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EXECUTIVE SUMMARY 
 
Origin-Destination (O-D) matrices provide information on flows of vehicles traveling from 
one specific geographical area to another, and are one of the critical data inputs to 
transportation planning, design and operations. Because it is very time consuming and labor 
intensive to obtain them through household interviews or roadside surveys, significant efforts 
have been made to develop mathematical models for estimating the matrices from link 
counts, which are relatively easier to obtain. So far, up-to-date commercial planning tools  
and simulation software have provided built-in O-D estimation modules. However, most of 
these O-D estimators are only capable of estimating static O-D matrices rather than dynamic 
or time-dependent O-D matrices. The latter are pre-requisites for short-term planning 
applications and traffic operations studies.  
 
The goal of this study was to bridge the gaps between practice and theory in O-D estimation. 
In particular, this work planned to develop the methodologies for deriving time-dependent O-
D matrices for linear networks and implement them in a computer tool (a linear network is a 
stretch of highway with multiple entries and exits, where there would be no route choices 
involved).  
 
The study was divided into two parts: O-D table estimation on freeways and O-D table 
estimation on arterials.  To achieve the goal, the following tasks were performed on each part: 
 
O-D estimation on freeways: 

1. A review and comparison for determining appropriate techniques and methods 
from the literature was performed. A methodology based on Kalman filtering 
techniques was chosen, where the state vector can be either the O-D flows for 
each O-D pair or its deviation from a historical value. 

2. A methodology that identifies when traffic conditions vary and makes use of 
existing models to estimate OD flows in a linear network was implemented. The 
models were tested using real data collected from two different networks (I-80W, 
CA, and I-90E, MA) during free flow and congested conditions. An algorithm to 
detect traffic condition changes, which makes use of the speed measurements 
provided by loop detectors, was proposed. 

3. The development of a computer O-D estimator tool with a user-friendly interface 
has been started. A preliminary version of this tool is provided. 

4. A new O-D table estimation approach, based on variational inequalities, was 
proposed. This approach takes into account various levels of traffic information, 
such as link flow count, historical O-D tables, static planning O-D and observed 
path travel times. A portion of freeway SR-41 in Fresno, CA (16.7 miles) was 
used to test the approach. True O-D tables are not known, but synthetic time-
dependent O-D tables were produced. Different demand patterns were tested and 
investigated. 

 
O-D estimation on arterials: 

1. A two-step approach for estimating time-varying O-D flows for actuation-
controlled corridors with incomplete information about entering and exiting flows 
is proposed. At the first step, turning movements for each intersection are 
estimated, and then used at the second step to construct the measurement 
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equations to infer the corridor O-D flows. The proposed approach has been 
demonstrated and validated on a test-case corridor. The O-D estimator has 
subsequently been applied to a segment of El Camino Real, San Mateo, CA with 
three intersections: 28th , 27th and 25th Avenue. 

2. An empirical analysis of the O-D demand structures and examination of their 
impacts on the O-D estimation (at a single intersection level) have been 
conducted. Data from the 34th Street-University Avenue intersection in 
Gainesville, Florida in 2001, was used for this purpose. 

 
Software development: 

1. The objective of this part of the project was to implement the models and 
algorithms developed into a computer tool to allow practitioners to apply the 
proposed models and algorithms. The work realized on variational inequalities 
was not implemented, since the corresponding results will need further 
developments before they become applicable in the form of a tool. All other 
results were implemented. The software currently compute the O-D flows for 30 
seconds intervals using the Berkeley Highway Lab data used to test the freeway 
algorithm. 

2. The current version of the software is attached to this report (CD). 
 

The fundamental conclusions from this research are the following: 
 
O-D estimation on freeways: 

1. Models using the deviation of the O-D flow from an historical value (instead of 
the O-D flow directly) yield more accurate O-D estimates. The estimations match 
the actual data well. 

2. Accurate travel time estimates are not essential for the accuracy of the proposed 
method. Preliminary evidence that the accuracy of travel time estimates does not 
impact the results greatly, and a distinction between free flow and congested 
conditions is enough for the purposes of this work was shown.  

3. For the variational inequality-based approach, computational experiments showed 
that traffic counts are indispensable for O-D estimation, and that the quality of the 
results increases with the number of measurements. If the number of counting 
locations is small, the location of the sensors might be crucial for the estimation. 
Traffic counts alone are not sufficient to obtain accurate O-D demand estimates. 
Historical time-dependent O-D demands can drastically improve the quality of the 
estimates. Static O-D tables can also be used in the estimation process.  Finally, 
counter to our expectations, path travel times do not contribute significantly to 
improving O-D demand estimates. 

 
O-D estimation on arterials: 

1. For a single intersection, the proposed two-step approach outperforms the 
conventional generalized least squares approach. Moreover, the former is more 
efficient as well. As in the freeway case, both approaches would benefit from 
accurate prior knowledge or partial O-D information. 

2. At the corridor level, the estimator is able to track the trend of time-varying O-D 
flows and produce estimates relatively close to the actual values in an average 
sense. The estimator is less sensitive to the changes of the O-D flows and thus 
estimates are generally not as fluctuating as the true values. The reason is that the 
proposed approach at the corridor level only makes use of the localized 
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x 
 

information. By doing so, the problem can be decomposed to simplify the 
formulation and improve largely the computational efficiency.  

3. Since real O-D observations are not available from El Camino Real, the accuracy 
of the estimates can not be verified. However, the application does demonstrate 
that the estimator is able to readily work with actual field loop data. 

4. The comparison of estimators with different state variables suggested that the 
estimator with state variable of O-D flow outperforms the others in the particular 
case investigated. We fully recognize that O-D patterns would be site-dependent, 
and the results of this case study should not be generalized. 

5. Demands or flows at different O-D pairs may possess different structures, which 
are very often not first-order auto regressive.  Incorporating all of these “true” 
structures into the Kalman filtering algorithm makes the model formulation very 
complicated. On the other hand, the simple first-order auto regressive assumption 
produces acceptable results in our empirical experiments and previous studies. 
Therefore, unless there are sufficient O-D data that suggest otherwise, one might 
simply use the state variable of O-D flows or splits and assume that they are first-
order auto regressive.  

 
Our recommendations for future work are as follows: 

1. Alternative sources of measurements. Can measurements from probe vehicles 
(already available, for example FasTrak transponder data) be incorporated in our 
estimation algorithms? Partial O-D information is now directly available from 
FasTrak readers at a high penetration rate in the Bay Area and could increase the 
accuracy of O-D estimations. 

2. Sensor placement algorithms. For limited numbers of sensors to be deployed, 
where should the sensors be deployed to provide maximal estimation accuracy? 

3. GPS-based measurements. Investigation of the possibility of integrating market 
driven information such as cellular phone data into the estimation algorithms. The 
applicability of this new type of GPS-based information has implications which 
goes beyond O-D estimation, in particular for: 

a. Travel time estimation for changeable message signs 
b. Congestion estimation for ramp metering 
c. High quality information for HOV lanes 

The use of GPS based cellular phone measurements could: 
a. Improve the quality of estimations for the above quantities, 
b. Provide Caltrans with a richer database, additional to PeMS and FasTrak, 
c. Provide Caltrans with measurements where infrastructure is not available, 
d. Progressively become an alternative to costly loop detector deployment or 

maintenance. 
This recommendation is in our view the most important, as it provides Caltrans 
with a cost efficient long term alternative to loop detectors. The progressive 
penetration of the cellular phone market by GPS equipped devices is driven by 
competition between cellular phone companies. Major cellular phone companies 
are already developing their own data retrieval infrastructure, from which Caltrans 
could potentially benefit everywhere (not only in urban or suburban areas).  
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1.1 Introduction

Origin-Destination (OD) matrices1 are needed for short-term planning applications and
for operational studies. In particular, they can be used to develop some control strategies
of the network under study in order to improve its performance. For instance, a better
traffic signal coordination may be achieved on an urban corridor, an adaptive ramp
metering strategy can be developed on a freeway, or they can be used to provide drivers
with better information.

The aim of this project is to implement an algorithm to compute dynamic OD matrices
on a linear network2. In particular, our focus is the freeway case.

The approach used here is based on the approaches developed in [1] and [2]. These
approaches (which are quite similar) estimate OD flows assuming the network is in the
same traffic condition. That is, there is no shockwave in the network. The approaches
describe the system with a set of linear state-space equations. Some parameters of these
equations will depend on the traffic conditions along the network (i.e. they will change if
the network is under free-flow or congested conditions). For this reason, we first identify
the traffic conditions, select the corresponding state-space equations and solve them until
a change in the traffic conditions is detected.

If the traffic conditions are not the same along the whole network, the model will
not work properly. The reason for this is that the system would not be linear, and
thus, it would not be properly described by a set of linear state space equations. As a
consequence, during this transition period3 (which should not be very long) the model
will probably not yield good estimates.

The rest of this document is organized as follows: approaches adopted to represent
linear systems with state-space equations will be briefly described on Section 1.2. Section
1.3 describes the implementations of the approaches presented in Section 1.2 using real
data and their results. These implementations assume the same traffic conditions all the
time (i.e. there is no need to identify traffic conditions in order to select the appropriate
state-space equations). Section 1.4 will address the identification of traffic conditions.
A brief discussion regarding network size is given in Section 1.5. Finally, Section 1.6
presents the main conclusions of this work.

1.2 Methodology

This section presents the notation used and describes how the system is represented
under the two approaches.

1Element ij of an OD matrix is the number of vehicles going from i to j during some time interval.
2A linear network is a network where there is no route choice for any OD pair. For instance, a

highway with on- and off-ramps or an urban arterial can be modeled as a linear network.
3Period when a shockwave is in the network.
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1.2.1 Notation

• N : Set of nodes in the network,

• L : Set of links in the network,

• nL: Number of links in L that are equipped with counting stations (each station is
denoted by l ∈ L),

• nOD: Number of OD pairs,

• xrh: Number of vehicles between the r-th OD pair that left the origin in time
interval h,

• xH
rh: historical estimate for xrh,

• ∆xrh: Deviation of xrh from the corresponding historical estimate,

• xh: nOD × 1 vector of all OD flows at time interval h,

• xH
h : Associated historical OD flow vector,

• ∆xh: Vector of deviations (= xh − xH
h ),

• ylh: Observed traffic counts at link station l at time interval h,

• yh: nL × 1 vector of such counts,

• yH
h : associated historical link count vector,

• ∆yh: Vector of deviations of all counts (= yh − yH
h ),

• fqh: nOD×nOD matrix of coefficients describing the effects of flows at time interval
q on flows at time interval h,

• wh: nOD × 1 vector of random errors in the state transition equation (defined in
the following subsection),

• Q: corresponding covariance matrix,

• p : maximum order of the autoregressive model in the state transition equation,

• aqh: nL × nOD assignment matrix describing how OD flows xq contribute to link
flows yh,

• vh: nL × 1 vector of measurement errors in the measurement equation (defined in
the following subsection),

• R: corresponding covariance matrix,

• u: maximum number of time intervals needed to travel between any OD pair.
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1.2.2 System Representation

The system can be described by the following equations [1]:

xh+1 =
h∑

k=h−p+1

fkh · xk + wh (1.1)

yh =
h∑

k=h−u

akh · xk + vh (1.2)

The first equation relates current OD flow with the previous ones, and it tries to
capture the correlation over time of the OD flows. This kind of correlation arises from
unobserved phenomena such as changes in traffic demand, and/or changes in the trans-
portation network. This equation will hold true as long as traffic conditions change
gradually (smoothly).

The second equation relates OD flows with link counts through the assignment ma-
trices akh. These matrices contain the information of how the traffic evolves over time
and space along the network. The dimension of each assignment matrix is nL × nOD,
and there are as many matrices as the maximum number of intervals needed to go from
any origin to any destination point in the network. Each element lr of the matrix aqh

represents the contribution of link count l at period h to OD flow r that entered the
network at h− q.

Ashok and Ben-Akiva [2] found that Equation (1.1) can only capture temporal in-
terdependencies among OD flows, and does not represent structural information about
trip patterns. Instead of using xh as the state variable, they decided to use its deviation
from a historical OD flow. By doing so, the estimation and prediction process would
have taken into account (indirectly) all the experience gained over previous estimations
and it would be richer in its structural content. Also, deviations can be either positive
or negative, so they can be approximated by a normal distribution, which is also a useful
property for a tool such as Kalman Filter (which will be used later to solve the equations).
The corresponding equations are given by:

∆xh+1 =
h∑

k=h−p+1

fkh ·∆xk + wh (1.3)

∆yh =
h∑

k=h−u

akh ·∆xk + vh (1.4)

(Note that yH
h =

∑h
k=h−u akh · xH

k )

There are two aspects to note about the previous equations:

1. Assumptions: The following assumptions are made about the error terms in previ-
ous equations:

• E[wh] = 0, for all h,

4



• E[whw
T
m] = Qhδhm where δhm is the Kronecker’s delta and Qh is nOD × nOD

covariance matrix at time interval h,

• E[vh] = 0, for all h,

• E[vhv
T
m] = Rhδhm where Rh is nL × nL covariance matrix,

• E[whv
T
m] = 0, for all h, m, that is, transition and measurement errors are

uncorrelated.

When used in practical applications, relationships between OD flows (or deviations)
across different OD pairs are ignored.

2. Parameter estimation: The matrix frh can be estimated from historical data by
estimating linear regression models for each OD pair and Q can be approximated
from the residuals of these regressions. For Equation (1.3) and (1.4), vectors xH

h

for all h are obtained from a database of the OD matrix created off line (from
previous estimations). The matrix R can be approximated from historical data.
However, computation of the assignment matrix aph is a complicated exercise [3]
as it is a nonlinear function of the route choice assumptions, network topology and
travel time. We do not deal with the route choice problem because our network
is linear (i.e. there is no route choice). When the travel times in the network
are unobservable, the assignment matrix is endogenous to the model. In order to
address the endogeneity of the assignment matrix, [2] and [1] use an iterative OD
estimation and assignment matrix computation approach. In this approach, for the
current OD estimate, a traffic simulation model is used to compute the assignment
matrix which is then used to compute the new OD flow estimates by the filtering
algorithm. As pointed in [3], such an approach does not guarantee convergence and
can potentially lead to biased estimates. The authors of [3] also develop a rigorous
approach to estimate the assignment matrix based on stochastic mapping between
dynamic OD flows and link counts.

1.2.3 State augmentation: State-Space Equations

A discrete linear state-space system is often described as follows:

xh+1 = A · xh + B · tk (1.5)

yh = C · xh + D · tk (1.6)

Equation (1.5) is referred to as the system or transition equation, while Equation
(1.6) is known as the output or measurement equation. xh is the state vector at time
interval h, yh is the output or measurement vector at time interval h, th is the control
input at time interval h, and A,B,C, and D are matrices.

Equations (1.1)-(1.2), and Equations (1.3)-(1.4) suggest that state augmentation is
needed to fully utilize all available information and to represent our system as a linear
state space model. If s = max(u, p − 1), then the augmented state vector should be
nOD(s + 1)× 1. We denote the nOD(s + 1)× 1 augmented state and the historical state
vectors by Xh and XH

h , the nL × nOD(s + 1) augmented assignment matrix by Ah, the
nOD(s+1)×nOD(s+1) augmented (and appropriately modified) autoregressive parameter
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matrix by Fh, the nOD(s + 1) × 1 augmented error vector by Wh (with bottom nOD’s
elements as zeros) and the nOD(s+1)×nOD(s+1) covariance matrix by Qh. In addition,
we define following notation: Yh := ∆yh, Xh := Xh−XH

h , Bh := Ah ·XH
h −yH

h . Following
[2], the augmented state transition and measurement equations can be written as follows
(an example of how state augmentation is done can be found in Appendix A):

Xh+1 = Fh · Xh + Wh

Yh = Ah · Xh + Bh + vh

}
(1.7)

In Equation (1.7) both expressions are in state-space form. In the implementations
that will be presented in Section 1.3 we assume that matrices F , W , A, and v are time
invariant, and then the subindex can be omitted. Equation (1.7) can now be directly
fed into a Kalman filtering algorithm [4] to give minimum least squares estimates of the
state variable Xh+1.

Depending on the state variable chosen (xh or ∆xh), we would end up with two
different state space representations (in the form of Equation (1.7)). Solution techniques
such as Kalman filtering (used in [1], [2], and [3]) and recursive least-square approaches
(such as [5]) are based on one of these state-space representations4.

Note that Equation (1.7) imply that each OD flow will be estimated s + 1 times
during each time interval. However, when nOD is large (e.g., in a large network) and/or
when s is large (e.g., when the network is in congested regime), this procedure might
become computationally intensive. To address this problem, [2] proposes an approxima-
tion scheme based on the assumption that much of the information about an OD flow is
incorporated the first time it is counted.

Finally, one remark regarding the observability of the system should be made. Com-
plete observability refers to the ability to uniquely determine the initial state vector from
a given set of measurements. The factors affecting the observability of the system are:
(i) the ratio nL/nOD, (ii) degree of linkage between OD flows and station counts or the
rank of the assignment matrix and (iii) the degree of linkage between the OD flows over
time or the rank of the transition matrix.

1.3 Implementation of the Algorithm

This section describes an actual implementation of the model described in Section 1.2.3
(Equation (1.7)) and its main results. We present two implementations performed dur-
ing free-flow traffic conditions (BHL5 and MT6), and one during congested conditions
(BHL). Both the methodologies with and without deviations were tried in two of the
implementations in order to compare performance.

For the implementation, the algorithm requires a historical OD matrix, vehicles

4In some parts of this document we will refer to the model derived from Equation (1.1) and (1.2)
as the methodology without deviations, and to the model derived from Equation (1.3) and (1.4) as the
methodology with deviations.

5Berkeley Highway Laboratory.
6Massachusetts Turnpike.

6



counts, and travel times between detector stations as inputs. The output is the esti-
mated OD matrix, which –for validation purposes only– will be compared against the
real OD matrix to assess the performance of the algorithm. Some indexes of performance
can be also computed in order to compare alternative approaches. Figure 1.1 presents
an outline of the method followed in this study.

Historical OD
matrix

Vehicle counts

Travel time between
detector stations

Algorithm Estimated
OD matrix

Real OD
matrix

Evaluation
(error
measures)

Performance
of the
algorithm

Implementation Validation

Figure 1.1: Implementation and validation of the algorithm.

The historical OD matrix will be used to obtain the transition matrix (by estimating a
linear regression models for each OD pair, see Section 1.2.2). Depending on the method-
ology used, this historical matrix will be also used as part of the state variables (the
methodology with deviations defines the state variable as the deviation of the estimated
OD flow from the historical one). Travel times between detector stations are needed to
compute the assignment matrices and vehicle counts corresponding to the output vector
yh. In all the cases, we are dealing with situations where the travel time is constant (i.e.
same traffic conditions over the simulation period).

1.3.1 Implementations under free-flow conditions

The study with the first network (BHL) is implemented using the methodology without
deviations, while both methodologies (with and without) deviations will be used on the
second network (MT)7. For the second network, however, we will present here only the
results from the methodology with deviations. Results from the methodology without
deviations were only used to compare both methodologies (Section 1.3.3).

Interstate-80 Westbound (BHL)

Site description and data collection. The network chosen has two origins and two
destinations (four OD pairs) and corresponds to highway I-80W between Ashby and
Powell. Figure 1.2 depicts the geometry of the site.

The OD flows were numbered in the following way:
1-3 ⇒ OD pair 1

7This is due to the lack of historical data for BHL (unlike the MT case).
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Upstream (1) 
Downstream (3) 
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(2) 
Off-ramp 

(4) 

Figure 1.2: BHL section of I-80W used for the first part of this study.

1-4 ⇒ OD pair 2
2-3 ⇒ OD pair 3
2-4 ⇒ OD pair 4

In the same way, link numbers correspond to the detector station numbers.

The data was collected using BHL’s cameras installed on the roof of a building located
next to the highway. All the data needed to run the algorithm were extracted from the
video recordings. This process is time consuming.

