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Abstract   This article presents a modeling framework and a polynomial solution 
algorithm for determining optimal locations of point detectors used to compute 
freeway travel times. First, an objective function is introduced to minimize the 
deviation of estimated and actual travel times of all individual sub-segments of a 
freeway route.  By discretizing the problem in both time and space, we formulate 
it as a dynamic programming model, which can be solved via a shortest path 
search in an acyclic graph. Numerical examples are provided to illustrate the mod-
el and algorithm using microscopic traffic simulation and GPS data from the Mo-
bile Century experiment recently conducted by the University of California, 
Berkeley, Nokia and California Department of Transportation (Caltrans). 

1. Introduction 

Intelligent Transportation Systems (ITS) applications rely on data to character-
ize traffic states such as flow or speed. The data are usually collected from traffic 
sensors. For example, freeway travel time estimation often requires speeds meas-
ured at specific locations. Traditionally, a large portion of traffic sensors were 
deployed on a case by case basis by practitioners without a systematic study of the 
quantity and locations of sensors.1 Since traffic sensors are limited resources, de-
termining optimal placement strategies maximizes the value of the resource. 

In this article, we study the optimal sensor placement problem for providing 
freeway travel times. The travel time application is selected because travel time is 
one of the most useful roadway traffic metrics to both traffic management agen-
cies and the driving public. First, travel time is a direct measure of traffic condi-
tions and system performance. Travel time reliability has received particular atten-
tion from both researchers and practitioners (Li et al, 2007; AlDeek et al, 2006; 

                                                            
1 One exception is the optimal sensor location problem for origin-destination matrix estimation, 
which has been well studied before (Yang and Zhou, 1998; Bianco et al., 2001; Chen et al., 
2007). Mirchandani et al. studied the real time network performance monitoring problem (2007). 
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Chen et al, 1999). Second, travel times represent information that is easy to under-
stand and process. Numerous studies reveal that commuters value travel time, 
which reduces their uncertainty and stress (Lindveld et al., 2000; Khattak et al., 
1994). For example, Khattak et al. (1994) found that most drivers would divert 
under unexpected congestion if provided with real time traffic information on their 
usual route plus travel times on alternative routes. Furthermore, relevant traffic in-
formation enables travelers to make educated choices about mode and departure 
time choices, which may result in a form of “system self-management.” 

In the past, numerous studies have contributed to algorithmic techniques to es-
timate travel times from available field data, which generally came from loop de-
tectors (Rice and Zwet, 2001; Coifman, 2002). Most studies assumed given detec-
tor locations and proposed optimal ways of processing the data. The optimal 
sensor placement problem in this regard has not been widely studied. Existing re-
search focused on empirical investigations of the impact of sensor locations on the 
quality of travel time estimation. By taking out existing loop detectors in a pre-
defined way, Fujito et al. (2006) found that travel time estimation quality may not 
always decrease as detector spacing increases. Kwon et al. (2006) studied how the 
travel time estimates vary as the number of detectors changes by randomly taking 
out detectors. They concluded that 0.5 mile sensor spacing is appropriate for pro-
viding freeway travel times. Ban et al. (2007) showed that as sensor spacing in-
creases, travel time estimation becomes more sensitive to actual sensor locations. 
This implies that the optimal sensor location problem is more critical if one aims 
to deploy a limited number of sensors on a relatively long freeway segment. The 
above studies are usually available for freeways. Thomas (1999) studied sensor 
location problems for arterial streets using microscopic traffic simulation. 

Relatively little research has been devoted to develop computationally tractable 
methods for optimal sensor placement for travel time estimation. Eisenman et al. 
(2006) provide a conceptual framework of the sensor location problem for traffic 
detection systems. Sherali et al. (2006) propose a mixed-integer optimization 
model to determine optimal placement of vehicle identification readers for travel 
time estimation, although the model can only be solved approximately. Bartin et 
al. (2007) show that the optimal sensor placement for travel time estimation can be 
determined by minimizing the weighted summation of speed variations of all 
roadway segments, each associated with a sensor. A Nearest Neighbor (NN) algo-
rithm was further developed. However, the NN algorithm cannot generate a glo-
bally optimal solution in polynomial time. 

We address two major issues which are key to the problem of optimal sensor 
placement for travel time estimation. 

• How to develop a model and algorithm to efficiently solve (in polynomial 
time) a sensor placement problem to minimize travel time estimation error, 

• How to modify the algorithm to handle corridors where sensors are already 
deployed in such a way as to optimally supplement the existing sensors. 

