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Abstract— An inverse modeling algorithm is developed to
reconstruct the state of traffic (velocity field) on highways
from GPS measurements gathered from mobile phones trav-
eling on-board vehicles. The algorithm is based on ensemble
Kalman filtering (EnKF), to overcome the nonlinearity and
non-differentiability of a distributed highway traffic model
for velocity. The algorithm is implemented in an architecture
which includes GPS enabled phones and a privacy aware
data collection infrastructure based on the novel concept of
Virtual Trip Lines (a technology developed by Nokia). The data
collection infrastructure is connected to a traffic estimation
server running the EnKF algorithm online, and the estimation
results are broadcast in real time back to mobile phones and
to the internet. Results from the algorithm are presented using
data collected during the February 8, 2008 Mobile Century
experiment, in which a shock wave from a five-car accident
is captured. A prototype estimation algorithm and system were
run during the experiment, and highlight that measurements
from as few as 2% to 5% of the commuting public are sufficient
to accurately reconstruct the highway traffic state.

I. INTRODUCTION

A. Smartphones as Lagrangian Sensors

With the standardization of GPS in mobile devices such

as cell phones, and their increasing presence in vehicles in

traffic, we are entering a new era of transportation system

monitoring capabilities. The increased accuracy of GPS

provides an appealing alternative to traditional approaches

heavily relying on cell tower information, in particular

triangulation and trilateration [1]. While tower monitoring

approaches have proved to be useful to assess travel time for

large spatial scales [2], [3] their performance for local traffic

flow estimation in complex road network scales have been

disappointing because of the lack of precision in the position

and speed measurements. In contrast, as demonstrated with

ongoing experiments [4], [5], GPS has the potential of mak-

ing significant breakthroughs in highway traffic monitoring.

A fundamental challenge of using smartphone data (geo-

referenced velocity) for highway traffic estimation is the

development of a model for the evolution of traffic velocity.

While GPS provides accurate speed measurements, accessing

densities (on which most traffic flow models rely) from
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smartphones is currently not possible, because of the dif-

ficulty of creating empirical models capable of extrapolating

the penetration rate of GPS equipped smartphones traveling

in cars to vehicle density. This challenge is addressed by

using a new model for the evolution of velocity, called CTM-

v, in the form of a discrete time nonlinear dynamical system.

The second fundamental challenge in using smartphone

data is the incorporation of Lagrangian measurements into

a flow model. The term Lagrangian specifically refers to

the fact that measurements are gathered from sensors which

move along a trajectory in the field which is being sensed

(the velocity field in the present case), rather than sampling

at a fixed location. This is in contrast to Eulerian sensing,

which refers to fixed sensors which collect measurements at

predefined points. Classical traffic monitoring infrastructure

relies on Eulerian sensors, for example loop detectors [1],

[6], RFID transponders, radars and cameras [7].

The present article proposes a method capable of incor-

porating any Lagrangian velocity measurement in a velocity

flow model. As will be explained later in the article, the

current architecture on which the method is demonstrated

produces measurements according to a specific privacy aware

sampling procedure designed by Nokia. However, the pro-

posed method works with any arbitrary sampling procedure

(for example random sampling as in [8] or full trajectory

sampling [9]).

B. Lagrangian Data Assimilation for Distributed Velocity

Fields

The velocity field v(x, t) on a highway segment x ∈ [0, L]
is a distributed parameter system in space. Vehicles labeled

by i ∈ N travel along the highway with trajectories xi(t),
and measure the velocity v(xi(t), t) along their trajectories

(Lagrangian measurements). These measurements (discrete

in time and space) are used to reconstruct or estimate the

function v(x, t), in a process referred to as data assimilation

or inverse modeling [10]. Fig. 1 illustrates the process: the

evolution of the velocity field v(x, t) is a surface, which

is to be reconstructed. A subset of the vehicles is sampled

along their trajectories. For illustration purposes in the figure,

four vehicles are sampled at time t = tm, which produces

four points on the v(x, t) surface which can be used by the

algorithm to reconstruct the surface.