Data were recorded during one hour under free flow conditions (10:00 to 11:00am)
for two consecutive weekdays. The time interval chosen was 30 seconds (i.e. a new OD
matrix estimation is done every 30 seconds). The first day of data was used to extract
the ”historical” OD matrix, and the second one was used to implement the algorithm.
That is, for the second day –and in addition to the extraction of the real OD matrix–
we had to count vehicles every 30 seconds at each entry and exit point of the network.
A constant travel time of 18 seconds (from upstream/on-ramp to downstream/off-ramp)
was used to compute the assignment matrices.

Transition equation. A fourth order autoregressive model (i.e. p = 4) for each of the
OD pairs was used to compute the coefficients of each matrix fqh (and then Fh). Other
orders were tried, but p = 4 provides the best fit (i.e. lowest sum of squared residuals).
After state augmentation (Section 1.2.3), the matrix Fh has dimensions 16× 16 (u turns
out to be 1, then s = max(u, p− 1) = 3). Random errors were computed as described in
Section 1.2.2.

Measurement equation. Assignment matrices were computed as follows. Since the
travel time is 18 seconds8, each vehicle entering the network during the first 12 seconds
of interval h will exit the network during the same interval h. All the vehicles entering
the network in the last 18 seconds of interval h will exit the network in the next interval
h + 1. Assuming a uniform distribution of the flow during 30 seconds (which is a fairly
reasonable assumption), 0.4 (=12/30) of the vehicles entering in h leave the network

8The travel time was computed by inspecting the videos. Five randomly selected vehicles, every five
minutes were used to compute the average travel time.
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during h and the rest of the vehicles entering in h (0.6=18/30) leave the network in
h + 1. For this reason, there are two assignment matrices (u = 1).

Ah
h =




1 1 0 0
0 0 1 1

0.4 0 0.4 0
0 0.4 0 0.4


 Ah−1

h =




0 0 0 0
0 0 0 0

0.6 0 0.6 0
0 0.6 0 0.6


 (1.8)

Based on the amount of error that might have occurred while counting vehicles from
video data, the value of the measurement errors (vh) are 8, 4, 8, and 4 for y1h, y2h, y3h,
and y4h, respectively. That is, for each observation every 30 seconds, we expect an error
of the order of ±8 vehicles in the count at a given station (including all lanes). Since
the counts are approximately 80 vehicles every 30 seconds, this means an error of about
30%. The same reasoning is applied to the ramp counts, but assuming a larger error.

Results. Even though the data is available for one hour, to run the algorithm we used
only the first 35 minutes (70 intervals) of data (mainly because the data-extraction-
process is cumbersome). Figures 3 to 6 show the estimated (dotted line) and the real
(solid line) OD flows for the first 35 minutes of the second day for every OD pair (please
note that different figures are at different scales).
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Figure 1.3: Exact vs. Estimated OD flow for OD pair 1.

Figure 1.5 shows a very good agreement between exact count and estimate. The fits
are good for the other OD flows, but they are not as good as the case of the third OD
pair.

It has to be noted that the real OD flow for OD pair 4 takes only three values (0,
1, and 2) (see Fig.1.6). In fact, most of the time, the flow is zero. For this reason, the
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Figure 1.4: Exact vs. Estimated OD flow for OD pair 2.
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Figure 1.5: Exact vs. Estimated OD flow for OD pair 3.
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Figure 1.6: Exact vs. Estimated OD flow for OD pair 4.

estimated values for this OD pair are always less than 1. This fact might explain the
very good agreement for the third OD pair.

Interstate-90 Eastbound (Massachusetts Turnpike)

Site description and data collection. The length of the network is 75.6 miles and
it contains 10 origin/destination points (see Figure 1.7). The first one is only an origin
point, and the last two are only destination points. The other 7 points in between are
origin and destination points. That is, there are 8 entry points and 9 exit points, which
yields 44 OD pairs (i.e. nL = 17 9 and nOD = 44).

1

92 876543

10
7.7 mi 29.8 mi 5.3 mi 3.3 mi 2.1 mi 3.7 mi 7.8 mi 15.7 mi

Figure 1.7: I-90E - Massachusetts Turnpike

The data consists of the OD flows every 15 minutes, during 6 days, for each OD
pair. That is, the OD matrix for 6 days is known, but the counts at the entry and exit
points are not. The data has to be manipulated in order to obtain vehicle counts at these
locations. The count at any entry point can be easily computed from the original data,
but assignment matrices are needed to estimate count at exit points. A constant speed
of 55 mph was assumed to compute these matrices10.

9We are assuming that there are no detectors along the freeway. We have assumed that there are
detectors only at the entry and exit points.

10Since the section under study rarely get congested, this is a reasonable assumption.
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For this network, both methodologies (with and without deviations) were tested. In
this section, however, we will show only the results obtained with the methodology with
deviations (the other implementation was performed for comparison purposes).

Transition Equation. The first day was used as the historical day, and the transition
matrix was computed using data from the first two days. That is, for each OD pair
an autoregressive model using the deviation of OD flows of the second day from those
of the first one was performed in order to compute the transition matrix. The order
of the autoregressive model is not the same for every OD pair, and it depends on the
value which gives the best fit from an statistical point of view (i.e. least residuals).
In our case, p (maximum order) is 4. As we will see later, s = max(u, p − 1) = 6,
and then the augmented transition matrix is an square matrix of dimensions 308 × 308
(nOD(s + 1)× nOD(s + 1) (see Section 1.2.3).

The covariance matrix Q was computed using the residual of the autoregressive models
(see Section 1.2.2), and it has the same dimensions as the augmented transition matrix.

Measurement Equation. Assignment matrices were computed assuming a constant
speed of 55 mph in the whole section11. The travel time for the ”longest” OD pair is
about 82.5 minutes, which means that 5.5 intervals12 is the maximum time that any
trip will take in our network. Then, u = 6 and seven assignment matrices are needed
(s = max(u, p− 1) = 6).

The dimensions of each one of these seven assignment matrices are 17×44 (nL×nOD).
Since s = 6 the augmented assignment matrix (see Section 1.2.3) has dimensions 17×308.

These assignment matrices were used to compute all the exit counts. Since some
elements of the assignment matrices are not integer, we will obtain fractional counts.
If we work with these fractional counts, then the covariance matrix R would be zero
(because the difference between yH

h and
∑h

k=h−u akh · xH
k would be zero). However, we

have decided to round the count to the nearest integer13. The differences were then used
to compute the 17 × 17 (nL × nL) matrix R. Note that detectors on the entry points
have no error.

Results. The third day was used to test how the algorithm works. The result of the
implementation of the algorithm is a matrix that contains the deviations of the estimated
OD flow from the historical one (OD flow for the first day) for every OD pair and for
every time interval. Then, the estimated OD flow is just the sum of the deviation and
the historical OD flow.

Figures 1.8 to 1.10 show the agreement between the exact and estimated curve for
three OD pairs that have different OD flow levels. Figure 1.8 corresponds to OD pair
number 9, which is the largest one (i.e. from the first entry to the last exit). Pair 17

11Distances between origin/destination points were also known.
12We are using 15 minutes intervals.
13Since loop detectors always give an integer number of vehicle count, this seems to be a reasonable

thing to do.
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(Figure 1.9) is from the second entry to the last exit, and pair 31 (Figure 1.10) goes from
the fifth entry to first exit after it.
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Figure 1.8: True vs. Estimated OD flow for OD pair 9.
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Figure 1.9: True vs. Estimated OD flow for OD pair 17.

It is important to note that the scale for the three graphs is not the same. If fact,
Figure 1.11 shows both the true and estimated curves for OD pair 9 and 17 in the same
graph.
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Figure 1.10: True vs. Estimated OD flow for OD pair 31.
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Figure 1.11: Comparison of two different levels of OD flows.

Unlike the BHL case, this new network has several OD pair, which makes the estima-
tion process a little bit harder than before. The algorithm, however, still performs very
well and the OD flows estimated follow the trend of the true OD flows.
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1.3.2 Implementation under congested conditions

The BHL network (described in Section 1.3.1) was used to validate the algorithm under
congested conditions. Three days of video data from 3-6pm were recorded. For our
purposes, however, only 30 minutes were implemented, and time intervals of 30 seconds
were used. As with the MT case, both methodologies with and without deviations
were implemented on these data. We will present here, however, only the results of
the methodology with the deviations (results using the other methodology were used to
compare the two methodologies, see Section 1.3.3).

Again, the first day was used to extract the historical OD matrix, the second day was
used to compute the transition matrix F (using the deviation of this OD matrix from
the historical one). The algorithm was then implemented on the third day.

The assignment matrix A was computed in the same way as before (see Section 1.3.1),
but now the travel time is larger (because of congestion). After inspection of the video
data, it is important to note that travel time during the period under analysis –and across
lanes– is not constant, and it has a significant variability. As a first approach, however,
we have decided to run the algorithm assuming a constant travel time of 1 minute. This
means that a vehicle entering in time interval h leaves the network in time interval h+2.

Results. Figures 1.12 to 1.15 show both the real and the estimated OD flow for each
OD pair (note that the graphs use different scales).
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Figure 1.12: OD pair 1, under congested conditions.

Unfortunately OD pair 4 (Figure 1.15, from the on-ramp to the off-ramp) has only
one interval with one vehicle. As we saw in the free flow case, this might make the
estimation process easier.
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Figure 1.13: OD pair 2, under congested conditions.
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Figure 1.14: OD pair 3, under congested conditions.

1.3.3 Comparison of the two methodologies

Free-flow data from MT and congested data from BHL were implemented with both
methodologies. Two error measures were computed in order to compare performances
between the methodologies for each case [2]:

- Root mean square error (RMS) =

√∑
i
(xi−x̂i)2

N
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Figure 1.15: OD pair 4, under congested conditions.

- Root mean square error normalized (RMSN)=

√
N ·

∑
i
(xi−x̂i)2∑
i
xi

where, x and x̂ are true and estimated OD flows respectively and the summation ranges
over all OD pairs and all intervals over which analysis is performed. Table 1.1 shows the
results.

Table 1.1: Comparison of both methodologies
MT (free flow) BHL (congested)

W/O deviations With deviations W/O deviations With deviations
RMS 4.775 4.694 6.282 2.215
RMSN 0.476 0.468 0.449 0.146

In both cases the methodology with the deviations provides better results. Event
though the statistics for the two methodologies are close in the MT case, Figure 1.16
shows that the methodology with deviation provides better results. The figure shows the
agreement between the true and the estimated OD flows, for OD pair 9 (the same as
in Figure 1.8), using the two methodologies. Clearly the methodology with deviations
agrees much better with the real data.

Because of the reason stated in Section 1.2.2, this result is not surprising.

1.4 Transition period: how to detect when traffic conditions
change

Travel time is a good indicator of the traffic conditions on a section of highway: the larger
the travel time is, the more congested is the section. Assignment matrix A in Equation
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Figure 1.16: Visual comparison between the methodologies

(1.7) depends on travel times (and thus, on traffic conditions). If we knew travel times
between stations, we would be able to directly compute the assignment matrix A and
run the algorithm. Two questions arise at this point:

• How accurate does the travel time estimation need to be? If the model is very
sensitive to the matrix A, the travel time estimation should be very accurate. On
the other hand, if the matrix A does not affect the model in a significant manner,
we can rely in less accurate (but easier-to-implement) methods to estimate travel
time.

• How can we obtain travel times between stations (in real time)? This, of course, is
going to depend on the answer to the first question.

1.4.1 How matrix A affects the model: sensitivity analysis

In order to determine how accurate the matrix A (and then, travel times) needs to be,
a sensitivity analysis was performed. That is, implementations of the algorithm using
different travel times were performed, which yield different assignment matrices A. The
idea is to see how worse the result would be by assuming a wrong travel time.

For the BHL network six different travel times were tried (in the congested regimen):
18 (free flow), 30, 50, 70, 90 and 120 seconds14. As was stated in Section 1.3.2, the actual
travel time is 60 seconds. The 18 seconds travel time is tried to see what the estimation
results would be if free flow conditions are assumed when traffic is actually congested.
The results in terms of the error measures described in Section 1.3.3 (RMS and RMSN)
are shown in Table 1.2.

There are three interesting points to mention here. First, 90 seconds travel time gives
the best error measures. This might be due to the fact that travel time was not constant

14In a 0.3 miles stretch of highway, these times imply the following speeds respectively: 65 (free flow),
40, 24, 17, 13, and 10 mph.
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Table 1.2: Error measures for different travel times
60 sec (real) 18 sec (ff) 30 sec 50 sec 70 sec 90 sec 120 sec

RMS 2.215 3.284 2.531 2.334 2.165 2.026 2.035
RMSN 0.146 0.216 0.166 0.154 0.142 0.133 0.134

during the period under study (as mentioned in Section 1.3.2), and 90 seconds was a
better estimation of the travel time.

The second point to note is that error measurements –for travel times that assume
certain degree of congestion (i.e. greater or equal to 30 seconds)– do not vary too much
from one simulation to another. In fact, the visual agreement between true and estimated
curves are quite similar in all cases (Figure 1.17 a) and b) show the cases when travel
time is 30, and 120 seconds for the first OD pair).
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Figure 1.17: Visual agreement between true and estimated curves for first OD pair (BHL)
and for different travel times.

Lastly, if free flow conditions are assumed (travel time 18 seconds), the RMS and
RMSN increase significantly. As can be seen from Figure 1.17 c), in this case the visual
agreement between true and estimated curves is not good. That is the reason for the
large RMS and RMSN observed in Table 1.17.

The second and third points suggest that we need to be able to distinguish between
free flow and congested regimes. However, if there is congestion, an accurate travel time
estimation is not needed (because different matrices A will yield quite similar results).
The importance of this result will become clear in the next section.

1.4.2 Travel time estimation

Different methods to estimate travel time can be found in the literature. The following
are three different approaches:

• If we know the uniform speed along the whole section, we can use t = d
v

(t is time,
d is distance, and v is speed) to estimate travel times. The speed could be directly
measured from the detectors (using dual-loop detectors, for instance). We can then
assume that this speed is the same along the segment. However, assuming that
the speed at the detector station location (”point speed”) corresponds to the speed
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over the whole section does not seem to be a good approximation (see for instance
Table 1 in [6]).

• Another option is to construct cumulative curves from consecutive loop detector
stations (N -t curves, see [7] or [8]). The horizontal difference between two cumula-
tive curves represents the travel time between two stations. This approach assumes
FIFO behavior (which seems reasonable) and conservation of vehicles between sta-
tions (no ramps). The latter assumption can be treated in some way (by adding
ramp counts to the mainline counts for instance), but it would introduce some er-
ror in the estimation. The estimation quality will also depend on the frequency of
speed measurements.

• A third option consists in using a discrete version of the q-k diagram. Instead of an
infinite number of possible states (infinite number of k or speed), we recognize three
or four states (or modes). Each one of these states has a travel time associated with
it, and thus an assignment matrix A too. For instance, if we are running the algo-
rithm on the BHL network, we would use matrices computed in Section 1.3.1 when
free-flow conditions are detected, and matrices from Section 1.3.2 when congestion
arises. This example assumes only two modes: the whole section freely flowing
or the whole section congested at the same level. In [9], the author assumes that
the mode cannot be directly observed from the data. The mode jumps, however,
follow a discrete-time Markov chain, with certain transition probability. Here, the
algorithm would jointly estimate the mode and the OD flows at each time interval.

Given the results shown in Section 1.4.1, it seems like we do not need an accurate
travel time estimation. In light of the third approach discussed earlier, we could say that
speeds within a certain range (and travel times corresponding to these speeds) yield the
same assignment matrix A. That is, the fundamental diagram q− k has been discretized
into a few modes. Then, the algorithm might use loop detector data (moving average of
speed measurement) to determine under which mode the section is working, and use the
corresponding matrix A.

We can identify as many mode as we want. For instance, one mode for the free-
flow conditions, and two or three modes for different levels of congestion on the whole
section15 (and thus, different travel times and different A matrices). The first mode (free
flow) would correspond to speeds greater or equal to v1, the second mode would include
speeds between v1 and v2, and the third mode would contain speeds less than or equal
to v2. Then, we would set the following rule for each observation v̄(k) (moving average
of speed):

· If v1 ≤ v̄(k) → mode 1 → pick A1.

· If v2 < v̄(k) < v1 → mode 2 → pick A2.

· If v̄(k) ≤ v2 → mode 1 → pick A3.

15For reasons stated in Section 1.1, we will not consider modes where a shock is traveling the section.
For instance, upstream congested and downstream freely flowing is not a possible mode. Those periods
of time should be very short (especially if the network is short) and can be ignored.
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Section 1.4.1 stated that estimations during congestion do not change too much for
different travel times (as long as they actually correspond to congested conditions). This
encourage us to think of only two modes, free flow and congested modes, and only one
matrix A associated with each mode. Two issues remain unsolved so far: what should
be the speed threshold vthr that determines the limit between free flow and congested
regimes; and what speed should be used to compute the matrix A in each mode. The
work of Varaiya [10] can be used to address both questions. In that work, the author
showed that, on a certain highways in California (I-10E), drivers spent very little time
at transitional speeds (between 40-50 mph). On average, most of the time they drive at
30 mph (35% of the time) and 60 mph (65%). If this is extrapolated to other highways
in California (which seems reasonable), the threshold speed vthr could be set at 45 mph
and matrices A may be computed using a speeds of 60 and 30 mph (for free flow and
congested conditions respectively).

In order to test if vthr = 45 mph is a good approximation or not, data from another
detector station on BHL were collected. The data consist on the 30-seconds average
speeds across four lanes (not including the HOV lane) collected from 4am to 8:30pm
during a weekday. The moving average over 3 minutes16 was computed in order to filter
some variability of the data. Then, each filtered observation was compared against the
threshold vthr = 45 in order to determine the mode. Figure 1.18 shows both the speed
profile read by the detector (lower curve) and the mode predicted using the algorithm
just described (uper curve). Using vthr = 45 mph yields a mode sequence that is in very
good agreement with what happens in reality.
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Figure 1.18: Speed measured from detector and mode predicted by setting vthr = 45
mph.

From the speed profile, morning and evening rush periods can be clearly identified
(6-10am and 2:30-5:30pm respectively). The average speed is around 40 mph in the
morning and 30 mph in the evening. If we would have set the threshold at 40 mph, the
morning rush period would have been jumping between the two modes. Section 1.4.1,
however, provided reasons to believe that for our purposes, morning and evening rush

16That is, the filtered observation at time k is given by: v̄(k) =
∑k

i=k−6
v(i)

7 , where v(i) is the average
speed at interval i across all lanes.
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periods are the same. Because of this, it would be preferable to set the threshold not
below 45 mph.

In summary, given that the estimation results are not too sensitive to different travel
times during congestion, only two matrices A should be computed for each network: one
for the free flow regime (using a speed of 60 mph) and the other one for the congested
regime (with a speed of 30 mph). Using speed measurements from detectors, we have
proposed a very simple way to determine which of those matrices should be used (i.e. to
detect when the traffic mode changes).

1.5 Consideration of network size

OD flows on a highway can be useful to implement control strategies (such as ramp me-
tering) or to make operational studies in certain area (for instance, on weaving sections).
For this type of use, we really need to know how many vehicles are going to make use
of every ramp. For example, in Figure 1.19 we do not really need to know how many
vehicles are going from point 1 to n− 1 or n. We just need to know how many vehicles
are going to take one of the next off-ramps (points 4 and 6) and how many are going
through the highway (and the same is valid for those vehicles coming from point 2).

1

n

n-1

6

5

4

3

2

N1 N2

Detectors

NmN3

Figure 1.19: Imaginary network

For this reason, we think that it might be reasonable to divide the highway into smaller
networks (for instance, N1, N2,,... Nm in Figure 1.19), and then run the algorithm on
each one of these networks. What are the pros and cons of doing that?

• Pros :

→ Transition period (period when there is shock traveling through the network,
which creates two modes) in each network: the shorter the network, the shorter
the transition period on that network is. In Section 1.4, we stated that these
periods will be ignored. If we consider the whole network in Fig.1.19 as one
network (using n = 8 and m = 3), a shock with speed of 12 mhp would
take 15 minutes17 to cover the whole section (i.e. the algorithm would not
work during 15 minutes). However, if we divided the network into N1, N2, and
N3, the algorithm would not work only during 5 minutes for each network18.