The present article focuses on the above two issues. We develop a modeling 
framework that uses vehicle trajectory data to perform the analysis. With the ad-
vent of GPS-enabled smartphone-based traffic monitoring, our algorithm can be 
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used with probe vehicle data, which we illustrate using the Mobile Century data 
set, presented in the last part of this article. 

By discretizing both time and space, we first show that the optimal sensor loca-
tion problem for travel time estimation can be formulated as a Dynamic Pro-
gramming (DP) model with one sensor deployed at each stage. The model can be 
further represented as an acyclic graph and solving the problem is equivalent to 
find the shortest path in the graph. We then prove that such a search can be done 
in polynomial time, which can be used for solving large scale problems or for dep-
loying sensors to many freeway segments. We also show that incorporating sen-
sors that have already been deployed can be easily done via revising the graph re-
presentation of the DP model, and the solution complexity remains the same. 

Distinct from most previous studies, we test the model and algorithm using 
both simulation data and GPS-equipped cellular phones. The results show that to 
have better travel time estimation, sensors should be deployed to cover major bot-
tleneck areas and free-flow regimes. As more sensors are available, they should be 
placed at bottlenecks areas, while a single sensor is usually sufficient for free-flow 
areas. Compared with random sensor configurations and evenly spaced sensors, 
the DP solution has minimum estimation error and is more stable and predictable. 

2. Preliminaries 

The problem studied in this article can be stated as: given a freeway segment 
(called route r) and a number of fixed-location sensors (such as loop detectors), 
where should these sensors be placed so that the deployment is “optimal” in terms 
of providing travel time estimates? Here we assume the number of sensors is giv-
en (denoted as K), which may be determined by budget constraints. Or one can 
always solve the problem for different numbers of sensors and pick the one with 
the desired performance. The efficiency of our proposed algorithm in this article 
makes solving the problem multiple times tractable. Similar to other engineering 
problems, the answer to the above problem depends on several factors. Especially, 
there are numerous methods available to compute travel times and sensors can 
usually provide multiple types of data. Therefore, determining optimal sensor 
placement depends on the travel time estimation method and the sensor data type. 
This section discusses assumptions made in the article to address these concerns, 
most of which are consistent with what is currently used in practice. 

2.1 Travel Time Estimation Methods 

To be consistent with current practice, we assume that travel times are calcu-
lated using aggregated sensor speeds. Speeds can be obtained directly from double 
loop detectors or estimated from single loop detectors (Jia et al., 2001). We as-
sume that every sensor has a spatial “influence area,” called a link. Sensor speed 
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represents the (uniform) speed of the entire link associated with the sensor. There 
are a number of ways to define how a sensor is associated with its link (for exam-
ple, PeMS defines a link as the segment between the middle points of two sensors 
(BTS04, 2004, pp. 3-1)). In this article, we assume a sensor is always in the mid-
dle of its corresponding link2. Different link definitions lead to slightly different 
ways to interpret sensor speeds, which in turn might result in small variations in 
travel time calculation. These variations however should not be significant. 

As a result, the to-be-deployed K sensors divide the study route into K links, 
and the route travel time is the summation of link travel times. Note that such a 
definition will effectively eliminate certain travel time estimation methods based 
directly on routes (Rice and Zwet, 2001). However, it is widely used in practice 
(see for example BTS04, 2004, pp. 3-23). More importantly, the DP model pre-
sented in this article does not depend on how link travel times are calculated. This 
implies much flexibility regarding which travel time method to use in the model. 

In this article, we focus on two specific travel time computation methods: the 
instantaneous method (Ban et al., 2007) and Coifman method (Coifman, 2002). 
The instantaneous method assumes that traffic conditions remain unchanged from 
the time a vehicle enters a route until it leaves the route. Therefore, travel time of 
the route can be computed by summing the travel times of the constituent links at 
the time a vehicle enters the route. This method is “naïve” in the sense that traffic 
condition changes are not considered; however, it is probably the most widely 
used method in practice due to its simplicity and the fact that it can be used in real 
time. The second method, originally developed in Coifman (2002), is a more so-
phisticated algorithm for calculating link travel times. The method constructs ve-
hicle trajectories from sensor speeds using traffic flow theory, from which link 
travel times can be extrapolated. We use the instantaneous method in most parts of 
the article to illustrate the DP model and the solution algorithm. However, we dis-
cuss how Coifman method can also be considered in the model and solution me-
thod. In Section 5, we show results from the Coifman method, and provide com-
parisons with results obtained using the instantaneous method. 