Data from mobile devices can be obtained through a

variety of sampling strategies, including a new paradigm

developed by Nokia, called Virtual Trip Lines (VTLs), which

act as virtual triggers for sensors on mobile platforms.

The technique used to perform data assimilation with this

sampling is described in Section II, which uses an algorithm
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Fig. 1. Illustration of the distributed velocity field v(x, t) to be recon-
structed from Lagrangian samples. Four samples vi(xi(t), t) are shown at
t = tm, from vehicles i transmitting their data (indicated by up-arrows
above the vehicles).

based on ensemble Kalman filtering (EnKF). The section

addresses the specific problem of data assimilation for the

Cell Transmission Model for velocity (CTM-v), which is

a velocity evolution model used in this article. Section

III presents the system implementation used for gathering

smartphone GPS data in a privacy aware environment, and

addresses the data sampling mechanism (Section III-A) and

the system architecture (Section III-B). Finally, Section IV

presents the results from an unprecedented experiment re-

alized on February 8, 2008, nicknamed Mobile Century for

its 100 vehicles driving 10 mile loops for 8 hours, realizing

a 2% to 5% penetration rate of equipped vehicles on the

highway.

II. TRAFFIC ESTIMATION

A. Problem Statement

The goal of this article is to build an estimator to re-

construct the evolution of the velocity field on the highway.

The highway transportation network is modeled as a directed

graph consisting of vertices ν ∈ V and edges e ∈ E . Let Le

be the length of edge e. The spatial and temporal variables

are x ∈ [0, Le], and t ∈ [0,+∞) respectively. In order to

model traffic flow across the network, we define a junction

j ∈ J as a tuple Jj := (νj , Ij ,Oj) ⊆ V×E×E , consisting

of a single vertex νj ∈ V , a set of incoming edges indexed by

ein ∈ Ij , and a set of outgoing edges indexed by eout ∈ Oj .

The objective is to estimate the velocity field at discrete

points i = 0 to i = imax in space at each time step n denoted

by: vn :=
[

vn
0,e0

, · · · , vn
imax,e0

, · · · , vn
0,|E|, · · · , vn

imax,|E|

]

for all

edges e ∈ E in the network, using velocity data obtained

from the mobile devices.

B. Related Work

Kalman filtering (KF) has been widely used for traffic

state estimation in earlier studies in its various forms. In

[11], mixture Kalman filtering (MKF) was applied to the Cell

Transmission Model (CTM) [12] to estimate traffic densities

for ramp metering. The nonlinear CTM was transformed into

a switching state space model, which enabled the use of a

set of linear equations to describe the state evolution for the

distinct flow regimes on the highway (e.g. highway is in

free-flow or congestion). In [7], a Kalman filter was used

to incorporate Lagrangian velocity trajectories into a density

based CTM for highway traffic. A real–time algorithm for

traffic estimation based on the extended Kalman filter (EKF)

using a second order flow model was used in [13]. A key in-

gredient of this work is the differentiability of the numerical

scheme employed for the second order model of traffic used

by the authors, a feature which our model does not possess.

Other treatments of traffic estimation include adjoint based

control and data assimilation in [14], [15], unscented Kalman

filtering (UKF) in [16] and particle filtering (PF) in [16],

[17], [18].

A common feature for CTM based methods [7] described

above is that the evolution of traffic state (typically density,

not velocity) relies on a set of linearized equations which

are needed in order to use the KF or EKF techniques. On

the other hand, the PF technique is a nonlinear scheme

for solving the Bayesian update problem, but has a higher

computational cost. The approach proposed in the present

work employs ensemble Kalman filtering (EnKF) [19], which

enables the use of fully nonlinear evolution equations such

as the discretization of the new flow model implemented in

this article, while exploiting its linear observation equation.