17This assumes N1, N2 and N3 are 1 mile long
18Each network, in this case, is independent on the adjacent network’s estimation. That is, we can

run our algorithm in N1 and N3, without information from N2.
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Clearly, for larger networks (i.e. larger n) the transition period cannot be
ignored.

→ Assignment matrix A estimation: since the network is short, there would be
few OD pairs and few link detector stations. Then, the estimation of the A
matrix would be easier.

→ BHL network is like any of the short networks in Fig.1.19, and we have already
validated the algorithm for both free flow and congested conditions in this
network.

• Cons :

→ In Fig.1.19 we would not know the flows from point 1 to 6, n − 1 or n, or
from point 4 to n − 1 or n, and so on. However, as we stated before, this is
information that we do not really need for control purposes.

1.6 Conclusions

Real-time OD matrix estimation methods reported in the literature work under stationary
conditions, i.e. their performance when traffic conditions change abruptly is not good.
We have implemented a methodology that identifies when traffic conditions change and
then makes use of existing models to estimate OD flows in a linear network. The models
were tested using real data collected from two different network and during free flow and
congested conditions. The estimations match the exact data well.

One parameter of the model used depends on traffic conditions (more precisely travel
times). We have shown preliminary evidence to support the idea that an accurate esti-
mation of the travel time is not needed, and a distinction between free flow and congested
conditions is enough for our purposes. A very simple algorithm to detect these conditions,
which makes use of the speed measurements provided by loop detectors, was proposed.

We have not mentioned the fact that matrix F in Equation (1.7) also depends on
traffic conditions. Matrix F assumes that previous OD flows affect the current one in
a linear way (autoregressive form in Equation (1.1) and (1.3)). If we have evidence to
believe that these influences or effects are different from free flow to congested regime, we
will end up with two matrices F instead of one. Estimation of each one of these matrices
would be as described in Section 1.2.2.

A practical implementation of the methodology proposed should not be hard. Suppose
we are interested in computing OD flows for a given network from 4am to 9pm on a
weekday. The data needed to implement the methodology would consist of:

• Two sets of historical counts at every entry and exit point of the network: the
first set of counts will be used to compute a first OD matrix based on optimization
models described in the literature (such as the one described in [2]). If there exist
a historical OD matrix for the network, these counts would not be needed. This
first OD matrix will be used to compute matrix F in Equation (1.7). The second
set is to implement the methodology without deviations in the network using the
matrix F already estimated. As a result, we will have two OD matrices.
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• Counts and speed measurements at every entry and exit point of the network for
the period of interest: this is the information needed to run the whole methodology
and to obtain estimations.

Finally, these data might be fed into a computational tool that will estimate the OD
flows for the period under analysis. Based on the results reported here, these estimations
should be accurate enough.
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.1 State augmentation

This appendix aims to explain and show how the state augmentation process (described
in Section 1.2.3) works. For this purpose we will do the whole process using a small
network.

The network in Figure 20 contains one origin (A) and two destinations (B, and C).
There are three OD pairs, which are labeled as follows:
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· From A to B: OD pair 1.

· From A to C : OD pair 2.

A

C

B

Figure 20: Small network with 2 OD pairs

In this case, nOD = 2 and nL = 3. For simplicity with the notation, let us assume
that p = 2 and u = 1 (and then s = max(u, p − 1) = 1) and that we are working with
the methodology without the deviations. Equations (1.1) and (1.2) are as follows:

xh+1 = fhh · xh + fh−1,h · xh−1 + wh (9)

yh = ahh · xh + ah−1,h · xh−1 + vh (10)

Each term in previous equations are described next:

• State vector at time interval h: xh =

(
x1h

x2h

)

• Two 2× 2 matrices describing the effect of previous OD flows on the current one:

fhh =

(
fh

11 0
0 fh

22

)
fh−1,h =

(
fh−1

11 0
0 fh−1

22

)

Note that these forms assume that OD pair 1 does not affect OD pair 2 and vicev-
ersa.

• Random error: wh =

(
w11

w21

)

• Vector of counts: yh =




yAh

yBh

yCh




• Two 3× 2 matrices describing how OD flows affect counts:

ahh =




1 1
ah

21 0
0 ah

32


 ah−1,h =




0 0
ah−1

21 0
0 ah−1

32




• Measurement errors: vh =




v11

v21

v31




State augmentation is done in order to bring Equations (9) and (10) into the form of
Equations (1.5) and (1.6), respectively. The new representation will be given by:

Xh+1 = Fh ·Xh + Wh (11)

Yh = Ah ·Xh + vh (12)

Each term now is as follows:
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• State vector at time interval h: Xh =




x1h

x2h

x1h−1

x2h−1




• Square matrix F4×4 describing the effect of previous OD flows on the current one:

Fh =

(
fhh fh−1,h

I2×2 02×2

)
=




fh
11 0 fh−1

11 0
0 fh

22 0 fh−1
22

1 0 0 0
0 1 0 0




• Random error: Wh =




wh

0
0


 =




w11

w21

0
0




• Vector of counts (same as before): Yh =




yAh

yBh

yCh




• Matrix A3×4 describing how OD flows affect counts:

Ah =
(

ahh ah−1,h

)
=




1 1 0 0
ah

21 0 ah−1
21 0

0 ah
32 0 ah−1

32




• Measurement errors (same as before): vh =




v11

v21

v31




Even though we have used subindex h in matrices F , W , A, and v, in practice we
assume that these matrices are time invariant. Finally, Equations (11) and (12) are the
ones that are finally fed into the Kalman filter to obtain OD flows estimates.
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2.1 Introduction 

2.1.1 The Dynamic O-D Estimation Problem   

Traditionally, an O-D table concerns trips made over a relatively long time period (e.g., 
morning peak time) within which the traffic condition is assumed to be homogeneous. 
Such O-D demands are intended to be used with “static” travel forecasting models. 
However, it is widely recognized that static models are inadequate to predict the 
evolution of traffic pattern over time of day. Traffic congestion is essentially a dynamic 
phenomenon. First of all, travel demands do fluctuate over time of day. During morning 
commute, for example, demand levels change substantially as travelers adapt to 
time-varying traffic conditions by routing and scheduling of departure times. Recurrent 
traffic congestion often seen in urban areas is mainly a result of the way such 
fluctuations take place in space and time. Namely, imbalanced distribution of demand 
causes the shortage of road supplies during peak time at various locations (bottlenecks), 
where queues develop and spread over the network.  
 
Therefore, an O-D table that reasonably reflects temporal distribution is often 
indispensable for dynamic travel forecasting models, which target a wide spectrum of 
applications ranging from short-term planning to within-day traffic 
control/management. However, getting reliable dynamic travel demands is notoriously 
difficult. In typical travel diary data, temporal information (e.g., starting time and 
duration) is only available for trips of certain purposes (mainly home-based work and 
school). The dynamic distribution factors used in practice are often aggregated based 
on these trips only, thus not necessarily representative for trips of other types, such as 
shopping and recreation trips. To extract temporal information for those trips call for 
activity-based travel demand models, which remains a state-of-the-art until very recent, 
we note that the distribution of demands in time can naturally arise from forecasting 
models themselves when individuals' departure time choices are endogenized, as first 
shown by William Vickery . However, a demand pattern established from such a DTA 
model highly depends on individuals' preferred arrival time windows and how they 
price unpunctual arrivals. Not surprisedly, these behavior parameters are difficult to 
calibrate, and the assumptions that intend to simplify the problem are often too strong 
to be realistic. Consequently, although existing DTA models with departure time choice 
may provide useful insights to macroscopic policy analysis, they hardly yield a 
dynamic O-D table more than conceptually meaningful. Moreover, commuters' 
scheduling of departure time may not fully explain demand fluctuations during the rush 
hour. 
 
In a nutshell, determining the up-to-date time-varying travel demand pattern in a 
highway network remains a challenging and to some extent unresolved issue. On the 
one hand, travel demands obtained from large-scale surveys not only come with high 
prices (in terms of monetary, time and labor costs), but also are likely to be out-of-date. 
More importantly, household surveys based on travel diaries do not typically provide 
temporal trip information with a resolution adequate for dynamic travel forecasting. On 
the other hand, although travel forecasting models may be used to establish the 
dynamic pattern of travel demands, the outputs substantially depend on individuals' 
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travel behaviors and thus may not be reliable. This explains why substantial research 
efforts have been invested in “estimating” O-D demands from various traffic 
surveillance data, which can be automatically collected at relatively low costs. Among 
different traffic data, link flows (e.g., traffic counts from loop detectors) are most 
widely used.  
 
In the next few sections, we will present a new Dynamic OD Estimation (DoDE) 
problem for freeways based on variational inequalities. The freeway networks we 
consider are similar to thee one shown Figure 2.1, where each O-D pair has a unique 
path. 

Mainline 

On-ramp On-ramp Off-ramp 
Off-ramp 

On-ramp 

Detector Detector Detector Detector 

 
Figure 2.1 Simplified highways 

 
 

Consider a freeway network  , where  and  are the sets of nodes and 
links respectively. Nodes are the locations where traffic flow will merge into the 
mainline or leave it. Links are made up of ramp and mainline links. Let 

),( ANG N A

R  and  
represent the set of origins (the start nodes of On-ramps) and destinations (the end 
nodes of Off-ramps. The end of the freeway is considered a special off-ramp) 
respectively. The cardinalities of the sets nodes, links and O-D pairs are denoted as 

,   and  

S

mN =|| nA =|| oSR =× ||  respectively. Let  be an assignment 
horizon (i.e., the analysis period). The network is assumed to be empty at , and 
only travel demands departing within the assignment horizon are considered. 

Corresponding to the assignment period, we define a loading horizon , where 

],0[ T

0=t

]T ′,0[

T ′marks the time when all traffic clears the network. Let  be the travel demand 
between O-D pair  departing at time , and the total demand for the whole 
assignment horizon is  

)(trsq

rs t

dttqq rs

T

rs )(
0∫=  

 
Let  denotes the time-dependent travel time for OD pair rs,  the departure flow 
rate for OD pair rs, all during the assignment interval . Now, suppose that loop 

detectors are installed at the entrances of a set of selected links, , so that traffic flow 

t
rsc t

rsf

oA
t
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entering any link  at any time oAa∈ ],0[ Tt ′∈ , )(txa , can be measured. Let  

 be the number of the observed links, || oo An = aφ  be an assignment interval, a 
discrete duration during which the departure flow rate for any O-D pair is assumed to 

be constant,( , the number of assignment intervals is given by am aamT φ= ), mφ  be the 
measurement interval, a discrete duration for which the measured traffic quantities is 

aggregated and recorded (a loading horizon consists of  mTmm φ/′=   measurement 

intervals of uniform length), and lφ  be the loading interval, a discrete duration during 
which network conditions are assumed to be stationary ( loading horizon consists of  

  loading intervals of uniform length, i.e., Tlm llmφ=′ ), then by conservation, we 
have the following relationship between O-D flow and measured link flow, assuming 
there are no measurement errors: 
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 and laai φφ /= . In vector form, it becomes  

xPf =                       (2.1)                      
 
We emphasize that the mapping  , which relates time-dependent O-D flow to 
time-varying link flow measurements, is endogenously determined. That is,   has to 
be updated in accord with the change of the path flow pattern  in the estimation 
process. This in turn requires time-dependent link travel times to be computed from a 
given , a problem known as dynamic network loading (DNL). Underlying the DNL 
process is a network traffic model that describes the evolution of traffic flow. Dictated 
by this traffic model, the mapping between  and f  is typically quite convoluted 
and not in a closed, analytical form.  

P
P

f

f

P

 
Generally, (2-1) is underdetermined and thus has many solutions. To resolve this 
problem, additional information should be supplied. Such information can be roughly 
categorized into two types: 
1) A partial or complete “base” O-D table, which is often established from existing 

survey data, called a historical O-D table.  
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2) Path travel times obtained from probe vehicles. 
 
In the remainder of this report, we’ll present a new framework for DoDE problem 
based on variational inequalities (VI). In this framework, the DoDE problem is first 
transformed into a VI problem, then a DNL based on the LWR model is used to 
evaluate the mapping P and path travel times, finally two solution algorithms, the basic 
projection algorithm and the method of successive averages (MSA) are suggested to 
solve the VI based DoDE problem.   
 

2.2 The Proposed Estimation Framework and Solution Algorithms 

2.2.1 The DoDE Formulation 

Our objective is to obtain a time-dependent O-D demand pattern in terms of 
time-dependent path flows that, once loaded onto the network, can reproduce observed 
link traffic counts and path travel times as closely as possible.  This can be cast into a 
psudo generalized least squares problem of the following form:  

( )( )222 5.0)(5.0)(5.0)(min cfcqMfxPff −++= ppqx swwwz −−        (2.2) 
subject to:  

0≥f  
where the matrices P and M map time-dependent path flows (here also O-D flows) into 
time-varying link traffic counts and historical O-D flow rates, respectively, and the 

positive scalars ,  and  are weights placed on traffic counts, historical O-D 

demands, and path cost observations, respectively, and the positive scalar  is added 
to properly scale two different types of quantities, flow and cost in the objective 
function. 

xw qw pw

ps

 
The optimality conditions of (2.1) are: 

0
0)(
0),(

≥
≥∇
=〉〈∇

f
f
ff

z
z

        (2.2*) 
 
Because the mapping P (which depends on f) and c(f) are non-linear and possibly 
non-convex, the above problem is extremely difficult to solve directly. With the 
introduction of count, O-D and cost deviations, however, the above optimality 
conditions can be case into a variational inequality (VI), hence allowing VI solution 
algorithms be employed to solve the DoDE problem.  
 
For any given path flow pattern  and a set of observed link traffic counts 0≥f 0>x , 

the count deviation  is defined for each link  as 
h
adx a
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where  is the time when a vehicle would enter link  of the path connecting an 
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. However  is not a continuous 

function of the entry time . The loss of continuity may cause non-existence of 
solutions. To resolve this issue we replace the dynamic path-link incidence relationship 
(2.4) with the following one:  
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For any given path flow pattern  and a set of historical O-D demand pattern 0≥f

0>q , the O-D deviation  is defined for each O-D pair  as  
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For any given path flow pattern , and a set of observed path travel times 0≥f
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With count, O-D and cost deviations, we can now define the path deviation  as 
follows:  

t
rsd

               t
rspp

t
rsq

m

h
aht

rsa

i

da
x

t
rs dcswdqw

i
dxwd d

a

++= ∑∑
=

δ
1

           (2.6) 

and its matrix form is given by  

       )()()()( ccMfqMPfxPfd −−+−= cppq
T

x
T Jswww +       (2.7) 

where  is the Jacobian matrix of  with respect to path flow f. cJ )(fc

 
It can be shown that the optimality conditions for (2.2) can be transformed into the 
variational inequality (VI):  

        aa momo RR ×
+

×
+ ∈≥〉〈−∈ ||  allfor  0~),~(such that  ~ Find ffffdf −  F    (2.8) 

which lends the problem to easy solution through various VI solution algorithms. 

33 



 

 
It should be noted that  does not have a closed form and thus its evaluation usually 
requires numerical approximation. For every element in , we have: 
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where d is an loading interval in the tth assignment interval, and d’ is an loading 
interval in the t’th assignment interval.  
 
Consider the marginal travel time of adding one more unit vehicle between any two 
loading intervals in the loading horizon. Let t’’ be the departure time of a vehicle 
departing at the t’th interval between O-D pair r’s’ , without the additonal vehicle. Let 
t’’’ denote the time the queue on that link disappears after t’’ without the additional 
vehicle (if there is no queue at t’’, then there is no delay on this link). Let ta denote the 
arrival time of a vehicle departing at the tth interval between O-D pair rs, without the 
additional vehicle. Let tb denote the departure time of a vehicle departing at the tth 
interval between O-D pair rs, without the additional vehicle. There are two conditions 
to consider in evaluating the marginal path travel time:   
 
1) For O-D pair rs, if its on-ramp r is ahead of the on-ramp r’ of O-D pair r’s’ (or r=r’), 
we shall first search the links along the path of r’s’ to get [t’’, t’’’], the effective 
congestion interval, for every link. Then, search every link along the path of O-D pair 
rs to obtain its arrival and departure times for flows along that path, and if these arrival 
times are earlier than their corresponding t’’ or later than their corresponding t’’’, 
congestion due to the flow from r’s’ will not affect the flow of O-D pair rs.  When the 
flow of O-D pair rs arrives at any link during that link’s effective congestion interval 
[t’’, t’’’], then its contribution to the marginal travel time, i.e. the reciprocal of the 
capacity of that link, will be accumulated along its path.    
 
2) Reversely, if its on-ramp r is after the on-ramp r’ of O-D pair r’s’ , we again search 
the links along the path of r’s’ to get their effective congestion intervals [t’’, t’’’]. Then, 
from the list of t’’’, find the one corresponding to the link along the path of r’s’ that 
merges with the path of O-D pair rs. If this link is not congested, then congestion due to 
flows on path r’s’ will not contribute to the marginal travel time of O-D pair rs. 
Otherwise,  perform the same adjustment and computation as in 1).  
 
On the other hand, the use of the path deviation function provides a flexible framework 
to fuse different observations together. The optimality condition, in the form of a VI, is 
quite general and may be applied even when the estimation problem cannot be cast as a 
mathematical programming problem.  
 
To solve the VI problem (2-7), we need to evaluate the path deviation vector d(f), 
which requires dynamic network loading, a process of loading time-dependent O-D 
flows onto the network according to a given model of traffic flow dynamics. This 
process produces the time-dependent link flows and travel times, and is described in the 
next section.   
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2.2.2 The Dynamic Network Loading Process 

As mentioned earlier, the DNL problem aims at obtaining, on a congested network and 
over a fixed time period, the link cumulative arrival/departure curves (hence 
time-dependent link/path travel times) corresponding to a given set of temporal O-D 
demands. 
 
DNL is an underlying component of many dynamic network problems in which paths 
costs depend on temporal path flows in ways governed by traffic flow dynamics. In the 
past two decades, DNL has attracted a great deal of attention from transportation 
researchers, stimulated by the need of both simulating urban traffic and solving 
dynamic traffic assignment problems. According to how they model traffic flow 
dynamics, existing DNL processes may be classified into three groups: macroscopic, 
microscopic and mesoscopic processes. A macroscopic DNL process employs 
macroscopic traffic flow models to describe traffic dynamics, while a microscopic DNL 
process uses microscopic traffic models, such as car-following or particle-hopping 
models, to describe traffic dynamics. A mesoscopic DNL process falls in-between a 
macroscopic and a microscopic DNL process in the sense that it uses macroscopic 
models to describe traffic flow but keeps track of individual vehicular quanta like a 
microscopic DNL process does. A vehicular quanta is an indivisible flow element 
which is tracked in DNL like a vehicle in microscopic simulation. However the size of 
the vehicular quanta can be set arbitrarily small to replicate analytical results as closely 
as desired.  
 
In this research, we make use of a polymorphic, mesoscopic DNL process (PDNL) 
developed over the years at UC Davis (e.g., W. L. Jin 2003, X. J. Nie 2003, Yu Nie 
2006). Since the freeway network we consider in this research has a special structure, 
the general PDNL process is considerably simplified to gain computational efficiency. 
In our PDNL process, we use the hydrodynamic traffic flow model of Lighthill and 
Whitham (1955) and Richards (1956), known as the LWR model, with the following 
speed-density (s-k) relationship:  
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where  is called critical density,  the jam density and  free-flow travel speed. 

Here  

ck jk fs

jc kk
111 −=α  . This  curve was employed in Newell (1993) for streamlining 

a graphical LWR solution and then adopted by Daganzo (1994) in his cell transmission 
model (CTM). 
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Our PDNL process models the on-ramp merges and off-ramp diverges using the 
supply-demand method of Daganzo (1994,1995). The demand of a link, , is the 
maximum possible exit flow rate that wish to leave it  

D

},{min QCD =  
And the supply of a link, , is the maximum possible flow rate that the link can 
accommodate  

S

},{min RCS =  
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where  is the flow capacity depending on road characteristics and/or control 
strategies; 

  is the rate of the flow that is ready to exit; 

C

Q

R   is the maximum entry flow rate to the link permitted by the current traffic 
condition. 
 