2.2 The Objective Function 

We assume that trajectories of a certain number of vehicles (assumed to be M) 
are available. We denote m

kτ̂  and m
kτ  the estimated and actual travel times of the 

                                                            
2 One may argue that restricting sensors to be only in the middle of its link can potentially filter 
out better solutions. This issue was considered previously by some researchers. For example, a 
probability distribution was assumed in Bartin (2007), which describes the probability that a sen-
sor will be deployed to each discretized section of a link. However, in practice, after sensors are 
deployed, practitioners need a straightforward way to define the link associated with each sensor. 
If sensors are allowed to be deployed arbitrarily within a link, the link boundary will have to be 
recorded to compute travel times. We argue that this is highly impractical in reality. 
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m-th vehicle ( Mm ≤≤1 ) traveling link k ( Kk ≤≤1 ), respectively. The travel time 
estimation error for the m-th vehicle on link k denoted as m

ke , can be expressed as: 
m
k

m
k

m
ke ττ −= ˆ .        (1) 

We use the same objective function as that in Bartin (2007) as follows: 
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Here Ê  represents the objective function, and kÊ  is the Mean Square Error 
(MSE) of the travel time estimation for all M vehicles on link k, defined as: 
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The objective defined in (2) focuses on estimation errors of all individual links, 
instead of only on the entire route. The reason for this is that we want to generate 
sensor locations that can provide accurate estimates of all link travel times, not on-
ly in terms of the entire route. If attention is only put on the entire route, it is poss-
ible that the resulting sensor locations may underestimate travel times for certain 
links and overestimate for other links, but as a whole, they cancel out each other 
and provide good estimation. This type of sensor placement is not desirable. It is 
easy to see that the objective function we use here can effectively eliminate such 
sensor deployment strategies since they will lead to large objective values using 
equation (2). In Section 5, we show that this definition is effective to generate sen-
sor placement that is optimal for both the (entire) route r and its sub-routes. 

3. A Dynamic Programming Formulation 

3.1 Mean Square Error of A Link 

We divide route r into small segments, called sections. We assume that if the 
length of a section is sufficiently small, speed will not change within the section 
and it does not matter where to place a sensor within the section. Thus we only 
need to determine where to deploy the given K sensors to these small sections. As-
sume the length of each section is xΔ  and that the given route r can be divided in-
to N sections. We use n=1, ···, N to index a given section. A link then contains one 
or more sections, and the link boundaries are at the section boundaries. Since we 
assume a sensor is always in the middle of its link, the sensor deployment problem 
is now converted to determine the optimal starting and ending indices of the K 
links that comprise route r. In the time domain, we evenly divide time into inter-
vals with length TΔ  = 30 seconds as we assume sensors can only provide 30-sec 
average speeds. Assume the entire study period can be divided into H time inter-
vals and h=1, ···, H is used to index a given interval. For simplicity, we assume 
route r starts with x=0 and time starts with t=0. 
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This space and time discretization is illustrated in Fig. 1. It is clear from the 
figure that the two-dimensional x-t space is divided into a grid of sensor boxes. 
Each sensor box represents a data collection unit (particularly for speeds in this ar-
ticle) at a specific location (section), which is only active for the designated time 
period (30-sec long). The average speed of each sensor box can be computed via 
available vehicle trajectories, and is defined as the average speed of all vehicles 
that pass the sensor at the specific time period. This mimics the way loop detectors 
collect average speeds in practice. Calculating the average speed for any sensor 
box (n, h) with n=1, ···, N, h=1, ···, H of the route will result in the speed field (also 
called speed contour map, see Ban et al., 2007) of the study route for the study pe-
riod. Fig. 6(a) depicts the speed field of the micro-simulation data in this article. 
Notice that in case “blank” sensor boxes exist, for which no vehicle passes by, we 
estimate the speed as the average speed of all its surrounding sensor boxes whose 
speeds are already available. Fig. 11 (a) illustrates the estimated speed field using 
trajectories from 100 vehicles equipped with GPS cell phones. 