Unlike UKF, which uses a deterministic sampling technique,

EnKF uses Monte Carlo integrations to maintain the nonlin-

ear features of error statistics. Furthermore, by employing a

fully nonlinear velocity evolution model, no highway mode

selection algorithms or simplifications to the equations are

needed in this work.

Earlier studies have specifically approached the highway

traffic estimation problem using cell phone network data.

In [20], an EKF was applied to a second order model of

vehicle density and velocity, and validated in simulation.

In practice, the modeling assumption that network providers

can accurately provide both density and flow of the cellular

phones currently on the highway of interest is limiting,

especially in dense roadway networks. The work [21] uses a

fully nonlinear particle filter to assimilate the mean velocity

of a vehicle traveling between cell tower hand-off points, but

also suffers from the same practical limitations in dense road

networks.

C. Kalman Filtering

1) State–Space Model: Given the velocity field at all

points on the network at time n∆T , the velocity at time

(n+1)∆T is constructed using the CTM-v algorithm denoted

by: vn+1 = M[vn]. This algorithm consists of the following

steps. For each vertex in the network, a linear program is

solved such that strong boundary conditions are imposed on

the incoming and outgoing edges of the junction [22]. Next,

the velocity field at the ith discrete point on each edge is

updated according to a nonlinear non-differentiable numer-

ical scheme resulting from a first order scalar hyperbolic

partial differential equation, which has been transformed

from vehicle density to velocity:
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vn+1

i = V

(

V −1 (vn
i ) −

∆T

∆x

(

G̃
(

vn
i , vn

i+1

)

− G̃
(

vn
i−1, v

n
i

)

)

)

(1)

where the velocity flux G̃ (v1, v2) is given by:

G̃ (v1, v2) =































V −1 (v2) v2 if vc ≥ v2 ≥ v1

V −1 (vc) vc if v2 ≥ vc ≥ v1

V −1 (v1) v1 if v2 ≥ v1 ≥ vc

min
(

V −1 (v1) v1,

V −1 (v2) v2

)

if v1 ≥ v2

(2)

with an invertible velocity function:

v = V(ρ) =







vmax

(

1 − ρ
ρmax

)

if ρ ≤ ρc

−wf

(

1 − ρmax

ρ

)

otherwise
(3)

In the equations above, vmax (respectively ρmax) is the

maximum velocity (density) on the roadway, vc (ρc) is the

critical velocity (density) where the highway transitions from

freeflow to congestion, and wf is the maximum congestion

propagation speed.

For estimation purposes, we extend the model to

vn = M[vn−1] + ηn (4)

where ηn ∼ (0,Qn) is the Gaussian zero-mean, white state

noise with covariance Qn.

A network observation model is given by:

yn = Hnvn + χn (5)

The linear observation matrix Hn ∈ {0, 1}pn×κ encodes the

pn discrete cells on the highway for which the velocity is ob-

served during discrete time step n and κ =
∑

e∈E(imax,e + 1)
is the corresponding (total) number of cells in the network.

The last term in expression (5) is the white, zero mean

observation noise χn ∼ (0,Rn) with covariance matrix Rn.

2) Extended Kalman Filtering For Nonlinear Systems:

Two fundamental challenges arise when sensing traffic con-

ditions using mobile phones, which appear in the observation

model. The first challenge (which motivates the early parts

of this article) is that for density–based models, the state

is not observed directly. In particular, when applying the

Daganzo–Newell (triangular) velocity function (common in

the transportation literature), both the dynamical system

which describes the density evolution and the observation

model which characterizes the observations are nonlinear.

The nonlinear observation operator must be linearized at the

cost of accuracy or overcome with computationally intensive

particle filtering techniques. Instead, by developing equiva-

lent models in which the velocity is stored as the state, the

observation operator becomes linear. The second challenge is

a consequence of the motion of the sensor. The observation

model must capture the Lagrangian nature of the sensors,

whose motion is coupled with the model itself by integration

of the velocity field. Because of the high accuracy of the GPS

position measurements, the location of the observation can

be used to construct the observation operator a posteriori (i.e.

reduced to a time-varying observation matrix).