With the introduction of supply and demand functions,  one can determine the freeway 

and ramp flows on links 1-3 and 2-3 (see see Figure 2.2),at time , denoted as  

and  from the following maximization problem (the time index t is dropped for 
brevity): 
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where 

 is the demand of link . 

 is the supply of link 3, the downstream link. 

This program, however, does not have a unique solution when 
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Jin and Zhang (2003) proposed an alternative distribution scheme  
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which yields the following simple solution to the ramp merge problem:  

},{min,, 32133 SDDvivav ii +=∀=  
 
Similarly, for a ramp diverge with freeway and off-ramp links 1-2 and 1-3 (see Figure 

2.2), diverging flows  and  can be determined by the following maximization 
problem (Daganzo 1995):  

12v 13v

13132121312 ,, subject to ,max DvSvaSvavvv ≤≤≤+=  
where  is called turning proportion. In the simplest case (e.g., for evacuation 

applications), turning proportions  can be determined exogenously. However, in the 

general context of network loading,  are dependent on traffic composition, and vary 

with time and the demand pattern. Thus, turning proportions have to be derived from 
the destinations of the vehicles ready to advance into each diverging branch at any 
given time. The solution to the above mathematical program is simply: 
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Figure 2.2 Merge and diverge nodes 

 
 
By performing DNL, we can get a set of cumulative arrival and departure flow curves 

for every link in the loading horizon. Let us define  as the cumulative flows to 
pass the entrance of link   by time t , i.e.,  

)(tBa
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where  is the rate of flow entering link at time . Similarly,    denotes 

the cumulative flows to pass the exit of link  by time , i.e.,  
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where  is the rate of flow leaving link  at time t . Figure 2.3 gives an example 
of cumulative arrival and departure curves.  

)(tva a

 
These cumulative curves are very useful because most quantities of interest to the 
description of traffic flow can be derived from them. The traversal time that a vehicle 
would experience if it enters the link at time  is the horizontal separation between the 

two curves (note that the horizontal line crosses  at time t ). Mathematically, 

t

)(tBa

)(taτ  can be computed as  
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τ
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≥
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Figure 2.3 Cumulative curves constructed from DNL 

 
We emphasize that (2.11) holds only when vehicles do not pass each other when 
traversing the link, known as the First-In-First-Out (FIFO) rule. To see this, note that 
the formula (2.11) is valid only if any vehicle will not exit the link until all vehicles 
present on the link at its entry time have left. Put it in another way, no vehicle can leave 
the link earlier than any vehicle which enters the link before it. 
 

2.2.3 Algorithms for Solving Variational Inequality Problems 

The DoDE problem cast as the VI problem (2-8) can be solved by a number of 
algorithms. Here we present two such algorithms, the basic project algorithm and the 
heuristic solution algorithm known as the method of successive averages (MSA). 
Before we proceed to describe these algorithms, we simplify the notation by using  

)()(,, fdf −≡≡≡ + fcRWf aom  
and accordingly denote the VI problem by VI(  ). Wc,
 

Let us define the merit (or gap) function of VI( ) as follows:  Wc,

〉−〈=〉−〈=
∈∈

gffcfgfcf
WgWg
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∗f  is a solution to VI( ) if and only if solves the maximization program  Wc, ∗f

 
1) Basic Projection Algorithm  
Let r  be a constant positive scalar, the main iteration of this algorithm centers around 
computing the following projection:  
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This algorithm has been applied for solving the DTA problem in Wu et al (1998), where 

it was shown that the projection mapping  ))(( 1 fcf rW −Π  has to be a contraction to 
ensure the convergence of the above algorithm. 
 
2) The Successive Averages Algorithm 
In the method of successive averages, the main iteration of the algorithm concerns the 
following flow update: 
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In the next section, we will employ these algorithms to solve an example DoDE 
problem for a synthetic freeway network with eight O-D pairs, and compare the 
estimation results under different levels of traffic information. 
 

2.3 Numerical Results 

2.3.1 The Freeway Network and Related Data 

The freeway network used in this study, which contains a northbound portion of 
Freeway SR-41 in Fresno, CA (from N. Fresno St. to S. Golden State Blvd, 16.7 miles), 
is shown in Figure 2.4.  The network used in our experiment is a trimmed version 
which includes only the on/off ramps and mainline links of the freeway network (as 
illustrated in Figure 1-1). The trimmed network consists of eight interchanges, 12 
off-ramps, 17 on-ramps, 31 freeway mainline links and 116 O-D pairs. There are three 
main bottlenecks in this network due to lane drops. The assignment horizon is a 
two-hour peak period, and the assignment, measurement and loading intervals are set to 
15 minutes, 15 minutes and 6 seconds, respectively. 

 
Figure 2.4 A real freeway network 

 
The synthetic time-dependent O-D tables and traffic measurements in our experiments 
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are produced using the following procedure. First, real traffic counts provided by 
Caltrans District 6 are used to estimate an initial time-dependent O-D table. Second, 
total travel demands for the whole assignment horizon are obtained for each O-D pair 
by summing all time-dependent entries of the table. Third, various rules are applied to 
allocate the total demands to different assignment intervals following a flat, trapezoidal 
or a two-peak pattern (see Figure 2.5 and Table 2.1), and the results are used as the 
ground truth for time-dependent O-D demands (the “True” O-D table). Fourth, a 
dynamic network loading (DNL) based on the kinematic wave theory is performed to 
obtain traffic measurements including traffic counts and path travel times (note that 
traffic assignment equals network loading in the freeway case since no route choice is 
involved).  Finally, the synthetic O-D table is uniformly perturbed by 20% (i.e., each 
entry of the synthetic OD table times 1.2) to generate a synthetic time-dependent 
historical O-D trip table.  The total demands in the assignment horizon are used as 
planning (static) demands. 
 
Since we have synthetic O-D demands which are assumed to be the true O-D flow in 
this case, we may obtain synthetic traffic counts for each link and path travel time for 
each OD pair by performing PDNL with the synthetic OD, as described above. 
Regarding the historical OD matrix, we uniformly perturbed the synthetic O-D by 20% 
(i.e synthetic OD times 1.2 uniformly). Moreover, we set the constant total O-D 
demands in two hours as the planning (static) O-D. There are all kinds of information 
we can have to conduct the O-D estimation, but sometime only some of them are 
available to us, or for example, we may only obtain the traffic counts information for 
very limited links (main links or ramps). Therefore, we also would like to see the 
accuracy of demand estimation given by partial information based on combinations of 
different information. Now we are able to create different scenarios to check which 
kind of information is more efficient in predicting O-D demands.  
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trapezoidal O-D demand for one OD pair
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flat O-D demand for one OD pair
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two-peak O-D demand for one OD pair
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Figure 2.5 The three types of distributions of demand over time 
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Table 2.1 Allocation rules for three types of distributions of demand 
Two-peak pattern 

Interval 1 2 3 4 5 6 7 8 
Proportion.1/16 1/8 3/16 1/8 1/16 1/8 3/16 1/8 

Flat pattern 
Interval 1 2 3 4 5 6 7 8 
Proportion.1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 

Trapezoidal one-peak pattern     
Interval 1 2 3 4 5 6 7 8 
Proportion.1/23 5/46 4/23 4/23 4/23 4/23 5/46 1/23 

 
 
The following three indices are used to measure the quality of the O-D estimation:  
1) GEH: a metric proposed by British engineers to measure the quality of the estimates 
(Zhang et.al 2006). 
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where Vpi = the i-th value predicted by the model and Vti = the i-th field measurements. 
N is the total number of observations.  A perfect match will result in a zero GEH value 
(Zhang et.al 2006). 
 
2) Mean Error (ME):  
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3) RMSE: the root mean square error. 
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Sixty scenarios are created to compare the estimation quality under various data 
coverage schemes.  For each demand pattern (trapezoidal or one-peak, flat and 
two-peak), we consider eight different data coverage schemes:   
1) Traffic counts 
2) Traffic counts and partial path travel times 
3) Traffic counts and path travel times 
4) Traffic counts and historical O-D 
5) Traffic counts, historical O-D and partial path travel times1 
6) Traffic counts, historical O-D and path travel times 
7) Traffic counts and planning (static) O-D 
8) Traffic counts, planning (static) O-D and path travel times 
 
As for traffic counts, to see how many links of counts are appropriate for DoDE in 

                                                        
1 Partial means that path travel times are available only on some assignment intervals and/or O-D pairs. 
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terms of accuracy, we also tried to give three types of traffic counts 
1) All traffic counts information (including all counts on mainlines and ramps) 
2) Mainline traffic counts information 
3) Random traffic counts information (where 30 out of 60 mainline links and ramps 

are randomly picked from a uniform distribution).  
 
In all the experiments, BPA is terminated when the number of main iterations exceeds 
50 or the standard deviation of estimated O-D tables in two consecutive iterations is 
less than 0.05, whichever comes first.   
 

2.3.2 Testing Scenarios and results 

Among the three demand patterns, the constant (flat) demand pattern produces no 
congestion in the network, so its flow characteristics are more predictable. Both the 
trapezoidal and the two-peak patterns cause traffic congestion at three disjoint 
bottlenecks. The congestion lasts half an hour in the two-peak pattern and one hour in 
the one-peak pattern, and never spreads to other sections beyond the bottleneck 
sections.  
 
Table 2-2 reports the ME, GEH and RMSE statistics obtained from the DoDE 
estimation results in all 60 scenarios.  Since the three statistical measures show 
consistent results, i.e., when one measure is lower in one case than in another case, the 
other measures also share the same trend, when will use only the ME statistics in our 
subsequent discussions. 
 
The role of traffic counts 
Among the various forms of traffic information, traffic counts are the most commonly 
available and hence provide the basic inputs to O-D estimation. The questions are: are 
they sufficient to obtain good O-D estimates, and how many counting locations are 
needed?  Our experiments indicate that even under a full set of traffic counts, the 
mean error obtained still ranges from 22% to 53%, although the traffic counts 
themselves are closely reproduced by the model for all the three demand patterns. 
Reducing the amount of counting locations, on the other hand, would lead to even 
poorer results. For example, the ME for the one-peak demand pattern increases from 
49% to 64% when about half of the links are counted. In either case, just traffic count 
alone seems inadequate to provide a reliable estimate of a time-dependent O-D trip 
table, because the mapping between time-dependent O-D demand and the observed link 
traffic counts is not one-to-one.  In our experiments, the number of counting locations 
is reduced by half, and in one case, the 30 counting locations are placed on all freeway 
mainline links, and in anther case, they are randomly placed on either freeway or amp 
links. It seems that when there is sufficient number of counting locations, where to 
place them is not a critical issue. But this may change when the number of counting 
locations is much fewer, and is worth further investigation. 
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Table 2.2 The results of all the 60 scenarios 
Scenarios Trapezoidal demand Flat demand Two-peak demand 

ME GEH RMSE ME GEH RMSE ME GEH RMSE
A

ll 
co

un
ts

  N
o 

PT
 --- 0.492 1.602 9.388 0.217 0.874 3.994 0.273 1.025 4.682 

His. 0.135 0.515 3.021 0.032 0.128 0.660 0.069 0.273 1.887 
SP 0.429 1.201 6.771 0.034 0.139 1.047 0.174 0.632 3.553 

PP
T --- 0.503 1.689 9.741 0.217 0.874 3.994 0.289 1.031 4.721 

His. 0.136 0.518 3.037 0.032 0.128 0.660 0.070 0.278 1.902 

PT
 

--- 0.525 1.737 10.497 0.217 0.874 3.994 0.288 1.037 4.725 
His. 0.139 0.526 3.041 0.032 0.128 0.660 0.070 0.288 1.933 
SP  0.428 1.211 6.078 0.034 0.139 1.047 0.176 0.632 3.561 

M
ai

nl
in

e 
co

un
ts

. 
N

o 
PT

 --- 0.645 1.815 11.491 0.263 1.092 4.933 0.335 1.366 6.612 
His. 0.153 0.671 3.608 0.035 0.139 0.708 0.075 0.313 2.064 

PP
T --- 0.679 1.908 12.022 0.263 1.092 4.933 0.363 1.477 6.982 

His. 0.156 0.674 3.642 0.035 0.139 0.708 0.075 0.314 2.062 

PT
 --- 0.681 1.935 12.178 0.263 1.092 4.933 0.392 1.582 7.676 

His. 0.157 0.678 3.671 0.035 0.139 0.708 0.076 0.315 2.062 

R
an

do
m

 c
ou

nt
s N
o 

PT
 --- 0.703 2.243 15.731 0.276 1.168 5.536 0.343 1.439 7.356 

His. 0.175 0.815 3.815 0.053 0.225 1.228 0.084 0.332 2.347 

PP
T --- 0.726 2.381 15.835 0.276 1.168 5.536 0.352 1.583 7.639 

His. 0.176 0.822 3.845 0.053 0.225 1.228 0.086 0.351 2.462 

PT
 --- 0.739 2.474 16.705 0.276 1.168 5.536 0.364 1.622 7.877 

His. 0.179 0.831 3.860 0.053 0.225 1.228 0.086 0.364 2.540 
 “His” Stands for historical O-D, “PT” stands for path travel time, “PPT” stands for partial path 
travel time and “SP” stands for static planning O-D 
 
 
The role of historical O-D information 
In all cases where historical O-D trip tables are used, the mean errors are reduced 
dramatically. Note that in our experiments the historical O-D demands always retain the 
“shape” (or profile) of the underlying travel demand pattern because they are generated 
from a uniform perturbation to the synthetic O-D that we are trying to estimate. The 
remarkable improvement we obtained with the addition of historical O-D should be 
largely credited to availability of this structural information.  Including static O-D 
demands also improved marginally the estimates for both the one- and two-peak 
demand patterns, but the improvement is more sizable to the flat demand pattern. This 
is somewhat expected because a static O-D trip table contains the “shape” of the 
flat-demand pattern, but not the one- or two-peak patterns. These results highlight the 
importance of the knowledge of the profile of the demand, not the volume of demand in 
O-D estimation. 
 
Although historical OD information that contains the profile of the O-D demands to be 
estimated is very useful in guiding the estimation process to find the right demand 
profile, historical O-D demands themselves may not be relied on at the later stages of 
the estimation because they can be far away from the actual O-D demands. Therefore 
forcing the demand deviation smaller actually could lead to larger estimation errors. 
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Figure 2.6 shows the change of ME, GEH and RMSE of counts, path travel time and 
O-D demand over all the iterations in the one-peak pattern where all three kinds of data 
are provided. Obviously, the estimation starts to move in the wrong direction after 15 
iterations when the deviation of historical OD is comparatively large. We can eliminate 
this problem by using historical information in the beginning part of the estimation 
process to shape the demand profile, then discard it and proceed with other information 
such as traffic counts and/or path travel times. Figure 2.7 shows an example where the 
above procedure is carried out, and one can see that the values of ME, GEH and RMSE 
are nearly monotonically decreasing without the obvious upturn shown in Figure 2.6. 
 
The role of path travel times 
As expected, the use of travel times did not improve the quality of O-D estimates in the 
flat demand pattern, since there is no congestion in the network in that scenario. 
Surprisingly, our experiments showed that the use of travel times in the other two cases 
where there is congestion in the network also did not improve the O-D estimates. This 
is somewhat unexpected because unlike traffic counts, travel times can reveal more 
about traffic conditions on the network. Upon a more careful examination, however, an 
explanation can be found. Intuitively, if two O-D pairs go through the same bottleneck, 
it makes no difference to the queuing time (hence the path travel time) whether the 
additional vehicle that joins the queue is from one O-D pair or the other. That is, the 
mapping between O-D path flow and path travel time is also not one-to-one. Thus the 
use of path travel times will not eliminate the under-determined condition in the O-D 
estimation problem.  
 
What complicates the problem even more is that under in the dynamic context, traffic 
counts and travel times are intricately related through the evolution of time, so the two 
pieces of information often overlap each other. In fact, if there are several bottlenecks 
in the network as in our case, the increase of one more unit of travel time on one path 
will affect all the travel times of O-D flows that go through the bottleneck that caused 
the one unit travel time increase. Therefore, it is difficult to identify the O-D pair with 
that additional vehicle that caused the travel time increase that affected the other O-D 
pairs. 
 
It should also be noted that bringing in path travel time poses difficulties to the solution 
algorithm as well, since the mapping  is highly nonlinear and may not satisfy the 
monotone properties required by the basic projection algorithm.  Moreover, the 
solution to the DoDE problem with the path travel time deviations considered may not 
have a unique solution. 
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Figure 2.6 ME, GEH and RMSE of counts, path travel time and O-D demand for an 

original scenario 

 
Figure 2.7 ME, GEH and RMSE of counts, path travel time and O-D demand, historical 

OD data discarded since the 16th iteration 
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Other findings 
Our numerical experiments also revealed some interesting algorithmic convergence 
patterns. When only traffic counts are used, the ME, GEH and RMSE statistics for 
travel demand all converge monotonically, with a sharp drop in the 10~15 iterations 
and a long, flat tail after that. For all other cases, their convergence patterns are not 
monotonically decreasing: smallest ME, GEH and RMSE of O-D demands are always 
obtained around 12~15th iteration, but then the ME, GEH and RMSE starts to rise 
before the pattern gets flat again and the algorithm stops when the maximum number of 
iteration is reached. Take the case of the one-peak demand pattern with traffic counts, 
historical O-D and path travel times used in the estimation, the lowest ME   (0.0915), 
GEH (0.33) and RMSE (2.05) values are reached at the 15th iteration, but rise to 
0.138533 (ME), 0.525811 (GEH) and 3.04085 (RMSE) when the projection algorithm 
stops at the 47th iteration. The possible reasons for these different convergence patterns 
are threefold: 1) when only traffic counts are used, the DoDE problem is a quadratic 
optimization problem, hence a unique solution can be found through the basic 
projection algorithm, thus we have monotone convergence; 2) when both traffic counts 
and historical O-D demands are used, the DoDE is still a quadratic problem, but the 
historical O-D can be quite inaccurate and forcing the estimated O-D demands to 
approach the historical O-D demands by the projection algorithm would lead the 
solution away from the underlying O-D demand pattern in later iterations, when the 
O-D deviation is comparatively larger than the count deviation; and 3) when travel 
times are used, the DoDE problem becomes highly nonlinear, and the mapping  
may not be monotone, therefore the basic projection algorithm may not converge or 
may converge to a local solution.  
 
We also found that the quality of O-D estimates vary considerably across O-D pairs. 
For some O-D pairs, good estimates can be obtained regardless of the types of data 
used. For others, however, accurate estimates can only be obtained when multiple 
sources of data are used. Clearly, different O-D pairs have different dependence on data, 
but their temporal profile can be captured in most cases. As an evidence of this, Figure 
2.8 shows the estimated O-D demands for four OD pairs (randomly picked in all the 
116 OD pairs) for the one-peak demand pattern. As we can see from this figure, even 
when the magnitudes of demands are not estimated well, the temporal profiles of the 
O-D demands are closely followed by the estimates. 
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Figure 2.8 Estimated O-D demands for four OD pairs for trapezoidal pattern 

 

2.4 Summary 

We have proposed a variational inequality approach to estimate time-dependent O-D 
demands for a freeway network with entry and exit ramps. This approach takes into 
account various levels of traffic information, such as link flow count, historical O-D 
tables, static planning O-D and observed path travel times. The DoDE problem 
presented in this report exclusively targets off-line applications, i.e., estimating the 
temporal demand pattern that is relatively stable from day to day. Within day 
fluctuations can be handled through a Kalman filter process or a rolling horizon 
strategy as described in (Kang 1999) and (Zhou 2004). 
 
From our computational experiments, some conclusions for data coverage can be drawn. 
First, traffic counts are indispensable to O-D estimation, and the more the better. But 
when the number of count locations is sufficiently large (more than half of the total 
number of links in the network in our case), it appears that counting locations does not 
matter. When the number of counting locations is small, however, where to place those 
counters may be vital and is worth of further investigation. Second, traffic counts alone 
are usually not sufficient to obtain accurate O-D demand estimates. Historical 
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time-dependent O-D demands, particularly those that reveal the temporal demand 
profiles of the underlying demand patterns, can drastically improve the quality of the 
demand estimates. When a planning (static) demand matrix is provided, one can apply 
a temporal profile to distribute the total demand into several time intervals, and use it as 
the historical O-D matrix, and finally, counter to our expectations, path travel times do 
not contribute much to improving O-D demand estimates. Moreover, due to the 
complex relation between path flow and path travel time, the use of path travel times 
also destroys the nice quadratic structure of the DoDE problem and brings convergence 
difficulties to the basic projection algorithm. Therefore, their use in dynamic O-D 
estimation is not recommended. We suspect that in the dynamic setting, traffic counts 
and their temporal distributions capture much more of the network conditions than in 
the static setting, rendering travel times less needed in the dynamic O-D estimation 
problem.  
 