Assume the k-th link starts at section ks  and ends at section kk sy ≥ . Both ks  
and ky  are integers to represent a section. Note that the starting and ending sec-
tions are inclusive, i.e., link k includes 
both sections ks  and ky . This is illu-
strated in Fig. 1.To calculate the MSE 
of link k as expressed in equation (3), 
we focus on the given M vehicles. For 
any m-th vehicle, Fig. 1 depicts, in a 
solid thin line, the trajectory of the 
vehicle. In the figure, we denote m

ys kk ,τ  

the actual travel time of the vehicle 
traversing link k. The corresponding 
estimated travel times are denoted as 

im
ys kk

,
,τ̂  (instantaneous) and cm

ys kk

,
,τ̂  (Coif-

man). It can be seen that m
ys kk ,τ  can be 

expressed as m
xs

m
xy

m
ys kkkk

tt Δ−Δ −= )1(,τ , 

where m
xt  denotes the time when the 

m-th vehicle passes location x. Suppose a sensor is deployed on the k-th link. 
Based on our assumptions, the sensor will be in the middle of the link. Denote kn
the section that the sensor on link k is located, we have: 

⎣ ⎦2/)( kkk ysn +=        (5) 
Here ⎣ ⎦⋅  denotes the rounding operator. Assume the m-th vehicle enters route r 

at time interval mh1  and it enters section ks at time interval m
kh . Then according to 

the definitions of the instantaneous travel time, the average speed of the sensor 
box ),( 1

m
k hn , denoted as m

k hnv
1,

, will be used for computing the instantaneous tra-

Fig. 1. Actual and Estimated Travel Times 
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vel time of link k. This is shown as the solid bold line in Fig.1, which is marked as 
“1”. Noticing that xsy kk Δ+− )1( is the length of link k, we can compute the instan-
taneous travel time as: 

m
k

kk
hn

kkim
ys v

xsy

1,

,
,

)1(ˆ Δ+−
=τ        (6) 

For the Coifman method, the vehicle trajectory can be estimated by a piece-
wise linear curve using traffic flow theory. This is shown as the bold dash line in 
Fig. 1 (marked as “2”). The Coifman link travel time for link k does not have a 
closed form expression. However, it only depends on the starting and ending sec-
tions of link k provided speeds of all sensor boxes are given, and the entrance time 
is assumed to be m

xsk
t Δ− )1(

. Denote i
kÊ  and c

kÊ  the MSE of travel time estimation 

for link k for instantaneous and Coifman travel times, respectively. Following eq-
uation (3), they are functions of ks , ky  and can be expressed as: 
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The above procedures for calculating link MSE show that link MSE only de-
pends on the starting and ending sections of the link, i.e., ks  and ky . The calcula-
tion is independent of how the (k-1) sensors for the previous (k-1) links are dep-
loyed once ks  and ky  are known. This motivates us to formulate the optimal 
sensor placement problem using dynamic programming. 

3.2 Dynamic Programming Model 

Denote iÊ  and cÊ  the objective functions for instantaneous and Coifman tra-
vel times respectively. We will have, according to (2): 

∑
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We see that the objective functions for instantaneous and Coifman travel times 
are similar, and the only difference is which link MSE to use. In the reminder of 
this section, we use the instantaneous travel time to illustrate the DP model. 

Given the objective function, the optimal sensor location problem can be stated 
as: find the optimal values of Kkys kk ,,1,, L=  such that (9) can be minimized. 
That is, one needs to solve the following optimization problem: 
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Subject to constraints (12) – (15) below. 
The above optimization model is a linear integer program since ),(ˆ

kk
i
k ysE  is 

computable for any ),,( kk ysk , and ),( kk ys  are integer-valued. Directly solving the 
model may not be easy if the problem dimension is large. We thus divide the prob-
lem into stages: at each stage, the optimal location of one sensor is obtained, 
which can be achieved by finding the optimal starting and ending locations of its 
associated link. We assign the starting location (section) of link k (i.e. ks ) as the 
state variable, and the ending location of link k (i.e. ky ) as the decision variable. 

We first look at the constraints for ks  and ky . Clearly, we have 
11 =s         (12) 

NyK =        (13) 
This means that the first link must start at section 1 and the last link (link K) 

must end at section N. Also, we have the state transfer function as 
11 +=+ kk ys        (14) 

That is, knowing the ending section of link k ( ky ), the starting section of link 
(k+1) must be the next section. Since a link contains at least one section, we have 

kKNysk kk +−≤≤≤       (15) 
The first inequality holds since there are k-1 links before link k, which contain 

at least k-1 sections. Similarly, the last inequality holds since there are K-k links 
after link k, which contain at least K-k sections. Equations (12)-(15) show that 
there is only one possible state for stage 1 ( 11 =s ), but multiple states for stage 

2≥k . In particular, (15) means that the possible states for any stage 2≥k  are 
from k to N-K+k, i.e. the total number of states is N-K+1. 