If equation (1) was differentiable in vn, so would be the

operator M[·] in (4), in which case the optimal estimate for

the state vn could be obtained using the following traditional

equations known as the extended Kalman filter:

• Forecast step (Time-update):

vn
f = M[va

n−1]

Pn
f = Mn−1

L Pn−1
a

(

Mn−1

L

)T
+ Qn−1 (6)

where ML is the Jacobian matrix of mapping M (also

known as the tangent linear model) defined as

Mn−1

L (i, j) =
∂Mi[v

n−1
a ]

∂vn
j

(7)

• Analysis step (Measurement-update):

vn
a = vn

f + Gn
(

yn − Hnvn
f

)

(8)

Pn
a = Pn

f − GnHnPn
f (9)

Gn = Pn
f (Hn)

T
(

HnPn
f (Hn)

T
+ Rn

)−1

(10)

where Pn
f (resp. Pn

a ) is the error covariance of the

forecast (analyzed) state at time n.

The initial conditions for the recursion are given by v0
a = v0

and P0
a = P0.

3) Ensemble Kalman Filter: The ensemble Kalman filter

was introduced by Evensen in [19] as an alternative to EKF to

overcome specific difficulties with nonlinear state evolution

models, including non-differentiability of the model and

closure problems. Closure problems refer to the fact that

in EKF, it is assumed that discarding the higher order

moments from the evolution of the error covariance in (6)

yields a good approximation. However, in cases in which

this linearization approximation is invalid, it can cause an

unbounded error variance growth [19]. To tackle this issue

EnKF uses Monte Carlo (or ensemble integrations). By

propagating the ensemble of model states forward in time, it

is possible to calculate the mean and the covariances of the

error needed at analysis (measurement-update) steps [23] and

avoid the closure problem. Furthermore, a strength of EnKF

is that it uses the standard update equations of EKF, except

that the gain is computed from the error covariances provided

by the ensemble of model states.

EnKF also comes with a relatively low numerical cost.

Namely, usually a rather limited number of ensemble mem-

bers is needed to achieve a reasonable statistical convergence

[23].

In traditional Kalman filtering, the error covariance ma-

trices are defined in terms of the true state as Pf =
E[(vf − vt)(vf − vt)

T ] and Pa = E[(va − vt)(va − vt)
T ]

where E[·] denotes the average over the ensemble, v is the

model state vector at particular time, and the subscripts f ,

a, and t represent the forecast, analyzed, and true state,

respectively. However, since the true state is not known,

ensemble covariances for EnKF have to be considered. These

covariance matrices are evaluated around the ensemble mean
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v̄, yielding Pf ≈ Pens,f = E[(vf − v̄f )(vf − v̄f ))T ] and

Pa ≈ Pens,a = E[(va − v̄a)(va − v̄a)T ] where the subscript

ens refers to the ensemble approximation. In [23], it is shown

that if the ensemble mean is used as the best estimate, the

ensemble covariance can consistently be interpreted as the

error covariance of the best estimate. For complete details

of derivation of the EnKF algorithm, the reader is referred

to [19].

The ensemble Kalman filter algorithm can be summarized

as follows [19], [23]:

1) Initialization: Draw K ensemble realizations v0
a(k)

(with k ∈ {1, · · · , K}) from a process with a mean

speed v̄0
a and covariance P0

a.

2) Forecast: Update each of the K ensemble members

according to the CTM-v (4) forward simulation

algorithm. Then update the ensemble mean and

covariance according to:

vn
f (k) = M[vn−1

a (k)] + ηn(k). (11)

v̄n
f =

1

K

K
∑

k=1

vn
f (k). (12)

Pn
ens,f =

1

K − 1

K
∑

k=1

(

vn
f (k) − v̄n

f

) (

vn
f (k) − v̄n

f

)T

(13)

3) Analysis: Obtain measurements, compute the

Kalman gain, and update the network forecast:

Gn
ens = Pn

ens,f (Hn)
T

(

HnPn
ens,f (Hn)

T
+ Rn

)−1

(14)

vn
a (k) = vn

f (k) + Gn
ens

(

yn
meas − Hnvn

f (k) + χn(k)
)

(15)

4) Return to 2.

