of vehicle location exhibits two important increases, whereas
only one signal was present in the map database.

Analyzing the location of the link in Google Street View, we
confirmed that there was a signal that was not in the database.
With the corrected information, we updated the proposed dis-

tribution and obtained a p-value equal to 0.29. A potential
application of the algorithm is the automatic detection of traffic
signals from probe data [24] but is not developed in this paper.
Other sources of poor fitting are due to specific behaviors of
the taxi, such as waiting in front of major hotels, which can be
filtered, when considering successive locations of a taxi.

B. Validation of the Dynamic Bayesian Modeling

As probe vehicles report their location periodically in time,
the duration between two successive location reports xs and
xe represents an observation of the travel time of the vehicle
on its path from xs to xe, i.e., the realizations yk of the RVs
Yk. A map-matching and path-inference algorithm [30] that
combines models of GPS emissions and of drivers’ behavior
into a conditional random field, filters out GPS noise, maps the
GPS measurements to the road network, and reconstructs the
most likely set of links traversed by the vehicle.

In our case study, we focus on learning the model parameters
on Tuesdays from 4 P.M. to 8 P.M. in the subnetwork of
San Francisco depicted in Fig. 6. We use 5 min as the time
discretization Δ in the graphical model shown in Section II.
We assume that, conditioned on the state of the links of the
network, the travel times are independent Gaussian variables.
The choice of a Gaussian distribution may restrict the flexibility
of the model to capture unique traffic characteristics, but it is
more computationally efficient in practice. In particular, the
model relies on travel times from probe vehicles that typically
traverse several links between successive observations. The
travel time on the path is a sum of independent RVs, and its pdf
is computed as the convolution of the pdf of the link travel times
on the path. If the link travel times are normally distributed, the
computation of the convolution is straightforward, whereas it
requires numerical algorithms, if otherwise. Finding tractable
approximation methods for using traffic-theory-inspired travel-
time distributions is the subject of ongoing work [26]. We use
the density model to compute the pdf of partial link travel times
from the pdf of link travel times.

To validate the use of the DBN, we assess the estimation
and prediction accuracy of the model. In traffic estimation (or
prediction), access to ground-truth data is rare as it requires
the monitoring of each vehicle on the entire network for the
duration of the estimation. Instead, cross-validation [34] is
commonly used in the machine learning community to assess
how the results of a statistical model generalize to an inde-
pendent data set, which is not used to develop the model but
assumed to follow the same model. For each time interval,
we randomly partition the available data (travel-time measure-
ments of the probe vehicles) into complementary subsets. We
learn the parameter of the model on one subset (training set)
and validate the performance of the model on the other subset
(validation or testing set). The training set constitutes 70% of
the available data, and the remaining 30% is used for validation.

Estimation and prediction errors: We compare the travel
times predicted by the model with the travel times reported by
the probe vehicles and compute the average l1 error. Given a
set of observations yk, k ∈ K(t) received at time interval t and
corresponding estimates (predictions) ŷk, the average lp error
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Fig. 9. Evolution of the estimation and prediction of the percentage l1 error
on the validation data set.

ep is given by ep = (
∑K(t)

k=1 |yk − ŷk|p/|Y|)1/p. The error is
typically normalized by the average travel-time measurements
y (time between successive measurements), and we report
the percentage of error ẽp = ep/y. Without a reference, these
values are hard to interpret: Travel times on arterial networks
have a high variance due to, in particular, the presence of traffic
signals [27]. Under similar traffic conditions, the travel times of
vehicles on an arterial link significantly vary depending on the
time at which the vehicle entered the link and the corresponding
waiting time at the signal. To improve interpretability of the
results of the model, we compare it to a baseline model: a time-
series model adapted to probe vehicle data. If probe vehicles
sent their travel times between defined positions, time series
could be applied to estimate the travel time between these
positions. However, no two distinct vehicles report their travel
time between the same locations. We propose a baseline model
that adapts the traditional time series approach to probe-vehicle
data. Travel times are decomposed onto the links of the path,
and partial link travel times are scaled onto link travel times.
We then use a moving average estimation. We also validate the
use of the density model to compute partial link travel times by
comparing the errors of the DBN model with and without the
density model (scaling of partial link travel times using the
fraction of the link traversed). To study the importance of
the DBN structure, we consider a model, which is denoted as
self only, with no spatial dependence: In the 2TBN, the edges
representing the dynamics only connect the same links. To
show the generality of the spatial dependence allowed by the
framework, we consider a model, which is denoted as not self,
where we remove same link edges from time intervals t to t+ 1
in the 2TBN in Fig. 2.

Fig. 9 compares the results of the proposed model (estimation
and 15-min forecast capabilities) with the baseline model. We
notice a significant improvement in the percentage of error
compared with the baseline model. The prediction decreases
with the horizon of prediction but remains better than the
baseline. Note that the baseline model does not have prediction
capabilities.

Table III compares the results of the DBN with or without
the density model and validates the use of the density modeling
to scale partial travel times and compute the pdf of travel
times on partial links. The results also validate the short-term
prediction capabilities of the DBN (both with and without the
density modeling) and underline the importance of the rich
DBN structure, as shown by the better results of the model
compared with simpler DBN structures (not self and self only).