At any stage k, the cost of deploying a sensor is the link MSE ),(ˆ
kk

i
k ysE , which 

is consistent with the objective function (9) and (2). Since ),(ˆ
kk

i
k ysE  is only a 

function of ),( kk ys , the optimal value of ky  can be obtained by minimizing 

),(ˆ
kk

i
k ysE if ks  is known. In particular, if we denote )( kk sF  as the total cost from 

stage k (including stage k) to the last stage (i.e. stage K), a recursive formulation 
for )( kk sF  can be given as: 
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The above equations are for stage 1, stage }1,,2{ −∈ Kk L , and stage K re-
spectively. First, due to (12), we have )1()( 111 FsF =  for stage 1, which is a sum-
mation of the cost of stage 1 (i.e. ),1(ˆ

11 yEi ) and that from stage 2 to stage K (i.e. 2F
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). For stage 12 −≤≤ Kk , the cost kF  is a function of the state variable ks , which 
is the summation of the cost of the current stage k and that from stage k+1 to the 
last stage. Note that in both equations, the starting location of the next stage (i.e. 
stage 2 or k+1) is the immediate next section of the ending location of current 
stage due to (14). For the last stage, since the ending location must be N, )( KK sF  
is automatically computable given Ks . 

We can observe that (i) all constraints (12) - (15) are satisfied in the above equ-
ations and there are no extra constraints introduced, (ii) . Hence 

solving (11) is equivalent to solve (16) – (18). Furthermore, from these recursive 
equations, we can see that if ,  is an optimal solution, , 

21 kkk ≤≤  must be an optimal solution from stage 11 ≥k  to stage Kk ≤2 . This 
illustrates that the optimality principle (Bellman, 1962) holds for the model (16) – 
(18). Therefore, the model is a DP problem. 

The proposed DP model is for both the instantaneous and Coifman travel times 
due to the calculations of their link MSEs in Section 3.1. In fact, it is easy to see 
that the DP model can be used for any other link travel time methods as long as 
the methods only depends on the starting and ending locations of the link. 

4. Solution Algorithm and Complexity 

We present a graph representation of the DP model. We start from the case in 
which there is originally no sensor on the freeway and one needs to deploy K sen-
sors. We then show in Section 4.3 how the graph can be revised to incorporate the 
case in which there are K' < K existing sensors. 

4.1 A Graph Representation 

A graph representation of the DP model is depicted in Fig. 2, where stages are 
listed horizontally and sections are listed vertically. Since we deploy one sensor 
per stage, we also associate each link with a stage. Based on the DP model in Sec-
tion 3.2, the state of a stage represents the starting section of the link associated 
with the stage. In this figure, all possible states of a stage are represented as nodes. 
That is, a node represents a section of the roadway, and the node number is the 
section number. For example, the node at stage 2 and Section 2 represents that the 
starting location of link 2 could be section 2. As shown in equations (12)-(15), 
there is one state in stage 1 ( 1s  = 1) and (N-K+1) states (from k to N-K+k) for 
stage Kk ,,2 L= . We create a fake stage (K+1) that has one fake state N+1. 

 

∑
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kk
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k ysEF

1
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Fig. 2 Graph Representation of DP Model.                  Fig. 3 Consideration of Existing Sensors 

A connection, denoted as an arc, may be created from a node in stage k to 
another node in the immediate next state k+1 if the latter node has a higher node 
number. Each arc actually represents a possible roadway link by defining the link's 
starting and ending sections. An arc from node ks in stage k to node 1+ks in stage 
k+1 represents one possible configuration for link k: it starts at section ks  and 
ends at section 1+ks -1 (because the next link starts at 1+ks ). Therefore, we must 
have 1+ks > ks in order to construct the arc. For example, the arc from node 2 in 
stage 2 to node 4 in stage 3 (marked in bold line) in Fig. 2 represents one possible 
configuration for link 2: it starts at node 2 and ends at node 3 (both are inclusive). 
There are no arcs between any two stages that are not adjacent to each other. We 
associate a cost with each arc in Fig. 2. For the arc from node ks in stage k to node

1+ks in stage k+1, the arc cost is )1,(ˆ
1 −+kk

i
k ssE as shown in (7). That is, the cost of 

an arc is the MSE of travel time estimation for its corresponding roadway link. 
It is easy to check that the graph constructed in the above manner enumerates 

all possible states in each stage and all possible configurations of each link. It also 
incorporates all the constraints of the model shown in equations (12)-(15). Fur-
thermore, each path from node 1 in stage 1 to node N+1 in stage K+1 contains ex-
actly K arcs, each of which represents a possible configuration of a particular 
roadway link. In other words, each path represents a potential sensor deployment 
scenario. Thus the optimal sensor locations can be achieved by finding the mini-
mum-cost path from node 1 in stage 1 to node N+1 in stage K+1. As arc costs are 
positive, the DP model can be solved by a shortest-path algorithm. 
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4.2 Complexity of the Algorithm 

The complexity of the shortest path search algorithm depends on the structure 
and size of the graph in Fig. 2. The following theorem provides its complexity. 