In (15), an important step is that at measurement times,

each measurement is represented by an ensemble. This

ensemble has the actual measurement as the mean and the

variance of the ensemble is used to represent the measure-

ment errors. This is done by adding perturbations χn(k) to

the measurements drawn from a distribution with zero mean

and covariance equal to the measurement error covariance

matrix Rn. This ensures that the updated ensemble has a

variance that is not too low [23].

4) Large Scale Real–Time Implementation: The ensemble

Kalman filter algorithm presented in the previous section is

in a framework in which all of the unknown state variables

on each edge in the network are updated simultaneously.

This introduces the following problems. First, because the

state covariance is represented through a limited number

of ensemble members, non-physical correlations may arise.

This means that the correlation matrix may incorrectly show

correlation between distant parts of the highway network

which do not correlate in practice. Secondly, the framework

described previously requires the forecast error covariance

in (13) to be computed for the entire highway network, then

used for computing the Kalman gain in (14). When operating

on large scale networks such as the San Francisco Bay Area,

CA, the covariance matrix can easily require more than 2

GB of memory to load, creating computational limitations

for implementation.

To circumvent the above mentioned problems for prac-

tical implementation, we employ a covariance localization

method. This approach limits the correlation between the

velocity states on all edges in the network. For a given edge

e, only nearby links (upstream and downstream in the net-

work) can exhibit correlation, thereby removing correlation

across distant parts of the network. These techniques have

also been implemented for oceanography data assimilation

problems (see e.g. [24]).

For this large scale traffic network estimation problem,

localization also provides a computationally efficient way

to update the state variables at the measurement update

time in (14)–(15). Namely, due to the localization, the

computation of the covariance matrix in (13) is transformed

into a computation of numerous small localized covariance

matrices for each edge in the network. These small scale

covariance matrices are computed for each edge given its

neighboring edges on which the correlation is assumed to

be physically meaningful. Finally, this allows the distributed

solving of the update equations.

For the localization, we introduce a localization operator

Le for each edge e, which is constructed at the initialization

stage. This operator indicates which velocity states on the

other edges of the network are allowed to have correlation

with the velocity state on the eth edge. The implementation

of the EnKF algorithm described previously can be mod-

ified for localization by replacing the measurement update

equations (13)-(15) with the following sub-algorithm:

For each edge e ∈ E :

1) Using the localization operator Le, compute the

localized forecast error covariance:

Pn
ens,f,e =

1

K − 1

K
∑

k=1

Le

(

vn
f (k) − v̄n

f

)

×

(

Le(v
n
f (k) − v̄n

f )
)T

(16)

2) Analysis: Obtain measurements yn
meas,e from edges

that are indicated in Le, compute the Kalman gain,

and update the the local forecast:

Gn
ens,e = Pn

ens,f,e (Hn
e )

T
×

(

Hn
e Pn

ens,f,e (Hn
e )

T
+ Rn

e

)−1

(17)

vn
a,e(k) = Le

(

vn
f (k)

)

+

Gn
ens,e

(

yn
meas,e − Hn

e vn
f (k) + χn

e (k)
)

(18)

3) Return to 1.

It is worth noting that in practice, the operator Le does

not need to be constructed as a matrix in the computer

memory and subsequently be used to do the relatively
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readings, timestamps, the tripline ID, and direction trip line

crossing. These VTL updates are transmitted to the ID proxy

server over a secure channel.