TABLE III
PERCENTAGE OF l1 ERROR OF THE MODEL COMPUTED ON A VALIDATION

DATA SET TO TEST THE ESTIMATION AND PREDICTION

CAPABILITIES OF THE MODEL

Validation of the estimated travel-time distributions: The
algorithm produces more information than a single mean travel
time: 1) It characterizes the pdf of travel times on the net-
work; 2) it estimates the probability of congestion pi,t of each
link i and time interval t; and 3) it provides the parameters
of the Gaussian distributions (μs,i, σs,i). The distribution of
travel times on any path j(k) can be sampled and numerically
approximated using algorithm 2. We use 1000 samples in the
following. We define ζα as ζα = {y ∈ R : P(yk ≤ y) = 1 −
α/2,P(yk ≥ y) = (1 + α)/2}. The probability that yk is in
interval ζα is α. For a Gaussian distribution, ζ0.68 (resp. ζ0.95)
is the interval centered around the median of length two (resp.
four) standard deviations. If the estimation of the travel-time
distribution is exact, the percentage of points in ζα is equal to
α. The comparison of the percentage of points in ζα with α
assesses the goodness of fit of the travel-time distributions with
the testing data (see Fig. 10).

Algorithm 2 Travel-time sampling

ŷk = 0 % Initialize the path travel-time sample
for l = 1 : j(k) do

r = rand(); % Choose the congestion state
if r < pc,l then
g = μ0,l + σ0,lrandn()
ŷk = ŷk + g % Add the sampled link travel time
to the path travel time

else
g = μ1,l + σ1,lrandn()
ŷk = ŷk + g % Add the sampled link travel time
to the path travel time

end if
end for

We study the evolution of the percentage of points in ζα for
different values of α over the validation period. The percentage
of points in ζα varies over time but remains close to its theoret-
ical value (α), as shown on the left side of Fig. 10. On the right
of Fig. 10, we represent the percentage of points in ζα (averaged
on the entire validation period) as a function of α. For all values
of α, the percentage of points in ζα is slightly inferior to α. The
difference between the theoretical and result curves is mostly
due to small inaccuracies in the estimation of the mean and/or
underestimation of the variance of the distribution. Note that if
the curve produced by the model (dashed line with circles) was
over the theoretical line, it would indicate an overestimation of
the variance.
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Fig. 10. Validation of the travel-time distributions computed by the model. (Left) Evolution of the percentage of points in ζα for α ∈ {0.7, 0.9, 0.95}.
(Right) Comparison of the percentage of points contained in ζα with the theoretical value.

VI. CONCLUSION AND DISCUSSION

Sparsely sampled probe vehicles come as a very promising
source of data to develop ubiquitous traffic management sys-
tems on arterial networks. We have presented an algorithm that
faces specific challenges of probe-vehicle data. In particular,
we have addressed the following issues that emphasize the
novelty of the estimation technique: 1) The location of mea-
surements and quantity of measurements received in an area
are unknown prior to receiving the measurements; 2) the travel-
time measurements may span multiple links; and 3) the paths
may include partial links for which pdf of travel times must be
computed.

The algorithm leverages the massive amounts of data his-
torically available to learn the dynamics of congestion on
the network using an EM algorithm. Modeling assumptions
on the observation model (independent travel times normally
distributed) and the state dynamics (evolution depending on
the state of the neighbors) maintain the tractability of the
algorithm. In real time, the traffic conditions are estimated using
streaming data. The historical training provides robustness to
the model when little or no data are available in real time
and provides short-term prediction capabilities. The algorithm
significantly improves the estimation capabilities of a baseline
time-series algorithm adapted to probe-vehicle data. The use
of the density modeling to estimate partial link travel times
from link travel times also provides an improvement compared
with an approach consisting in scaling partial link travel times
proportionally to the length of the partial links. Moreover, the
algorithm estimates the pdf of travel times on the network
rather than the mean travel times only, which is a valuable
information given the variability of travel times on arterial
networks.

The DBN provides the flexibility to adapt to the specifics of
the data received and/or the requirements of the estimation by
adapting some of the assumptions.

• The time discretization Δ is chosen as a tradeoff between
the sparsity of the data and the information that can be
reconstructed (fixed to 5 min in the numerical results).
This time step can be adapted if more precise information
is available (or increased if little information is available
and if traffic conditions are known to have slow dynamics
in the region and time period of interest).

• The state of traffic of each link is a discrete RV, on
which depends the distribution of travel times. The number
of traffic state is not theoretically limited and may not

be the same for all the links of the network. Increas-
ing the number of states implies learning a significantly
larger number of parameters to represent the dynamics
of traffic on the network: parameters of the travel-time
distribution for each state and each link of the network
and parameters of the transition matrix representing the
congestion dynamics of each link. As a tradeoff between
the information provided by the probe-vehicle data and
the complexity of the model, we have chosen a binary
representation of traffic states and underline that the al-
gorithm can be readily applied with a higher number of
states.

• Conditioned on the discrete congestion state, the link
travel times are RV, chosen to be normally distributed
in this paper. The use of Gaussian RVs offers impor-
tant model refinement possibilities (without increasing the
computational complexity). First, the pdf of travel times
on a path is analytically computed (conditioned on the
state of the links on the path) as the sum of indepen-
dent Gaussian variables. Second, the independence of link
travel time, conditioned on the state of the corresponding
links, can be interpreted as modeling link travel times on
the network as a multivariate Gaussian RV with a diagonal
covariance matrix. Allowing nonzero extradiagonal entries
models correlation between the travel times on different
links. However, Gaussian distributions do not characterize
specific traffic features as distributions derived from a
hydrodynamic model of traffic do [27].

A statistical model derived from hydrodynamic and horizon-
tal queuing theory can be used in a DBN framework [26]. It pro-
vides interesting results for estimating the dynamics of queues
and traffic parameters, such as signal timing, but requires more
computation time and system implementation difficulties such
as the implementation of global optimization solvers to estimate
the parameters of the travel-time distributions.
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