Our further work will be directed at how to place the traffic counters when their 
number is small compared with the total number of links in a network, and how to 
improve the computational efficiency of the DoDE solution procedure employed in this 
study. 
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3.1  Literature Review 

3.1.1 Background 

Origin-Destination (O-D) matrices provide information on flows of vehicles traveling 
from one specific geographical area to another, and are one of the critical data inputs to 
transportation planning, design and operations. Because it is very time consuming and 
labor intensive to obtain O-D matrices through household interviews or roadside 
surveys, significant efforts have been made for decades to develop mathematical 
models for estimating the matrices from link counts, which are relatively easier to 
obtain. So far, up-to-date commercial planning tools (e.g. EMME/2) and simulation 
software (e.g., Paramics) have provided built-in O-D estimation modules. However, 
most of these O-D estimators are only capable of estimating static O-D matrices rather 
than dynamic or time-dependent O-D matrices. The latter are pre-requisites for 
short-term planning applications, traffic impact analyses, and operations studies. For 
example, as a new generation of planning tools, DynaMIT-P and DYNASMART-P 
overcome the limitations of static models by capturing the dynamics of congestion 
formation and dissipation associated with traffic peak periods. This enables the 
evaluation of a wide array of congestion relief measures, which could include both 
supply-side and demand-oriented measures (FHWA, 2004). To apply these tools, 
time-dependent O-D matrices should be supplied as inputs. As another example, in 
freeway corridor management, time-of-day ramp metering algorithms require O-D flow 
fractions, and adaptive ramp control strategies often need to know dynamic O-D flow 
in order to distribute expected flow reductions from a bottleneck to various metered 
ramps upstream. 
 
Though the estimation of static O-D matrices is well researched, dynamic O-D 
estimation is a much more recent topic. For the static estimation, there are extensive 
literature concerning various formulations and solution methods, including information 
minimization, entropy maximization, maximum likelihood, Bayesian inference, and 
generalized least squares for networks without congestion, and bi-level programming 
for networks with congestion (see the report by Chen et al., 2004 for a recent survey of 
this topic). The static approach requires all trips started in the modeled period to be 
completed in the same period. This assumption may be appropriate for a long time 
horizon, but certainly not realistic at all for a very short time at a general network, say 
five to ten minutes with a long stretch of a highway corridor. In view of that real-time 
information of O-D flows or the O-D matrix for each short interval is an essential input 
for short-term planning applications and real-time traffic operations and management, 
especially in the context of intelligent transportation systems (ITS), a variety of models 
have been proposed to use time-series of link flow data to derive dynamic O-D matrices 
over the last two decades. 
 
This section reviews the existing models for dynamic O-D estimation and then attempts 
to identify the issues that may need further research. The two prevailing approaches for 
open networks and closed networks respectively are summarized in Section 3.1.2. Since 
the major concern of the research project is on linear networks (a linear network is a 
stretch of highway with multiple entries and exits, where there would be no route 
choices involved) where entry and exit counts are more likely to be known (therefore 
closed networks), Section 3.1.3 further dwells on the closed-network-oriented approach, 
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elaborating the issues of dealing with constraints in the framework of recursive 
estimation, considering travel time and flow propagation, and incorporating multiple 
data sources. Section 3.1.4 summarizes the issues to be further addressed. 
 
 

3.1.2 Existing Approaches 

Generally speaking, dynamic O-D estimation is to use time-series of link flow data to 
derive time-dependent O-D matrices. Based on the kernel measurement relationship 
used, the existing approaches may be categorized into two classes: 
closed-network-oriented approach and open-network-oriented approach2.  
 
 

3.1.2.1 Closed-Network-Oriented Approach 

“Closed” networks are networks where all the entry and exit counts are known during 
all measurement intervals. For a general network, this actually implies that 
time-varying departure rates (trip production rates) of all origins and arrival rates (trip 
attraction rates) of all destinations are known. Consequently, the key feature of this 
approach is the direct estimation of O-D splits from time-series measurements of 
network entry, exit counts and sometimes link flows. The fundamental idea is that the 
traffic flowing through a transport facility is treated as a dynamic auto-regressive 
process in which the sequences of real-time exiting counts depend, by causal 
relationships, upon the sequences of real-time entering counts. In this manner, 
additional information can be obtained, which can be used besides the conservations 
between the exit and entry flows, to identify the structure and size of the flows inside 
the facility without using further a priori information (Crème and Keller, 1987). Crème 
and Keller (1981) shall be credited for their first application of the above idea in 
identifying turning flows at isolated intersections. 
 
The flow conservation equation is the basic system equation in this approach, 
representing the relationship between the real-time exiting counts of a certain 
destination j and real-time entering counts of all the related origins i:  

)()()()( tetqtbty j
i

iijj += ∑  

Here yj(t) and qi(t) are the exiting and the entering traffic counts, bij(t) is the O-D split, 
the proportion of traffic flows entering at origin i and exiting at destination j, and ej(t) is 
a random error.  
 
Since there are always much more unknowns, namely the O-D splits, than the 
relationships established, various system identification methods should be applied to 
estimate the unknowns. Crème and Keller (1987) proposed four methods: 
                                                        
2  There exist other terms for classifying these models, such as “non-assignment-based” versus 
“assignment-based approaches” by Chang and Tao (1999), and “intersection-oriented” versus 
“network-oriented” by Chen et al. (2004). Here we follow the terminology by Ashok and Ben-Akiva 
(2000). Note that there is actually no clear dividing line between these two approaches, and the 
classification is more to facilitate the presentation of the ideas.  
 

53 



 

cross-correlation matrices, constrained optimization, recursive estimation and Kalman 
filtering for solving this problem. Concurrently, Nihan and Davis (1987) developed a 
recursive predictions error (RPE) estimator of tracking dynamic O-D parameters. These 
methods can all be interpreted as recursive or non-recursive least-squares methods, 
because they share the same assumptions and insights that can be traced back to 
Gauss’s least-squares estimation theory (Sorenson, 1970). Also note that although the 
recursive algorithms mentioned above require an initial O-D matrix to start with, the 
dependency on this initial input in their estimates decreases as time passes. However, 
when major shifts in demand patterns occur (such as from peak to non-peak), the 
performance of these algorithms degrades.  
 
These models ignore travel times in the facilities, which is justifiable for intersections 
and very small networks. Bell (1991) extended the models by permitting the 
distribution of travel times to span a number of different intervals. His first method 
employs a concept of platoon dispersion in representing the dynamic interactions 
between entry and exit flows while his second method assumes freely-distributed travel 
time to address travel time variability. Chang and Wu (1994) used nonlinear 
macroscopic speed-density-volume relations to estimate travel times and introduced 
link-use proportions to establish a new set of flow propagation constraints.  
 
With the assumption that the O-D patterns are auto-regressive, these 
closed-network-oriented models do not need a target O-D table, although they require 
the entry and exit counts of the network at all time points. Li and Moor (2002) 
attempted to address the issue of incomplete observations by estimating the O-D flows 
rather than the O-D splits using a generalized least squares (GLS) approach, which 
however involves a priori target O-D matrix.  
 
Apparently limited by the requirement of all entry/exit counts, this approach is not very 
practical for large-scale general networks. 
 
 

3.1.2.2 Open-Network-Oriented Approach 

This approach is intended for being used to estimate dynamic O-D matrices for general 
networks. The literature on this approach is rather limited, and the most noteworthy 
work known to us are those of Willumsen (1984), Okutani (1987), Cascetta et al. 
(1993), Ashok and Ben-Akiva (1993, 2000, 2002), Madanat et al. (1996), Bell et al. 
(1996), Sherali and Park (2001) and Hu et al. (2001). 
 
This approach considers the estimation of time-varying O-D matrices as the inverse 
problem of dynamic traffic assignment (DTA) problem. Instead of using the simple 
flow conservation relationship, the assignment matrix from DTA model serves as the 
kernel measurement relationship. Define yr  as the vector of the measured link counts, 
f
r

 as the vector of O-D flows to be estimated, er  as the random error vector and A as 
the assignment matrix from DTA model, the system equation is as follows: 

)()(),()( tekftkAty
t
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The element of the assignment matrix A is the link-use proportion, which is defined as 
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the proportion of a particular O-D flow departing its origin during interval k, prior to 
the current interval t by at most p intervals, contributes to the flow on link l during 
interval t. Since the resultant system of equations is highly under-determined, previous 
studies have taken two different paths to resolve the problem. Note that no matter 
which path is employed, the main difficulty is the determination of the assignment 
matrix. 
 
The first path is to formulate optimization problems, normally constrained GLS 
problems, with using an a priori O-D matrix and then to select among the infinite 
number of potential candidates the one that is closest to the a priori O-D matrix. 
Willumsen (1984) and Cascetta et al. (1993) formulated very similar minimization 
problems with slight difference in their objective functions: Willumsen (1984) used the 
entropy function of O-D flows while Cascetta et al. (1993) used a combination of 
entropy and least squares (of link flows). Their major difference, however, lies in the 
way of computing link use ratios. In Willumsen (1984), link use proportions are not 
directly computed. Rather, a traffic simulation model (CONTRAM) is used to obtain an 
accumulation factor based on ratios between simulated and observed link counts, and 
uses this factor to update O-D flows and force convergence. On the other hand, 
Cascetta et al. (1993) estimated the link-use proportions through dynamic network 
loading, which requires the knowledge of route travel times. Rather than obtaining 
travel times based on estimated O-D demands, Cascetta et al. (1993) presumed that 
historical travel times are available and uses them to perform dynamic network loading. 
More recently, Sherali and Park (2001) generated the time-dependent link-use 
proportions (but did not explicitly specify how), and formulated a constrained GLS 
model whose objective function has an additional total-cost-driven component in order 
to avoid using an a priori O-D matrix. A column generation approach was developed to 
solve their model.  
 
The second path is to assume that traffic dynamics is auto-regressive. Both Okutani 
(1987) and Ashok and Ben-Akiva (1993, 2000) use Kalman Filter to update 
time-varying O-D data with the assumption that the assignment matrix A is known from 
directly-measured travel times. Distinctive from all other work, Ashok and Ben-Akiva 
(1993) assumed that rather than the O-D data themselves, the deviations of current O-D 
data from historical O-D data are auto-regressive. Madanat et al. (1996) added a control 
equation to the model of Ashok and Ben-Akiva that accounts for the time-varying 
effects of traffic information on travel demands via a binary choice on route switching. 
This binary route switching decision is either to exit through the original destination, or 
to exit through an off-ramp before reaching the original destination. Hu et al. (2001) 
proposed an adaptive Kalman filtering that uses time-varying assignment matrices 
generated by DYNASMART. Recently, Ashok and Ben-Akiva (2002) further revised 
their model by using stochastic link-use proportions to address the uncertainty 
associated with the proportions. They also suggested an iterative O-D estimation as an 
alternative when the directly-measured travel times are not available. But this process 
has two major defects that the convergence is not guaranteed and that the resultant O-D 
flows could be biased. Most recently, Bierlaire and Crittin (2004) followed the 
formulation of Ashok and Ben-Akiva (2000) but suggested using the LSQR algorithm 
(first presented by Paige and Saunders, 1982) instead of the Kalman filtering to solve 
this sparse linear system.  
 
The time-dependent path flow estimator proposed in Bell et al. (1996) is quite different 

55 



 

from the models reviewed above in the sense that it is only quasi-dynamic and steady 
state conditions are assumed within each period. More specifically, trips started in one 
period will always be completed within the same period unless inadequate road 
capacities prevent them from doing so. The queued vehicles, if any, will be carried from 
one period to the subsequent. Except this, the propagation of traffic flow and spatial 
and temporal evolution of congestion are simply ignored. Regardless of such 
limitations, Bell’s time-dependent path flow estimator is comparably efficient and 
applicable to large-scale general networks.  
 
 

3.1.3 Closed-Network-Oriented Approach  

This project is concerned with deriving time-dependent O-D matrices for linear 
networks. In linear networks, entry and exit counts are often known. Therefore, the 
closed-network-oriented approach will be readily applicable. This section further 
elaborates the development of this approach, which has followed three major paths 
addressing issues of satisfying constraints of the O-D splits, taking account of travel 
time and flow propagation in a network and incorporating multiple data sources to 
increase the system observability.  
 

3.1.3.1 Satisfying Equality and Inequality Constraints 

As aforementioned, this approach is featured with direct estimation of O-D splits from 
time-series entry and exit counts. The O-D split bij(t) is the proportion of the traffic 
entering at entry i at time interval t that leaves at exit j. Therefore, the parameters bij(t) 
are obviously bounded between zero and one. Moreover, the sum of all the O-D splits 
from a specific entry i at a specific interval should be equal to one. These inequality 
and equality constraints cause some difficulties when applying the recursive 
least-square estimation and Kalman filtering methods because the basic structures of 
these methods do not allow for constraints. Consequently, extra caution should be 
exercised to guarantee the satisfaction of these constraints. 
 
For the inequality constraints, note that the requirement of the O-D splits less than one 
is redundant if the non-negativity constraints and the equality constraints are satisfied. 
Nihan and Davis (1987) first proposed a truncation method for the RPE estimator to 
guarantee the non-negativity of the O-D splits. In the recursive estimator, the solution 
of the O-D split at the time interval t, bij(t), is equal to bij(t-1) plus a correction item 
mij(t). The truncation method essentially ensures that the absolute value of the 
correction item is always less than bij(t-1) by multiplying the correction item with a 
weighting factor. It can be seen that the truncation method actually leads to a loss of 
“optimality” in the recursive estimation. Bell (1991) suggested a more powerful 
constrained recursive least squares algorithm to handle the inequality constraints. His 
basic idea is to derive the Karush-Kuhn-Tucker (KKT) optimality condition for the 
least square program at each time interval, and apply an iterative process to determine 
the Lagrange multipliers. At the iteration if the non-negativity of the O-D parameter is 
violated, an adjustment to the associated Lagrange multiplier will be made until all the 
constraints are met. 
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The equality constraints are more difficult to deal with because they are applied to each 
row of the O-D matrix while the closed-network-oriented approach estimates the matrix 
column by column, in view of the fact that the traffic flow exiting from jth exit is only 
related to the jth column of the O-D matrix. A normalization method and a projection 
method after the unconstrained estimation process have been proposed by Nihan and 
Davis (1987). The normalization is to simply update each row element by dividing the 
row sum, while the projection method is to project the result of the unconstrained 
estimation onto the hyperplane defined by the equality constraints. Again, these two 
approaches are heuristic and seem provide no guarantee for an unbiased estimation3. 
More recently, Li and Moor (1999) proposed a recursive approach based on 
equality-constrained optimization to address the equality constraints. Instead of 
estimating the O-D matrix column by column, their formulation employs all the O-D 
parameters and thus the dimension of the problem is increased from the number of the 
origins to the product of the number of origins and that of the destinations. But the 
advantage is that the equality constraints can be handled explicitly while solving the 
least square problem. For the sake of saving computation time, the proposed approach 
only performs one step of iteration in Bell’s algorithm to correct for inequality 
constraints.    
 
Recently, Simon and Chia (2002) developed a constrained Kalman filtering method that 
can be applied to deal with the equality constraints in the Kalman-filtering-based 
algorithm. Their method is essentially a projection method that can be viewed as the 
generalization of the project method used in Nihan and Davis (1987). They provided a 
rigorous proof that the projection is an unbiased state estimator for any known 
symmetric positive definite weighting matrix, and then further presented a weighting 
matrix that has the smallest estimation error covariance.   
 
Note that in order to handle the equality constraints it is inevitable to expand the 
dimension of the problem so that all the O-D parameters can be estimated at the same 
time. 
 

3.1.3.2 Travel Time Consideration 

The temporal and spatial dispersion of traffic is of great importance to determine either 
the casual relationship between the entering and exiting counts or the time-dependant 
assignment matrix. Indeed representation of flow propagation and estimation of travel 
time are tightly related. Incorrect representation of flow propagation will lead to wrong 
relationships between O-D parameters and link flows, resulting biased estimates of 
these parameters.   
 
The first generation of the closed-network-oriented models focuses on turning 
movement identification for intersections where travel time can be safely assumed 
negligible. When extending these models to networks, representation of flow 
propagation is the first issue to resolve. Bell (1991) proposed two methods to allow for 
distributions of travel times through intersection or network that span more than one 

                                                        
3 Based on the work by Simon and Chia (2002), the projection method turns out to be an unbiased state 
estimator, not the best one though. 
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interval. The first method assumes a geometrically distributed travel time for each exit. 
In this method, the parameters to be estimated are the platoon dispersion factor together 
with the O-D splits. The second method considers freely-distributed travel times, but 
assumes vehicles from any entrance should reach to a specified exit within three time 
intervals. Thus, the variables to be estimated at each time interval are exactly the O-D 
parameters for the three intervals before the current interval. Chang and Wu (1994) 
used a set of non-linear macroscopic traffic relations to estimate travel times, but 
assumed vehicles that reach one exit during an interval come from only two 
consecutive time intervals for each entrance. Moreover, the proposed method represents 
flow propagation by introducing link-use proportions to be estimated simultaneously 
with the O-D parameters. Consequently, not only the dimension of the problem 
increases, but also the problem itself becomes nonlinear. Extended Kalman filtering 
was adopted by Chang and Wu to identify the nonlinear system.  
 
 

3.1.4 Incorporating Multiple Data Sources 

Most existing dynamic O-D estimation models make use of time-series traffic counts at 
entries and exits in the network and some even require a target O-D matrix to guarantee 
the system observability. The traffic counts are supposed to be collected from sensors 
such as the inductive loop detectors, and the target O-D matrix is assumed to be 
available from a historical O-D data or a simple survey. Wu and Chang (1996) and 
Chang and Tao (1996) included constraints established from dynamic screenline and 
cordonline flows to increase the observability of the dynamic interactions between O-D 
patterns and the resulting link flow distributions. In order to obtain a more reliable 
estimate, Chang and Tao (1999) presented an integrated model that employs the 
intersection turning flow data to produce an additional set of constraints in identifying 
path flows from a DTA model.  
 
The advent of automatic vehicle identification (AVI) technologies would benefit 
dynamic O-D estimation with providing sampled complete or incomplete vehicle 
trajectories. For example, if there are video detection systems installed at selected 
intersections, explicit turning movements, including right-turn, through and left-turn 
will be available. Although our literature search has not found a directly-relevant 
research that incorporates such a data source into the aforementioned modeling 
framework, many researchers have investigated the possibility of taking advantage of 
these AVI data in various O-D estimations. For example, electronic toll collection tag 
can provide partial trip trajectories of vehicles equipped with a tag. Due to the fact that 
only a fraction of tagged vehicles can be sampled, Kwon and Varaiya (2005) developed 
a statistical model to derive an unbiased estimator of the O-D matrix (essentially tag 
reader to tag reader interchange flows) based on the method of moments. As another 
example, area-wide AVI systems, such as in-vehicle global positioning system and cell 
phone tracking, can provide partial, but complete trajectories of the vehicles. It has 
been proposed by several researchers that together with the market share of such AVI 
equipments, an off-line O-D can be obtained from these AVI data (Asakura et al. 2000; 
Antoniou et al. 2004; Dixon and Rilett 2005; Eisenman and List 2004). The application 
of this idea to the Han-Shin expressway network in Japan (See Asakura et al. 2000) 
provided a practical case which indicates the effectiveness of this method.  
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3.1.5 Issues to Be Further Addressed  

From the above review of relative literatures, we identify the following issues that may 
need further research:  
 

1) Improvement of the usage of AVI data. Most studies treat the AVI data as an 
off-line resource for the target O-D matrix. However, the real-time AVI data 
may serve as another information source which will provide at least the origins 
of the vehicles and an approximation of the link volume. Also, other traffic 
information such as turning movements on the selected intersection from video 
detection systems may be employed to improve the system observability. It 
would be necessary to investigate how to fuse these different sources of AVI 
data to maximize the accuracy of the estimation. 