Fig. 3. Nokia N95 client emulator used for development of our system.
The client serves both to collect data from individual devices, and to display
current traffic conditions. The colors in the circles represent the speed of
traffic (green corresponds to free flow; red is congested). (Left) Free flowing
traffic in Santa Clara, CA. (Middle) Congestion occurs in San Francisco,
CA. (Right) Bay Area regional traffic.

Note that all data packets transmitted from the mobile

device must contain the mobile device identification infor-

mation which is provided to the communication provider for

billing purposes. Thus, an ID proxy server is used to first

authenticate each client to prevent unauthorized updates, then

remove the mobile device identification information from the

data packets. It then forwards anonymized updates to the

VTL server. Since the VTL update is encrypted with the

VTL server’s public key (RSA encryption), the ID proxy

server cannot access the VTL update content. It only has

knowledge of which phone transmitted a VTL update, but

no knowledge of the phone’s position or speed information.

Thus we prevent any single entity from observing both the

identification data required by the network operator, and the

sensing data. See [27] for a more detailed description of

privacy protection in VTL based traffic monitoring.

The VTL server stores all trip lines in a VTL database and

distributes trip lines within a given region to a mobile device

upon receiving a VTL download request for that region. The

VTL server also aggregates updates from a large number of

probe vehicles in the VTL update database and pushes the

data to the UC Berkeley data server for data assimilation,

which combines the cell phone data with other data such

as loop detectors. The data server also provides the Navteq

(now owned by Nokia) NAVSTREETS digital map data to

the EnKF model. This data is essential since it contains the

roadway geometries upon which the base network for the

EnKF algorithm is constructed.

In addition to the EnKF algorithm described in this work,

numerous other estimation algorithms are run in parallel as

part of ongoing research, including arterial traffic models.

An estimate manager in the traffic estimation server monitors

the performance of the various algorithms and transmits the

results to the traffic report server. The estimates are integrated

with estimates from traffic models provided by Navteq before

being transmitted back to the mobile device.

The current VTL implementation generates approximately

1KB of update data for every two minutes per client while

driving on a major road. Assuming an average two hours of

driving per day on a major road, we expect the total data

transfer is 60KB per day. The database servers can easily

scale to large number of client updates since the bandwidth

and the total data storage demands are rather small by current

information industry standards.

IV. EXPERIMENTAL RESULTS

A. Mobile Century Case Study (February 8, 2008)

Nicknamed the Mobile Century experiment, a prototype

privacy-aware data collection system was launched on Febru-

ary 8, 2008 and used to estimate traffic conditions for a

day on I-880 near San Francisco, CA. With the help of

165 UC Berkeley students, 100 vehicles carrying Nokia N95

phones drove repeated loops of six to ten miles in length

continuously for eight hours. These vehicles represented

approximately 2% to 5% of the total volume of traffic on

the main line of the highway during the experiment.

This section of highway was selected specifically for its

complex traffic properties, which include alternating periods

of free-flowing, uncongested traffic, and slower moving

traffic during periods of heavy congestion. The section is

also covered with existing loop detectors feeding into the

PeMS system [28], which are used to assess the quality of

the EnKF estimates.

B. Implementation and Results

The network implemented for the results presented in this

article is a 7 mile stretch of I880 northbound from the Decoto

Rd. entrance ramp (south end), to the Winton Ave. exit ramp

(north end). The network model consists of 13 edges and 14

junctions (6 exit ramps, 7 entrance ramps, and one lane drop).

A total of 40 VTLs were placed on this highway segment

with an average spacing of 0.17 miles.

At approximately 10:30 am, a multiple car accident

created significant unanticipated congestion for northbound

traffic south of CA 92 (see Fig. 4). An earlier version

of the EnKF algorithm, runnionng in real-time during the

experiment, detected the accident’s resulting bottleneck and

corresponding shock wave [4]. It broadcast the speed contour

of the highway and the resulting congestion in real time [29].