 
2) Link use proportions. Because there is no route choice in linear networks, it is 

relatively easier to compute more accurately link-use proportions. With an 
exogenous reliable source of real-time travel time information, efficient ways 
should be investigated to compute link-use proportions. Without such an 
exogenous source, an iterative procedure between O-D estimation and flow 
propagation tracing should be conducted to provide endogenous estimates of 
travel time and link use proportions. Although such an iterative technique is 
expected to be quite difficult, it might be still feasible for linear networks.  

 
3) Incomplete information. For linear networks, current models require all the 

entry and exit counts. However, the observation information is often incomplete. 
For example, it is unlikely to obtain exit counts from the typical settings of loop 
detectors for actuated signal control systems. It is necessary to investigate how 
to ensure the system observability in such a context, in addition to introducing a 
target O-D.  

 
4) Measurement errors.  Our experience with the traffic loop detectors suggests 

that the loop detectors generally have only 70%-80% accuracy. Such 
(systematic) measurement errors can not be represented by the error term in the 
Kalman Filtering. Therefore, research efforts need be made to mitigate the 
impacts of the inaccuracy of traffic data. One possible solution is to seek a 
robust counterpart of the O-D estimation optimization problem that will tolerate 
changes in the traffic data, up to a given bound known a priori.  
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3.2 Estimation of Origin-Destination Flows for Actuation-Controlled 

Intersections 

3.2.1 Introduction  

This section addresses the real-time estimation of O-D flows (splits or turning 
proportions) for isolated intersections. The purpose is to use time-series data of traffic 
counts to derive time-independent or time-varying O-D flows. Estimating O-D flows for 
isolated intersections is a starting point for the network O-D estimation. A single 
intersection can be viewed as the smallest network system with multiple origins and 
destinations. Moreover, individual intersection is the key element of a large-scale 
network. If turning movements of all the intersections in the network are known, the 
traffic situation within this system can be replicated or simulated. Therefore, intersection 
O-D estimation problem serves as the basis for system identification, monitoring and 
control.  
 
A variety of estimators have been developed for estimation of dynamic intersection O-D, 
requiring all the entering and exiting counts at all time points. However, even as small as 
an isolated intersection, the observation information is often incomplete. For example, it 
is unlikely to obtain exiting counts from the typical settings of loop detectors for actuated 
signal control systems. Li and De Moor (2002) proposed a constrained generalized least 
squares (GLS) method to address the issue of incomplete observations. Their method 
requires a priori target O-D matrix, and the results will heavily depend on this initial 
value, which might lead to a biased estimate. This chapter presents a new two-step 
optimization procedure for problems with complete entering counts but incomplete 
exiting counts, a common information pattern from actuation-controlled intersections. 
The formulation is still based on the notion of GLS, but makes full use of the available 
information, thereby simplifying the computation and partially eliminating the 
dependence on the prior information. To facilitate the presentation of the idea on dealing 
with information incompleteness, we first focus on the situation where the O-D matrix to 
be estimated is constant and then extend the framework to track time-varying O-D 
matrices by modeling the O-D splits as a random walk process. 
 
  

3.2.2 Problem Statement and Notations 

3.2.2.1 Problem Statement 

A big segment of intersections in the U.S. are actuation-controlled. Actuated signal 
controllers receive calls or actuations that request service for a particular movement, 
typically from inductive loop detectors cut into the pavement surface. For the purpose of 
signal operations, the controller does not need to determine if the call is due to a single 
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vehicle or a large platoon of vehicles. However, the advancement and deployment of 
telecommunication and ITS technologies have made traffic counts and occupancies more 
readily available from actuated control signal systems. For example, in California, 
second-by-second returns of signal status and loop detector data can be obtained for all 
phases. 
Fig. 3.1 shows a typical loop layout for the major approach to an actuation-controlled 
intersection. There are two set of loops, advance loops and presence loops, installed for 
the through-movement, and the left-turn bay is equipped with loop detectors as well. 
Note that for the minor approach normally only presence loops are installed. 

 
Fig. 3.1.  A typical loop layout 

 

 
 

 
With such a typical setting, all the entering counts can be obtained from either the 
advance or presence loops. However, exiting counts are generally not available. For the 
major approaches, we may estimate the exiting flows from advance loops for the 
downstream intersection with the assumption that there are no driveways in between. For 
the minor approach, it is less likely to even estimate the counts.  
 
In summary, depending on the specific loop settings, there are multiple information 
patterns available from actuated control systems. In this chapter, we focus on a prevalent 
case in which all of the entering flows and exiting flows on major approaches are known 
while the exiting counts on minor approaches are missing.  
 

3.2.2.2 Notations 

Consistent with the notations by Nihan and Davis (1987) and Li and De Moor (2002), we 
let: 

 Ji denote the set of exits j, which is permissible for vehicles entering at entrance 
i; 
 Ij denote the set of entrances i, which permits vehicles to take exit j; 
 OJ is defined as the index set of exits where the traffic counts are available; 
 yj(k) and qi(k) denote the exiting counts of exit j and arriving counts of entrance i 

respectively, during time interval k; 
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 bij denotes the O-D split, i.e. the proportion of traffic counts entering via 

entrance i and leaving via exit j. By definition, bij must satisfy:  
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 ]II  is a matrix with 4 rows and 16 columns facilitating the 
constraints (1a) to be rewritten in the vector form. 

[ IID =

 
 

3.2.3 Conventional GLS Method 

3.2.3.1 Formulation 

For the exits where exiting counts are available, the measurement equation can be 
expressed as: 

OJjkekqbky j
Ii

iijj
j
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∈
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where ej(k) is the random measurement error with zero mean. 
 
The framework of the estimation is to find O-D splits such that the mean squares of the 
error term are minimized. However, since some of the exiting counts are not observable, 
the corresponding bij become inestimable under the least square framework. To deal with 
the above issue, a priori information of the O-D splits to be estimated has to be 
introduced into the objective function of the GLS formulation. Essentially, the estimates 
of O-D splits are determined by the previous estimate O-D and then are corrected by the 
current observations.  
 
At each time interval k, given the estimate of bij in the previous interval, , and the 
weighting factor 

)1(ˆ −kbij

ijζ , the GLS formulation can be written as:  
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                           subject to (3.1a) and (3.1b) 
 
Note that the above model is proposed by Li and De Moor (2002) in a different but 
equivalent form.  
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3.2.3.2 Solution Algorithm 

To handle the non-negativity constraints (3.1b) in the least squares formulation, Bell 
(1991) suggested a powerful iterative algorithm. The basic idea is to derive the 
Karush-Kuhn-Tucker optimality condition for the optimization problem at each time 
interval, and then apply an iterative process to determine the Lagrange multipliers. 
During the iteration if the non-negativity of the O-D parameter is violated, an adjustment 
to the associated Lagrange multiplier will be made until all the constraints are met. Li and 
De Moor (1999) further extended this method to deal with equality constraints (3.1a). 
 
In this chapter, instead of following their procedure, we adopt Kalman filtering as the 
solution algorithm. In view of two facts that the weighting factor wij should be 
determined according to the covariance structure of both terms in the objective function 
in order to obtain the best linear unbiased estimator (Cascetta, 1984), and that the 
Kalman filtering represents essentially a recursive solution to the original least squares 
problem (Sorenson, 1970), we transform the original optimization problem (3.3) into the 
following equivalent constrained Kalman filtering problem. 
 
Since  can serve as an available observation at each time interval k, we write 
the state-space equations as follows: 

)1(ˆ −kbij
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where )(kwv  and )(kev  are the corresponding random error terms, subject to constraints 
(3.1a) and (3.1b): 

1)( =kbD
v

  (3.5a) 
0)( ≥kb

v
  (3.5b) 

 
To apply the Kalman filtering algorithm, we can assume the covariance matrix of )(kev  
is known, denoted as R(k) (this assumption is realistic since the measurement error of the 
loop detectors can be possibly estimated prior to the operation of the filter) and that 

)(kwv  and )(kev  are independent. Noting that )(kwv  is actually the deviation of the 
estimate value from the true value at time interval (k-1), the covariance matrix of )(kwv  

should be equal to ))]1(ˆ())1(ˆ[( −−−− kbbkbbE T
vvvv

, which is denoted by  and can 
be estimated during the Kalman filtering procedure.  
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 and  denote  and apply Kalman filtering with 

equality constraints using the maximum probability method (Simon and Chia, 2002) to 
this system, the solution can be expressed as: 
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where, 
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It should be pointed out that we discard (3.5b) here for the computation simplicity. The 
inequality constraint (3.5b) is very likely to be met since the O-D splits are constant and 
that their initial values can be well chosen to be all positive. If necessary, the truncation 
method proposed by Nihan and Davis (1987) can be applied to guarantee the 
non-negativity. 
 
 

3.2.4 Improved Two-Step Method 

3.2.4.1 Formulation 

For the exits where the traffic counts are available, the corresponding column of the O-D 
matrix can be directly estimated from model (3.2), which is an unbiased estimator and its 
dependency on the initial input diminishes as time passes. However, model (3.4) is 
unbiased only if the mean value of the error term [ ]Tkekw )()( vv  is zero. We can assume 
safely the measurement error )(kev  has a zero mean, but whether )(kwv  meets this 
requirement depends on the choice of the initial values of the O-D splits. A poor initial 
value will always lead to a biased result for all bij even those could be unbiasedly 
estimated by using model (3.2). 
 
Another limitation of conventional GLS model (3.4) is the computational difficulty. To 
obtain the recursive solution (3.6), an inversion of matrix should be conducted at each 
step. The dimension of the matrix depends on the size of b

v
 and yv . It may be acceptable 

for the isolated-intersection problem, but is not applicable for a large-scale network. 
 
To improve the model in these two aspects, we propose a new two-step procedure. The 
procedure estimates the jth column of O-D matrix associated with the exit  using 
model (3.2), and then obtains the remaining unspecified O-D parameters using a 
constrained least squares model. Consequently, the first step estimator is unbiased and 
does not depend on the initial inputs. This two-step model is essentially applying the 
notion of GLS, but attempts to determine as many O-D splits as possible from the 
observations, different from the conventional way of using the observation as a 
correction to the prior O-D information. Such a decomposition scheme not only 
guarantees the accuracy of the first-step estimator, but also makes it possible to convert 
the original vector identification problem into several independent scalar problems in 

OJj∈
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both steps, which certainly improves the computation efficiency. 
 
Given the estimate  in the preceding interval, the formulation at each time 
interval k is as follows: 

)1(ˆ −kbij
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• Step 2: 
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3.2.4.2 Solution Algorithm 

Based on the same procedure of converting model (3.3) to model (3.4), the first-step 
model (3.8) can be represented by the following system equations: 
 

( ) ( 1)
,

( ) ( ) ( ) ( )
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b k b k
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where the covariance of the random error is assumed to be known, denoted as 
. 

( )je k
)(krj

 
Since the result of this estimator is expected to be very close to the true value at 
convergence, we ignore the inequality constraints and apply the unconstrained Kalman 
filtering for each OJj∈  separately to identify this system: 
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It is apparent from (3.11) that after the decomposition, no matrix inversion is needed 
when computing the Kalman gain Kj(k) since the item in the bracket is only a scalar. 
Thus, this formulation improves the computational efficiency to a great extent. 
 
The second-step model is an equality-constrained least-squares problem for each row i of 
the O-D matrix, after omitting the non-negativity constraints. It is essentially a projection 
of the previous O-D parameters to a plane in the bij space governed by the result from 
step 1. Since the exiting counts for the two major approaches of a typical four-way 
intersection are known, two columns of the O-D matrix will be estimated from step 1. 
Therefore, the second-step formulation is at most a two-dimensional minimization 
problem for each row i, which can be easily solved. 
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If the left/right-turn splits on the major approach can be directly measured (or additional 
information of the O-D pattern is given, such as U-turn is known to be prohibited), the 
number of unknown variables can be further reduced by separately estimating those O-D 
parameters with available observations. As a consequence, the result is expected to be 
more accurate. 
 
 

3.2.5 Numerical Example 

In this section, a simulation example is provided to illustrate the two methods of 
estimating O-D splits for an actuation-controlled intersection with incomplete exiting 
counts. 
 
Consider a typical four-way intersection prohibiting U-turn, as shown in Fig. 3.2. All 
entering counts are available, but the exiting counts are only available at major 
approaches, leg 1 and leg 3. The duration of the simulation was set as 100 time intervals. 
 

 
 

Fig. 3.2.  A typical four-way intersection 
 
To mimic the operation of the estimator, we adopted the hypothetical true O-D matrix 
used by Nihan and Davis (1987) shown as follows: 

01.8.1.
5.02.3.
15.8.005.
1.7.2.0

 

 
The actual entering counts were generated randomly from 0 to 100 for each time interval, 
and observed exiting counts for exits 1 and 3 were generated based on (3.2). The 
measurement errors for both legs 1 and 3 were assumed to be independent normal 
random variables with zero mean; and the variance  is set equal to 15 percent of the 
actual exiting traffic. 

)(krj
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The initial value of the O-D parameters was given as: 

034.33.33.
34.033.33.
34.33.033.
34.33.33.0

 

And the P matrices were always initialized as identity matrices with zero elements on the 
diagonal corresponding to the O-D parameters bii = 0. 
 
Five simulation experiments were conducted for both the conventional GLS method and 
the two-step method. The root mean squares (RMS) of the difference between the true 
and the estimated O-D parameters were computed as a measurement of estimator 
performance at each time interval. Table 3.1 shows the average RMS over the last 20 
iterations for both estimators, leading to the conclusion that the two-step method 
outperforms the conventional GLS method.  
 
Fig. 3.3 displays the RMS errors across iterations for experiment 2 and 3. And the 
convergence of the O-D splits for experiment 5 is plotted in Fig. 3.4 to Fig. 3.7. 
 

Table 3.1 Average RMS Error over Last 20 Iterations 

Experiment Conventional GLS Method Two-Step Method 
1 0.0251 0.0184 
2 0.0232 0.0184 

3 0.0234 0.0185 
4 0.0204 0.0183 
5 0.0292 0.0185 
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Fig. 3.3.  RMS error between actual and estimated O-D parameters for Experiment 2 
and Experiment 3 

 
Fig. 3.4 and Fig. 3.6 show that for those exits with available traffic counts, the two-step 
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method provides more accurate estimates of their corresponding columns of the O-D 
matrix, which do not depend on the initial value. Note that b22 and b44 are known to be 
zero, leaving only one decision variable in the second step for both row 2 and row 4. 
Therefore, the accuracy in the first and the third column estimation of the O-D matrix 
will result in an unbiased estimation of b24 and b42 (See Fig. 3.5 and Fig. 3.7). More 
specifically, in the two-step method only four O-D parameters are dependent on the 
initial value while in the conventional GLS method, all the twelve splits to be estimated 
rely on the initial value. 
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Fig. 3.4.  Convergence of O-D parameters bi1 for Experiment 5 
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Fig. 3.5.  Convergence of O-D parameters bi2 for Experiment 5 
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Fig. 3.6.  Convergence of O-D parameters bi3 for Experiment 5 
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Fig. 3.7.  Convergence of O-D parameters bi4 for Experiment 5 

 
 

3.2.6 Tacking Time-Varying O-D Flows 

Above we presented a two-step formulation for real-time estimation of O-D matrix of 
isolated actuation-controlled intersections with complete entering counts and incomplete 
exiting counts. Though our discussion focuses on the constant O-D matrix estimation 
problem, the proposed framework can be easily extended to track time-varying O-D 
matrices by modeling the O-D splits as a random walk process. Accordingly, the 
covariance matrix of the random deviation should be introduced to the Kalman filtering 
in order to correct the P matrices at each step.  
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We applied the extended two-step approach to the same intersection used in Section 
3.2.5, and Figs. 3.8-3.11 compare the estimates of the new approach and conventional 
GLS with the time-dependent true values, and Fig. 3.12 reports the RMS errors of the 
two approaches. It can be observed that the two-step approach still outperforms the 
conventional GLS approach. Moreover, the former is more efficient as well. It should 
also pointed out that both approaches would benefit from accurate prior knowledge or 
partial O-D information. 
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Fig. 3.8. Comparison of flows to Leg 1 
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Fig. 3.9. Comparison of flows to Leg 2 
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Fig. 3.10. Comparison of flows to Leg 3 
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Fig. 3.11. Comparison of flows to Leg 4 
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Fig. 3.12. Comparison of RMS errors 
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3.3 Estimation of Origin-Destination Flows for Actuation-Controlled 

Corridors 

3.3.1 Introduction  

The model presented in the previous section focuses on turning movement 
identification for isolated intersections where travel time can be safely assumed 
negligible. Extending the model to a corridor (more precisely, linear network) will 
inevitably involve determination of vehicle travel times and descriptions of flow 
propagation for constructing the casual relationship between count measurements and 
O-D flows to be estimated.  
 
Existing closed-network models often make assumptions on the platoon dispersion or 
flow propagation and then endogenously estimate both O-D flows and the propagation 
parameters. In the literature, Bell (1991) proposed two methods to allow for 
distributions of travel times through intersection or network that span more than one 
interval. The first method assumes a geometrically distributed travel time for each exit. 
In this method, the parameters to be estimated are the platoon dispersion factor together 
with the O-D splits. The second method considers freely-distributed travel times, but 
assumes vehicles from any entrance should reach to a specified exit within three time 
intervals. Thus, the variables to be estimated at each time interval are exactly the O-D 
parameters for the three intervals before the current one. Chang and Wu (1994) used 
macroscopic traffic models to estimate travel times, and then assumed vehicles that 
reach one exit during an interval come from only two consecutive time intervals for 
each entrance. Moreover, the proposed method represents flow propagation by 
introducing link-use proportions, which are estimated simultaneously with the O-D 
parameters. Consequently, not only the dimension of the problem increases, but also the 
problem itself becomes nonlinear. Extended Kalman filtering was adopted to identify 
the nonlinear system.  
 
In the open-network approach, the system equation used is as follows:  

)()(),()( tekftkAty
t

ptk

vrr
+= ∑

−=

 

where yr  is the vector of the measured link counts; f
r

 is the vector of O-D flows to 
be estimated;  is the random error vector and A is the assignment matrix, which 
encapsulates route choice and flow propagation. The element of the assignment matrix 
A is the link-use proportion, which is defined as the proportion of a particular O-D flow 
departing its origin during interval k, prior to the current interval t by at most p intervals, 
contributes to the flow on link l during interval t. The complexity of describing route 
choice and flow propagation is often avoided in many previous studies by simply 
assuming that the matrix is known and offering some general discussions that the 
matrix can be computed using simulation, or DTA models or the analytical equations, if 
the travel times are known (e.g., Okutani, 1987; Ashok and Ben-Akiva, 1993, 2000). In 
fact, even with the restrictive assumptions that travel times are known, and users are 
homogenous and there is no route choice, the assignment matrix cannot be exactly 

er

determined for a network with active bottlenecks and multiple O-D pairs because the 
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bottlenecks may prevent vehicles departing together arriving at the same time interval. 
Additional assumption has to be made on the platoon dispersion. For example, Cascetta 
et al. (1993) assumed that vehicles within a group departing at interval k using path p 
are uniformly comprised within the departure duration T and stay within the interval as 
they move across the network. Ashok and Ben-Akiva (2002) further relaxed the 
assumption to permit the effects of “stretching” and “squeezing” of packets as they 
traverse the network.  
 
In this chapter, we estimate time-dependent O-D flows for actuation-controlled 

3.3.2 Model Formulation  

3.3.2.1 Model Preparation 

Consider a corridor consisting of n intersections, then the dimension of the O-D matrix 

corridors where all of the entering flows and exiting flows on major streets are known 
while the exiting counts on minor streets are missing. We assume that travel times are 
known from exogenous source, e.g., a traffic surveillance system or are estimated using 
traffic simulation. For the latter, we may first decompose the network into a system of 
isolated intersections, and then apply the model proposed in the previous paper to 
estimate the turning movements for each intersection. The estimated movements can be 
further fed into a traffic simulation package, such as VISSIM, to estimate travel times. 
Based on the estimated travel times, flow propagation can be described for the linear 
network with an assumption of platoon dispersion, and the O-D flows can then be 
inferred accordingly. This approach may eliminate the potential inconsistency between 
the estimated O-D matrix and the travel times, which is one of the major problems in 
many previous dynamic network O-D estimation models.  
 