In Figs. 5-8, we present a comparison of the velocity estimate

from the EnKF CTM-v algorithm using VTL data only with

the velocity estimate obtained from the PeMS system [30],

which provides loop detector data for the deployment area

and serves as benchmark for this method.

In general, the results of the EnKF estimation show good

agreement with the PeMS velocity estimate. In particular, the

VTL-based sensing coupled with the EnKF algorithm cap-

tures the main features of the congestion pattern, including

the length of the resulting queue, which extends just over two

miles at 10:52 am (see Figs. 5 and 6). This proof of concept

is an important step forward in mobile device-based sensing
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Fig. 4. Local phone logs, I880N, Feb. 8, 2008. In addition to the VTL
updates, the raw trajectory of each device was recorded locally to the
device as a backup for the data collection infrastructure for the purposes
of this experiment only. The sharp decrease in the slope (velocity) of
the trajectory corresponds to the vehicle encountering the shockwave and
entering congestion. x-axis: time in minutes past 10:12am. y-axis: postmile
between Decoto Rd. to the south (bottom) and Winton Ave. to the north
(top). Trajectories are in the direction of increasing y.

because of the sparsity of data used for the EnKF estimate.

Unlike the loop detectors which sense every vehicle in each

lane on the highway, but at fixed points in space, the mobile

device-based sensing collects data from a very small fraction

of vehicles. Furthermore, because of privacy considerations,

the vehicles are not tracked in space; only a subset of the data

logged by each device is used for estimation, sampling only

anonymous location and speed updates triggered by VTLs.

No extended vehicle-trajectory travel times are collected or

used for estimation.

Note that there are some differences in the speed estima-

tion shown in Figs. 5 and 6. In Fig. 7, the relative difference

between the EnKF and PeMS contour is shown, with EnKF

as the reference. In the free flowing regions, the relative

difference is quite small. The absolute speed difference in

this regime is shown with a dashed green line in Fig. 8

for a sample postmile of 22.8. As expected, the spikes in

high relative difference in Fig. 7 occur in the queue resulting

from the accident. The postmile with the greatest magnitude

relative difference (PM 24.6, with absolute speed difference

plotted as a dash dot red line in Fig. 7) occurs because of two

factors. First, the EnKF estimates the velocity contour at a

temporal resolution on the order of seconds, while the PeMS

estimate shown is aggregated over a five minute window.

Second, because the absolute speed in the congested regime

is small, any difference in speed is amplified. Ultimately, the

difference between PeMS and the EnKF on average is less

than 10% across the network, which highlights the potential

utility of mobile devices as a source of traffic data in the

future.

V. CONCLUSION AND FUTURE WORK

In this article, a new traffic data collection paradigm using

GPS-equipped mobile devices was implemented using a pri-

vacy aware architecture. A nonlinear time invariant dynami-

cal system forms the basis of the ensemble Kalman filtering

algorithm, which is introduced because of the nonlinearity

Fig. 5. EnKF velocity contour plot, I880N, Feb. 8, 2008. Color denotes
speed in mph, with red denoting slow moving traffic, and blue denoting
faster traffic. Vehicles travel from down to up. x-axis: time in minutes past
10:12am. y-axis: postmile between Decoto Rd. to the south (bottom) and
Winton Ave. to the north (top).

Fig. 6. PeMS velocity contour plot, I880N, Feb. 8, 2008. Color denotes
speed in mph, with red denoting slow moving traffic, and blue denoting
faster traffic. Vehicles travel from down to up. x-axis: time in minutes past
10:12am. y-axis: postmile between Decoto Rd. to the south (bottom) and
Winton Ave. to the north (top).

and non-differentiability of the model. The algorithm was

validated using data obtained from the Mobile Century field

experiment, and shows good agreement with PeMS loop

detector data, even at penetration rates below five percent.

This algorithm will be implemented next for a live system

in which both fixed loop detector data and cell phone data

is fused to produce traffic estimates in Northern California

as part of a follow-up field operational test known as Mobile

Millennium [29].
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