 

is )1(2)1(2 +×+ nn , and the node numbering convention is presented in Fig. 3.13. 
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Fig. 3.13. Numbering convention for model formulation 
 
The following notation is used for the model formulation:  

 t
ijf : number of vehicles entering the corridor from origin i to destination j, 

}22 , during time interval t; ,...,2,1{, +∈ nji
 tk

ijlθ : fraction of t
ijf  that arrives at intersection l during time interval k, 
}22 + , },...,2,1,...,2,1{∈ nj,i { nl ∈ 4; 

 t
lij ,η : turning movements from leg i to leg j during time interval t at intersection l, 

}4,3,i , },...,∈ ; ,2,1{∈j 2,1{ nl
 1

jT : maximum travel time from any intersection i ( ji < ) to intersection j; 

 2
jT : maximum travel time from any intersection i ( ji > ) to intersection j; 

 

3.3.2.2 Decomposition Scheme  

We propose a two-step decomposition scheme to estimate time-varying O-D matrices 
for corridors with incomplete information. The essential idea is to tackle the problem in 
two steps or levels: intersection and corridor levels. At the intersection level, the 
decomposition scheme presented in the previous chapter is applied to infer turning 
movements for each individual intersection; at the corridor level, the original problem 
is further decomposed into a series of sub-problems with respect to each destination or 
origin, using the turning movements estimated at the intersection level. As stated in the 
                                                        
4 In the proposed method, we assume this factor is known from platoon dispersion models so that the 
problem remains linear. Otherwise, extended Kalman filtering may be adopted to infer both O-D flows 

 and the dispersion factors f θ . 
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previous chapter, the decomposition scheme makes full use of available information 
and hence reduces the dependency on the quality of the prior O-D information at the 
intersection level. At the corridor level, it does not even require any prior O-D 
information. The two-step approach improves significantly the computational 
efficiency by decomposing the original high-dimensional problem into much smaller 
problems.  
 
Specifically, at the intersection level, for each time interval k, the turning movement 

,  can be estimated at all intersections. As a 
consequence, 2n+8 O-D flows can be explicitly estimated, including minor-to-minor 
O-D flows , for each intersection l , , , ,  for intersection 1 

and , , ,  from intersection n. Among those estimates, 

only four are biased, namely , , and , as shown in the previous 
chapter.  

k
lij ,η },...,2,1{},4,3,2,1{, nlji ∈∈∀

k
llf 12,2 +

k
llf 2,12 +

k
nn 12,22 ++

k
nnf 2,22 +

k
nnf 22,2 +

k
nnf 2,2 +

kf12
kf13

kf12

k
nf 22 +

kf13

n2,

kf21
kf31

f 1

k
nnf 12,22 ++

 
At the corridor level, to improve the computational efficiency, we decompose the 
original high-dimensional problem into a series of sub-problems with respect to each 
destination or origin. In other words, we estimate the O-D matrix column by column 
(with respect to each destination) or row by row (for each origin). These two estimates 
can be further combined through a weighted average to improve the quality of the final 
estimate. The weighing factors may be chosen based on the variances of the estimation 

errors, which are updated iteratively during the Kalman filtering process. Let  and 

 be two estimates obtained using the row (by origin) and column (by destination) 

decomposition respectively and  and  the corresponding estimation errors 
respectively. The final estimate may take the format as 
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Assume  and  are independent estimates, it can be shown that the variance of 

the final estimation error is 
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od
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+
, less than that of either original 

estimates.  
 
For row estimation, either the total inflow at each origin or the turning movements 
obtained from the intersection level problem can serve as observations. However, to 
avoid the accumulation of estimation errors, it is more favorable to estimate the O-D 
flows based on the first-hand total inflow information. Therefore, the causal 
relationships are: 
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where  is the inflow from origin o at time interval k.  kq0
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The column estimation is more complicated since there is no direct observation of the 
total departures. For each destination 2j, },...,2,1{ nj∈ , two estimates of turning 
movements resulted from the intersection m, j,12level proble η and j,32η , may be 
selected and the causal relationships between turning movemen ws are:  
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121,12 f=η , 131,14 f=η , nnn f 2,22,32 +=η  and 12,22,34 ++= nnn fηN . Therefore, the 
original pr 42oblem is decomposed into 44 2−=+− n  sub systn em identification 
problems in total. 
 

3.3.2.3 State-Space Representation  

For the formulation, we assume that U-turn is prohibited at each intersection 

ue to the flow propagation, turning movements at particular interval can be attributed 

, which suggests that each O-D flow be estimated multiple 

times. As in Ashok and Ben-Akiva (1993, 2000), we use state augmentation to achieve 

and 0=t
iif . Moreover, the O-D flows and turning movements are assumed to be 

first-order auto-regress processes, although more general structures can be 
accommodated if historical O-D data are available to determine the structure.  
 
D
to O-D flows at previous multiple intervals. For example, the turning movement 
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s in the previous section, the Kalman Filtering is adopted to infer the time-varying A
O-D matrices. Note that the state vector is different for each time interval. After k-1 
time intervals, we have the (k-1)th estimate for time dependent O-D flows t

ijf , 

}1,...,2,1{ −∈ kt , denoted as )( −kf t . At time interval k, since kf  is now included 

r (meanwhile is excluded), an initial valu f this time k O-D 

flow is needed for the kth estima e let )1()1( 1 −=− − kfkf k
ij

k
ij  be the initial value 

of k
ijf . Consequently, )(kf t
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e oin the state vecto

∈ , is equal to 1( −kf t
ij )  plus the correction 

item
  

. 

3.3.3 Numerical Experiment   

3.3.3.1 Experiment Settings 

We demonstrate and verify the proposed two-step approach on a hypothetical corridor 

in

 

with four intersections and 90 O-D pairs in total, as shown in Fig. 3.14. Two scenarios 
were tested, one for constant O-D flows and the other for time-varying O-D flows, 
generated based on the first-order auto-regressive assumption. The maximum travel 
times from any intersection to intersection j were set as 1211 +=+−= jjT j  and 

jjjnT j −=+−=+−= 62422 . Assuming no platoon disp ither 

-D flow t
ijf  passes intersection l at time r not), we 

used a traffic loading procedure to determ e the entering, exiting flows and turning 
movements at each intersection. Finally, measurement errors were randomly added to 
those flows, which were then used by the proposed approach to infer the O-D flows.  
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Fig. 3.14. Numbering convention for the hypothetical corridor 
 
 

3.3.3.2 Experiment Results 

We first applied the proposed approach to infer constant O-D flows. The initial values 
of the O-D flows were randomly generated. Figures 3.15-3.18 compare the actual and 
estimated O-D flows for selected O-D pairs, including end to end (10-1), long-distance 
minor to minor (9-2), medium-distance minor to minor (2-6) and turning movement in 
the same intersection (8-10). It can be found that the estimates converge quickly within 
10 intervals and there is very good agreement between the actual and estimated values 
for all cases (within 5% deviation).  
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Fig. 3.15. Actual vs Estimated O-D flow for O-D pair 10-1 
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Fig. 3.16. Actual vs Estimated O-D flow for O-D pair 9-2 
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Fig. 3.17. Actual vs Estimated O-D flow for O-D pair 2-6 
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Fig. 3.18. Actual vs Estimated O-D flow for O-D pair 8-10 

 
Table 3.2 presents the root mean square error normalized (RMSN) for each O-D pair. It 
shows that most of the O-D pairs experience rather small errors while certain O-D pairs, 
such as 4-1, 8-1 and 3-5, suffer higher errors, likely due to the poor quality of the prior 
O-D information.  
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Table 3.2 Root Mean Square Error Normalized (RMSN) 
 1 2 3 4 5 6 7 8 9 10 
1  0.090 0.030 0.259 0.171 0.070 0.241 0.099 0.201 0.102 
2 0.051  0.050 0.375 0.218 0.122 0.232 0.052 0.223 0.105 
3 0.040 0.061  0.166 0.522 0.127 0.237 0.205 0.091 0.109 
4 0.452 0.106 0.047  0.107 0.141 0.049 0.146 0.325 0.129 
5 0.140 0.231 0.271 0.054  0.143 0.160 0.117 0.208 0.113 
6 0.062 0.268 0.237 0.185 0.114  0.071 0.305 0.186 0.100 
7 0.068 0.395 0.168 0.059 0.233 0.060  0.201 0.208 0.040 
8 0.414 0.267 0.100 0.064 0.053 0.065 0.176  0.058 0.058 
9 0.071 0.055 0.224 0.072 0.075 0.141 0.211 0.066  0.055 
10 0.067 0.278 0.142 0.146 0.074 0.050 0.391 0.085 0.065  
 
We then inferred time-varying O-D flows. The initial values of the O-D flows were 
randomly generated as well, and the comparisons between estimates and true values for 
selected O-D pairs are presented in Figs. 3.19-3.22. The RMSN of the O-D flows 
estimated by destination is 0.223; the values are 0.230 and 0.215 for the origin-based 
and the weighted-average estimates. Table 3.3 further presents RMSN of the 
weighted-average estimate for each O-D pair. 
 
We have the following two observations:  

 Both the column and row decompositions are able to track the trend of 
time-varying O-D flows and produce estimates pretty close to the actual values in 
an average sense. The row decomposition is more computationally efficient but 
the column decomposition provides better estimates in terms of the RMSN. The 
reason is that the row decomposition only makes use of the arrival information 
and infers each time-dependent O-D flow once it leaves while the column 
decomposition essentially uses both the arrival and departure information. 
However, the proposed column decomposition approach at the corridor level 
only focuses on the localized information (i.e., the turning movements at the 
intersection containing destination node) and discards other information 
available upstream (as the vehicles shall be observed at all these intermediate 
intersections).  

 The weighted average of the two estimates replicates actual O-D flows better. 
The RMSN drops by 6.5% and 3.4%, compared with the row and column 
decomposition respectively. Figures 7-10 also suggest that the weighted-average 
estimate follows the actual O-D pattern well. Consequently, the RMSN for each 
O-D pair presented in Table 3.3 is comparable with its counterpart in Table 3.2 
for the constant O-D case. 
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Fig. 3.19. Actual vs Estimated O-D flow for O-D pair 10-4 
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Fig. 3.20. Actual vs Estimated O-D flow for O-D pair 6-9 
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Fig. 3.21. Actual vs Estimated O-D flow for O-D pair 1-6 
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Fig. 3.22. Actual vs Estimated O-D flow for O-D pair 4-2 
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Table 3.3 RMSN of Estimates of Time-Varying O-D Flows 
 1 2 3 4 5 6 7 8 9 10 
1  0.147 0.184 0.290 0.127 0.079 0.251 0.077 0.204 0.145 
2 0.311  0.163 0.107 0.076 0.114 0.385 0.273 0.087 0.414 
3 0.174 0.213  0.317 0.216 0.519 0.080 0.103 0.108 0.104 
4 0.070 0.066 0.146  0.302 0.377 0.087 0.073 0.292 0.067 
5 0.077 0.117 0.461 0.090  0.095 0.187 0.080 0.253 0.137 
6 0.295 0.052 0.114 0.325 0.369  0.067 0.073 0.070 0.193 
7 0.059 0.053 0.297 0.121 0.137 0.291  0.143 0.086 0.210 
8 0.184 0.241 0.150 0.109 0.457 0.253 0.141  0.195 0.059 
9 0.170 0.091 0.393 0.090 0.270 0.169 0.195 0.290  0.095 
10 0.089 0.228 0.160 0.056 0.291 0.113 0.121 0.069 0.049  
 
 

3.3.4 Real-World Application 

We applied the proposed O-D estimator to a segment of El Camino Real, San Mateo, 
CA using the data collected on February 1st, 2007. Since we do not have real O-D 
observations from the corridor, the accuracy of the estimates cannot be verified. 
Therefore, the purpose of the application is to demonstrate that the estimator is able to 
readily work with actual field loop data. 
 
The testing site consists of eight signalized intersections as shown in Figure 3.23. The 
distances between intersections (in meters) are presented in the illustration. There are 
four on/off ramps between the 17th Ave. and the 20th Ave. accessing J. Arthur Younger 
Freeway. However, since the vehicle counts onto/off the freeway are not available, it is 
assumed in this application that the ramp flows are zero.  
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Fig. 3.23. Illustration of the Testing Site 

 
In order to avoid possible pattern shifts between peak/off-peak hours, only off-peak 
loop counts from 9:49-14:04 were used. The raw data were aggregated into a 
five-minute resolution. Among these eight intersections, there is no loop information 
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available for 17th Ave., and the counts for the east and the north bounds of 28th Ave. 
intersection are missing as well. Therefore, with the assumption that there are no 
turning movements at the 17th intersection, the corridor is modeled as a 
four-intersection system as shown in Figure 3.24. Note that 9th Ave. and 27th Ave. 
intersections are excluded from the system as their main line departure counts (obtained 
from adjacent intersection advanced loop counts) are not available.  
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Fig. 3.24 Modeling of the Corridor 

 
The initial values of the O-D flows were generated manually based on the counts of the 
first time interval. Since the travel time (estimated based on the speed limit of 35mph) 
between any of the two intersections is less than the duration of a single time interval, 
we assume here the flow propagation is neglectable and all the vehicles arrive at their 
destinations within the same time interval as they depart. Selected resulting estimates 
are displayed in Figures 3.25 – 3.27. 
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Fig. 3.25 Estimated O-D flow for O-D pair 1-10 
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Fig. 3.26 Estimated O-D flow for O-D pair 10-6 
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Fig. 3.27 Estimated O-D flow for O-D pair 7-8 

3.3.5 Concluding Remarks 

We have presented a two-step approach for estimating time-varying O-D flows for 
actuation-controlled corridors with incomplete information about entering and exiting 
flows. At the first step, intersection turning movements for each intersection are 
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estimated, and then used at the second step to construct the measurement equations to 
infer the corridor O-D flows. The proposed approach has been demonstrated and 
verified on a hypothetic corridor. The results suggest that the estimator is able to track 
the patterns of the O-D flows and provide estimates close to the actual values. 
Moreover, we have applied the O-D estimator to a segment of El Camino Real, San 
Mateo, CA. The application demonstrates that the estimator is able to readily work with 
actual field loop data.  
 
The approach can be further enhanced by addressing the following issues:  

 Incorporating platoon dispersion in determining the assignment matrix or 
simultaneously estimating the propagation parameters together with O-D flows 
using the nonlinear Kalman filtering. 

 Developing an efficient method to incorporate mainline through movement 
information available at upstream intersections. 

 
 

3.4 Investigation of Dynamic Structure of O-D Demand 

3.4.1 Introduction  

Previous two sections have presented approaches for real-time estimation of dynamic 
O-D flows for actuation-controlled intersections and corridors. The technique adopted is 
Kalman filtering and the fundamental idea is to formulate state-space equations where 
the state vectors to be estimated are assumed to be a dynamic auto-regressive process. In 
this manner, information of the structure of the O-D demand is obtained in addition to the 
measurement equations to estimate the demand without using further a priori 
information (Cremer and Keller, 1987). 
 
This section addresses a fundamental issue in applying the above technique. In Kalman 
filtering, the state vectors can be (and have been) specified as O-D splits, defined as the 
percentage of trips generated from an origin to specific destinations (e.g., Cremer and 
Keller, 1987; Nihan and Davis, 1987; Bell, 1991 and Chang and Wu, 1994), O-D flows 
(e.g., Okutani, 1987), the deviations of O-D flows from historical data (e.g., Ashok and 
Ben-Akiva, 1993 and Hu et al., 2001) or the deviation of O-D splits (e.g., Ashok and 
Ben-Akiva, 2000). The selection of state vector is critical because it results in different 
model structure that requires different amount of computation effort. More importantly, 
it determines the performance of the estimator. If the underlying auto-regressive 
assumption does not replicate reality well, the estimator may not be able to provide 
reasonable estimates. Interestingly, many of these previous studies make the choice 
primarily to facilitate the model formulation without enough justification. At the same 
time, few studies have been done to offer insights how to make the choice.  
 
This section is an empirical investigation on the selection of state vectors in the 
filtering process, using the traffic data collected from a single intersection in 
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Gainesville, Florida. The purpose of this investigation is not to determine which state 
variable should be selected (which seems impossible), but to offer some observations of 
the O-D demand structures and the estimator performances, and hopefully shed lights 
on how to choose the most appropriate state vector and the corresponding estimation 
model. To this aim, we conduct statistic time series analysis to examine the dynamic 
property of the O-D demand, and compare the estimation results from using different 
state vectors.  
 

3.4.2 Historical Perspectives  

As previously stated, existing dynamic O-D estimators with filtering techniques can be 
casually categorized into two classes: the closed-network and the open-network oriented 
approaches, based on the kernel system equations adopted.  
 
For closed networks, all the entry and exit counts are known during all measurement 
intervals. Naturally, the O-D splits may be considered as state variables, estimated 
directly using the flow conservations representing the relationship between the real-time 
exiting counts of a certain destination j and real-time entering counts of all the related 
origins i:  

)()()()( tetqtbty j
i

iijj += ∑  

Here yj(t) and qi(t) are the exiting and the entering traffic counts, bij(t) is the O-D split, the 
proportion of traffic flows entering at origin i and exiting at destination j, and ej(t) is the 
random measurement error. The O-D splits have been assumed to be auto regressive in 
the pioneering studies, e.g., Cremer and Keller (1987) and Nihan and Davis (1987). Both 
studies model the time-dependent O-D splits as a first-order auto-regressive (AR1) (ARq 
denotes the qth-order auto-regressive model) process: 

)()1()( twtbtb ijijij +−=  

where is a series of white noise terms with zero means and known covariance.  )(twij

 
Under additional assumption that the O-D splits are independent among all O-D pairs, 
i.e. there is no correlation between all the error terms , the O-D estimation problem 

can be decomposed into smaller identification problems, each concerning only the splits 
related to one specific exit j. Such decomposition increases the computation efficiency 
by avoiding matrix inversions in updating the Kalman gain.  

)(twij

 
Attention should be paid to satisfying constraints associated with O-D splits. The split 
bij(t) is the proportion of the traffic entering at entry i at time interval t that leaves at exit 
j. Therefore, the parameters bij(t) are obviously bounded between zero and one. 
Moreover, all the O-D splits from a specific entry i in a specific time interval should add 
up to one. These inequality and equality constraints cause some difficulties when 
applying Kalman filtering because the basic structure of this algorithm does not allow for 
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constraints.  
 
How to deal with the constraints is one of the biggest issues for the closed-network 
approach. Although previous studies have proposed approaches to satisfy those equality 
and inequality constraints, e.g., Nihan and Davis (1987), Bell (1991) and Li and De Moor 
(1999), there is no effective algorithm to address both sets of constraints simultaneously. 
One may think of adjusting the preliminary results according to both sets of constraints 
iteratively, but this heuristic method will be computationally demanding. Moreover, the 
existence of the convergence and whether the results are unbiased remain unproved.  
 
For open networks, not all entry and exit counts are known, and the information available 
is normally link flows recorded by detectors. Under this information pattern, the 
estimation of O-D flows is regarded as a reverse problem of the dynamic traffic 
assignment (DTA) problems. The system equation is as follows: 

)()()( terfAtx
t

mtr

t
r

rrr
+= ∑

−=

 

where )(txr is the measured link volume vector; m is the maximum number of time 

intervals needed to travel through the system; )(rf
r

is the vector of O-D flows; )(ter is the 

corresponding measured error vector and is the assignment matrix models mapping 
the O-D flows of time interval r to the current link volume. The assignment matrices 
incorporate the flow propagation and route choice information but are difficult to obtain 
and have been assumed to be known from exogenous resources such as direct 
observations or DTA models. 

t
rA

 
Consequently, the O-D flows rather than the O-D splits are the state vectors to be 
estimated. Define as the transition matrix describing the effect of previous O-D 

flow

r
tG

)(rf
r

on the current O-D flow at t, some researchers assumed the O-D flows follow 
the more general auto-regressive structure:  

 )()()(
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twrfGtf
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where p indicates the maximum number of lags and )(twr is a series of white noise 
vectors with zero mean (e.g., Okutani, 1987). This assumption is more realistic than the 
AR1 model for the O-D splits in the sense that it allows O-D flows from more than one 
previous period to have correlations with the current O-D flow. And the estimation is 
only constrained by the non-negativity conditions which, because the magnitude of 
O-D flows is much greater than the O-D splits, are rarely activated. However, historical 
data are required to estimate the transition matrices.  
 
Distinctive from the above assumption, Ashok and Ben-Akiva (1993) assumed that 
rather than O-D flows themselves, the deviations of current O-D flows from historical 
O-D data are auto-regressive. They argued that the traditional assumption only captures 
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the temporal interdependencies while the more complicated structure of O-D patterns 
has been ignored. By incorporating historical data into the estimation, the spatial and 
other properties of the specific demand patterns may be represented. One more 
advantage is that the deviations may be better approximated by the auto-regressive 
model since they can take both negative and positive values. Accordingly, the 
non-negativity inequality constraints are not necessary. The only situation where the 
deviations need to be adjusted is when the absolute value of the negative deviation is 
greater than the historical flow, but this happens very occasionally in the experiments. 
Therefore, no equality and inequality constraints are imposed on the flow deviation 
variables. Let the superscription H denote the historical counterparts, the state-space 
equations should be reformulated as follows: 
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Decomposition of this system is impossible unless the network structure is simple and 
some certain links are only related to limited O-D flows. Therefore, such approach is 
more computationally demanding. Besides, the quality of historical data may affect the 
efficiency of the estimator. Poor historical basis is expected to degrade the estimator’s 
performance. 
 
Any O-D flow can be expressed by the product of trip production at the origin and the 
O-D split. Ashok and Ben-Akiva (2000) further observed that these two components 
exhibited different variability with time. The trip production may be highly variable 
while the O-D splits are relatively stable. Allowing for this differential variability in the 
estimation process could arguably increase the performance of the estimator. 
Consequently, two sets of transition equations can be specified as follows:  
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where )(td
r

is the trip production vector; is the transition matrix describing the 

effect of previous trip production on the current production; 

r
tΦ

)(tb
r

 is the split vector 

and  is the corresponding transition matrix; r
tΨ )(1 twr  and )(t2wr  are the error 

vectors and p and m are the order of the auto-regressive processes.  
 
In summary, the state vectors can be specified as O-D splits, O-D flows, O-D flow 
deviations and O-D split deviations. Although the choice of state vectors is very critical 
to the structure, computation complexity and performance of the estimator, there is no 
previous study to reveal intrinsic structures of the O-D demands and offer insights on 
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how to determine state vectors. 
 

3.4.3 Empirical Investigation  

In the following we examine the traffic data collected from an intersection of 34th Street 
and University Avenue in Gainesville, Florida (See Fig. 3.28 for the intersection layout 
and the numbering of the four approaches) to reveal the true structure of the O-D 
demand at the intersection. To provide more pragmatic comparison, we estimate the 
O-D demand using each state variable under the simple first-order auto-regressive 
assumption and then compare the estimate with the true value.  

Leg 1 
Major 

Leg 3 
Major 

Leg 4 Minor 

Leg 2 Minor 

 
 

Fig. 3.28. 34th Street-University Avenue intersection 
(Major = University Avenue, Minor = 34th Street) 

 

3.4.3.1 Statistic Time Series Analysis 

Each turning movement is considered as an independent stochastic process. Since 
U-turn is prohibited, there are 12 time series available for each state variable, and they 
are modeled separately. We use the ARIMA module in SPSS version 13.0 to do the time 
series analysis. 
 

3.4.3.2 O-D Estimators  

We estimate the O-D demand using each state variable under the simple first-order 
auto-regressive assumption. For the state variable of O-D splits, the estimator can be 
represented as: 
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where ))(),(),(),(()( tqtqtqtqdiagtQ TTTT vvvv= and other elements denote the same 
variable in vector form. This system consists of four observation equations and 12 
unknowns. Denote V(t) as the covariance matrix of error vector )(twr and R(t) the 
covariance matrix of )(ter , the unconstrained Kalman filter solution is: 
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In actual application, V(t) can be regarded as a parameter of the estimator if unknown. 
Taking account of the equality constraints in vector form, 441)( ×=tbD

v
, the original 

solution should be corrected by: 
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With the O-D split deviations as the state variable, the estimator can be formulated as: 
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The solution can be straightforwardly derived by replacing )(tb
r

and )(tyr in the O-D 

splits solution by )()( tbtb H
rr

− and )()( tyty Hrr
− . 

 
To estimate O-D flows directly, the four entries and exits of the intersection are 
considered as eight virtual links. Consequently, the entering and exiting counts are 
treated as the link volumes. Therefore, the number of observation equations increases 
from four to eight in this approach. The flow propagation can be ignored since a cycle 
is considered one time interval. Arranging these 12 O-D flows in the same order as the 
O-D splits, the state-space equation becomes: 
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Similar formulation for the deviations of O-D flows is as follows: 
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3.4.3.3 Data Description 

Actual O-D flows (turning movements) of the 34th Street - University Avenue 
intersection in Gainesville, Florida were collected cycle by cycle from the videos 
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recorded in 2001. Since totally different auto-regressive patterns may exist for different 
times of day, only the off-peak turning movements were counted in order to more likely 
obtain flows with homogenous O-D patterns. Without loss of generality, one cycle is 
regarded as a time interval, in which the entering and exiting counts of each approach 
were aggregated from the turning movements. The O-D split bij was calculated as the 
corresponding O-D flow fij divided by the entering flow of approach i. Limited by the 
videos available, 46 data points were obtained from 9:00AM to 11:00AM for the first 
day (July 17, 2001), 27 data points from 9:00AM to 10:00AM and 28 data points from 
10:00AM to 11:00AM were collected for the second day (July 18, 2001) and third day 
(July 20, 2001) respectively. 
 
Several assumptions were made in the following statistical analysis. To examine the 
O-D flows and splits, it was assumed the auto-regressive pattern remains constant over 
these three periods so that one can assemble three short time-series data into one longer 
series to have enough observations. To evaluate the deviations of O-D flows or splits, 
the first-day data were chosen as the basis while the second- and third-day data were 
combined together. It was also assumed that all the lane groups were independent. In 
the estimation part, experiments without the independence assumption were also 
conducted to show the impact of the covariance matrix of noise vector, V(t), on the 
estimates. 
 

3.4.4 Empirical Results 

3.4.4.1 Time Series Model Specification 

Although most of the statistic software has built-in time series analysis modules, the 
preliminary test of the data and the transformation to stationarity cannot be done 
automatically. Sequence graphs and histograms were plotted as a reference to check 
whether the original data are stationary. The sequence graphs indicated no strong trend 
and periodicity in the series of O-D flows, splits, flow deviations and split deviations. 
But the histograms for these variables were not symmetrically distributed and were far 
away from the typical Gaussian marginal distribution. To take account of this effect, 
first-order differencing was applied to eliminate possible unrevealed complicated trends. 
The new series were created as: New differenced O-D data (t) = Original O-D data (t) – 
Original O-D data (t-1), t=2, 3… 
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Table 3.4 Model Specifications for Differenced O-D Flows 
Lane Groups AR1 AR2 AR3 AR4 
Approach 1 
Left Turn 

-1.03 -0.73 -0.55 -0.30 

Approach 1 
Right Turn 

-0.73 -0.35 -- -- 

Approach 1 
Thru 

-0.82 -0.55 -0.28 -- 

Approach 2 
Left Turn 

-0.89 -0.67 -0.41 -0.31 

Approach 2 
Right Turn 

-0.59 -0.30 -- -- 

Approach 2 
Thru 

-0.71 -0.57 -- -- 

Approach 3 
Left Turn 

-0.56 -0.31 -- -- 

Approach 3 
Right Turn 

-0.63 -0.44 -- -- 

Approach 3 
Thru 

-0.74 -0.32 -- -- 

Approach 4 
Left Turn 

-0.87 -0.42 -- -- 

Approach 4 
Right Turn 

-0.63 -0.33 -- -0.21 

Approach 4 
Thru 

-0.95 -0.66 -0.27 -- 

 
For O-D splits and flows, the new differenced series consist of 100 data points while 
the deviation series include only 45 data points. Sequence graphs and histograms 
suggested these differenced variables were more likely to be stationary. Therefore, the 
statistical analyses were based on these new series. Note that the fact that the difference 
series is kth-order auto-regressive model does not necessarily mean the original data is 
(k+1)th-order model. The interruption item plays a very important role in statistic 
model estimations. 
 
The coefficients of the best fit models for all the 12 O-D movements for these four state 
variables are listed in Tables 3.4 to 3.7. Inconsistency between different lane groups is 
observed. Moreover, the results indicate that for this particular data set, the simple 
first-order auto-regressive model cannot fit the original data well. More sophisticated 
auto-regressive models up to the fourth order are needed to describe the O-D structures. 
Though complicated, it is still feasible to incorporate these transition relationships into 
the Kalman filtering estimator. 
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Table 3.5 Model Specifications for Differenced O-D Flow Deviations 
Lane Groups AR1 AR2 AR3 
Approach 1 
Left Turn 

-1.11 -0.82 -0.35 

Approach 1 
Right Turn 

-0.67 -0.41 -- 

Approach 1 
Thru 

-0.55 -- -- 

Approach 2 
Left Turn 

-0.57 -0.55 -0.36 

Approach 2 
Right Turn 

-0.54 -0.31 -- 

Approach 2 
Thru 

-0.73 -0.59 -- 

Approach 3 
Left Turn 

-0.54 -0.34 -- 

Approach 3 
Right Turn 

-0.62 -0.36 -- 

Approach 3 
Thru 

-0.71 -- -- 

Approach 4 
Left Turn 

-0.93 -0.39 -- 

Approach 4 
Right Turn 

-0.61 -0.32 -- 

Approach 4 
Thru 

-0.91 -0.55 -- 

 

3.4.4.2 Estimation Results 

The four estimators described in Section 3.4.3 were applied to estimate the O-D 
demand, and the root mean square (RMS) of the error between the estimates and actual 
O-D flows was calculated as a performance measurement for each estimator. For 
estimators with state variable of O-D split or deviations, the O-D flows were computed 
as the production of estimated O-D splits and the entering counts or summation of the 
estimated deviation and the historical data. 
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Table 3.6 Model Specifications for Differenced O-D Splits 
Lane Groups AR1 AR2 AR3 AR4 
Approach 1 
Left Turn 

-0.97 -0.63 -0.42 -0.25 

Approach 1 
Right Turn 

-0.71 -0.31 -- -- 

Approach 1 
Thru 

-0.86 -0.51 -0.38 -0.20 

Approach 2 
Left Turn 

-0.52 -- -- -- 

Approach 2 
Right Turn 

-0.44 -- -- -- 

Approach 2 
Thru 

-0.48 -- -- -- 

Approach 3 
Left Turn 

-0.77 -0.55 -0.50 -0.28 

Approach 3 
Right Turn 

-0.72 -0.72 -0.39 -0.24 

Approach 3 
Thru 

-0.73 -0.49 -0.29 -- 

Approach 4 
Left Turn 

-0.98 -0.45 -- -- 

Approach 4 
Right Turn 

-0.58 -0.38 -- -- 

Approach 4 
Thru 

-0.75 -0.33 -- -- 

 
Different combinations of initial values and the estimator parameter V representing the 
covariance of the state transition equation were tested. For the O-D splits, the initial 
value was set as 

  

034.33.33.
34.033.33.
34.33.033.
34.33.33.0

The true O-D splits at the first cycle and the average values over all the time intervals 
were selected as two other initial scenarios. They are denoted respectively as Basic, 
First Cycle and Mean initial conditions. Basic initial condition for O-D flows arbitrarily 
set all the components equal to one. V matrix was set as either the estimated covariance 
of the sample O-D data (Sample Covariance) or the identity matrix (Identity). Note that 
under the Sample Covariance condition, the O-D data of different lane groups cannot 
be regarded as independent since the estimated sample covariance would rarely be a 
diagonal matrix. 
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Table 3.7 Model Specifications for Differenced O-D Split Deviations 
Lane Groups AR1 AR2 
Approach 1 
Left Turn 

-0.96 -0.45 

Approach 1 
Right Turn 

-0.51 -- 

Approach 1 
Thru 

-0.55 -- 

Approach 2 
Left Turn 

-0.23 -0.54 

Approach 2 
Right Turn 

-0.51 -0.32 

Approach 2 
Thru 

-0.53 -0.66 

Approach 3 
Left Turn 

-0.57 -- 

Approach 3 
Right Turn 

-0.62 -0.49 

Approach 3 
Thru 

-0.55 -- 

Approach 4 
Left Turn 

-0.98 -0.43 

Approach 4 
Right Turn 

-0.53 -0.54 

Approach 4 
Thru 

-0.53 -- 

 
The estimation results are presented in Tables 3.8 and 3.9. Note that the second- and 
third-day O-D demands were estimated separately if deviations are state variables. 
Reported RMS of the corresponding two estimators (the O-D split deviation estimator 
and the O-D flow deviation estimator) is the average RMS of these two sets of 
estimation. It can be observed from these tables that in this particular case study, 
assuming O-D flows to be first-order auto-regressive leads to the best estimation under 
the same initial conditions and estimator parameters. The estimators focusing on the 
O-D data themselves outperformed their counterparts of deviations. See Figs 3.29 and 
3.30 for a visualized comparison of O-D flow estimator and flow deviation estimator. 
The latter corresponds to the last 27 intervals in the former figure.  
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Fig. 3.29. Results of O-D flows destined to Leg 2 estimated by O-D flow estimator 
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Fig. 3.30. Estimates of the third-day O-D flows destined to Leg 2 with O-D flow 

deviation estimator 
 
Impact of the transition function was further explored by estimating the O-D flows 
using the estimated AR1 of the differenced series. The transition matrix G shall be 
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introduced to the Kalman filtering. The sate-space equations are: 
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Solution to this model is: 
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The RMS under Mean initial and Sample Covariance condition is 1.35, which is 211% 
more than that of the original O-D flow estimator under the same conditions. This 
result seems not consistent with that of the time series analysis. A plausible explanation 
is that the time series analysis was conducted after the subjective transformation 
process to stationarity and does not necessarily reveal the true structure. On the other 
hand, it may suggest that reasonable approximation of the O-D patterns is able to lead 
to acceptable results. 
 
The experiments also verified that the initial value does not have a primary impact on 
the performance of the estimator and the effect of covariance matrix V seems even 
more negligible. On the other hand, performance of the O-D split and split deviation 
estimators may improve when they were constrained. 
 

3.4.5 Conclusion  

We have conducted an empirical analysis of the O-D demand structures and examined 
their impacts on the O-D estimation using the data from the 34th Street-University 
Avenue intersection in Gainesville, Florida in 2001. Auto-regressive models of the 
differenced O-D flows, flow deviations, split and split deviations were estimated, and 
the best fit models range from AR1 to AR4. The comparison of estimators with 
different state variables suggested that the estimator with state variable of O-D flow 
outperforms the others in this particular case. We fully recognize that O-D patterns 
would be site-dependent, and the results of this case study should not be generalized. 
However, our empirical investigation does offer the following observations, which may 
be of use for future studies and practices:  
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• The idea of deviations, more specifically, the deviations of O-D flows or splits 
do not necessarily better represent the O-D demand patterns. If historical data 
are available, statistical analysis may be conducted to reveal the intrinsic 
structure of the O-D demand; 

• Consequently, the estimators with state variables of deviations do not 
necessarily produce better O-D estimates; 

• Demands or flows at different O-D pairs may possess different structures, which 
are very often not first-order auto regressive;  

• Incorporating all of these “true” structures into the Kalman filtering makes the 
model formulation very complicated. On the other hand, the simple first-order 
auto regressive assumption produces acceptable results in our empirical 
experiments and previous studies. Therefore, unless there are sufficient O-D 
data that suggest otherwise, it may be sensible to simply use the state variable of 
O-D flows or splits and assume that they are first-order auto regressive.  

 
 



 

 
Table 3.8 RMS of O-D Estimator of Splits and Split Deviations 

Estimator 
Initial Values Parameter V 

Constraints RMS 
Basic 

First 
Cycle 

Mean Identity
Sample 

Covariance 

O-D 
Splits 

X   X  No 2.43 
X   X  Equality 2.17 
X   X  Inequality 2.12 
X    X No 2.27 
X    X Equality 2.01 

Deviation 
of O-D 
Splits 

X   X  No 2.85 
X   X  Equality 2.55 
X    X No 2.77 
X    X Equality 2.32 
 X  X  No 2.74 
 X  X  Equality 2.41 
 X   X No 2.72 
 X   X Equality 2.31 
  X X  No 2.73 
  X X  Equality 2.38 
  X  X No 2.74 
  X  X Equality 2.36 
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Table 3.9 RMS of O-D Estimator of Splits and Split Deviations 

Estimator 
Initial Values Parameter V 

RMS 
Basic 

First 
Cycle 

Mean Identity 
Sample 

Covariance 

O-D Flows 

X   X  2.30 
X    X 1.80 
 X  X  1.13 
 X   X 0.58 
  X X  0.78 
  X  X 0.64 

Deviation 
of O-D 
Flows 

X   X  2.40 
X    X 1.92 
 X  X  1.60 
 X   X 1.05 
  X X  1.42 
  X  X 0.88 
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The objective of this sub-task is to implement the models and algorithms developed in 
the previous task and develop a tool with a user-friendly interface to allow 
practitioners to apply these developed models and algorithms.   
 
The developed tool is designed to estimate the dynamic OD matrices for a period of 
interest when traffic flow is in a steady state and for a linear network where loop 
detector count information is available. In this study, the loop detector count 
information is assumed to come from the Freeway Performance Measurement System 
(PeMS). The general framework is shown in Figure 4.1. It is composed of four 
subsystems (Interface, Software, Network ID, and PeMS). 
 

 
 

Figure 4.1 General Framework 
 
The simple user interface is shown in Figure 4.2. The first step after loading the 
software is to define the network. Practitioners can choose from “Interstate-80 
Westbound at Berkeley” which is the testbed selected by this study as shown in Figure 
4.3, or “Customized network using PeMS system”. For the customized network, two 
historical OD matrices or historical counts for at least two days are required as the 
input. 
 

 
Figure 4.2 Simple User Interface 

108 



 

 

Figure 4.3 Testbed of I-80W at Berkeley 
 
The next step for users is to select the date and period of interests for the estimation. 
With the given selections, the software will read the data files, which contains 
30-second loop detector count information from PeMS.  
 

After obtaining all the required inputs with deviations (i.e. A, V, F, W, and ), the 

software will run the developed methodology to estimate the OD matrix.  

ky

 
It is important to note that the software has to store the estimated OD matrix, because 
it will be used as the second historical OD matrix to compute the matrix F for the next 
time. That is, once the period ends, the software will use the difference (or deviation) 
between the just-estimated OD matrix and the OD matrix estimated the day before to 
compute a new matrix F. In the future, the software could be continuously running so 
the historical OD matrix could be self-learned and accordingly updated. 
 
The outputs of the software are presented by the bottom part of Figure 4.4. With the 
given period of interests, the software calculates a new OD matrix for each 30-second 
interval. Users can choose “1:Display estimated OD” or “2:Display model 
performance”. If “1” is selected, users can further select an interval for display. The 
estimated OD flow for each OD pair will be displayed. If “2” is selected, the 
estimated OD will be compared with the given real OD matrix. Then the root mean 
square error (RMS) and the root mean square error normalized (RMSN) will be 
calculated and displayed. It is note that the function to display the model performance 
is only available for the given period of time at the I-80W testbed, because the special 
data has only been collected using Berkeley Highway Lab (BHL)’s cameras installed 
on the roof of a building located next to the testbed. The real OD matrix was then 
extracted from the video recordings. This process is time consuming. 
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Figure 4.4 Software Outputs 

 
 
The current user interface is still very simple and the functions are very limited. 
Therefore, the user interface, some of the data collection and processing procedures, 
and more convenient functions will be further developed and debugged. 
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