Theorem 1. The DP model can be solved in polynomial time. In particular, the 
complexity of solving the DP model is . 

Proof. From the way the graph is constructed in Section 4.1, all arcs are from 
lower-numbered stages to higher-numbered stages and from lower-numbered 
nodes to higher-numbered nodes. Therefore, the graph is acyclic. Since the DP 
model can be solved via a shortest path search from node 1 in stage 1 to node N+1 
in stage K+1 in an acyclic graph, the complexity of the shortest-path search is li-
near in terms of the number of arcs in the graph (Bertsekas, 1998). The number of 
arcs in the graph in Fig. 2 can be easily calculated: from stage 1 to stage 2 or from 
stage K to stage K+1, there are N-K+1 arcs. Between any other two stages, there 
are 2/)1( 2+− KN arcs. Therefore, the total number of arcs in the graph is: 

2/)1)(2()1(2 2+−−++− KNKKN . As a result, the complexity of the solution algo-
rithm is ))1)(2(( 2+−− KNKO , which is polynomial.  

It is easy to see that Corollary 1 below immediately follows Theorem 1. 
Corollary 1. If N>> K >>2, the complexity of the DP algorithm is )( 2KNO . 
Theorem 1 and Corollary 1 states that the complexity of solving the DP model 

depends linearly on the number of sensors and quadratically on the number of sec-
tions. Furthermore, it does not depend on the number of time intervals. This im-
plies that the proposed model can be efficiently solved, even for large-scale prob-
lems. In addition, the DP model produces the exact solution for the optimal sensor 
location problem. Hence, at least in theory, the DP model and solution algorithm 
are more efficient than previous methods. 

4.3 Consideration of Existing Sensors 

It may be operationally useful to find an optimal way to add additional sensors 
to a highway segment that already contains existing sensors.  In this case, we 
make a simple adjustment to the DP graph representation. First, we match all ex-
isting sensors to the appropriate section they reside in.  Then, every possible link 
(represented as an arc in the graph) that covers a section with an existing sensor in 
it but does not have the existing sensor at the center of the link is removed from 
consideration. This is because we assume a sensor is in the middle of its link. 

As an example, Fig. 3 shows a highway section that is broken down into 6 sec-
tions. Suppose that we already have a sensor in section 2. Then we cannot consid-
er links that cover section 2 but do not have section 2 as the middle of the link.  
This means that a link covering sections 1 through 4 would not be permissible in 
the solution (because that would imply a sensor in 3 and not on section 2 accord-
ing to equation (5)). On the other hand, a link covering sections 1 through 3 would 

))1)(2(( 2+−− KNKO
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be permissible, implying that the arc from node 1 in stage 1 to node 4 in stage 2 is 
included. This is also the case for the arc from node 1 in stage 1 to node 2 in stage 
2 (represents a link that only contains section 1), and the arc from node 1 in stage 
1 to node 3 in stage 2. Similarly, the arcs from node 2 in stage 2 to nodes 4, 5, and 
6 in stage 3 should all be eliminated. The graph in Fig. 3 shows the adjusted DP 
graph after removing all impermissible links. 

Therefore, to account for existing sensors, one can use a simple linear search on 
all of the links to identify which ones to remove. The shortest path algorithm can 
then be used to compute the solution on the adjusted graph. As a result, the com-
plexity of the algorithm remains the same as the original DP algorithm. 

5. Case Studies 

We illustrate the proposed DP model and solution algorithm using two case 
studies. The first case study is based on micro-simulation, which provides an ideal 
analysis framework since all individual trajectories are known. This allows us to 
investigate for example how the penetration rate will impact the sensor location 
quality. The second case study is based on vehicle trajectory data from GPS-
enabled cellular phones, obtained from the Mobile Century field experiment 
(Amin et al., 2008; Work et al, 2008). The goal of the experiment was to test the 
ability of using GPS cell phones to collect and disseminate traveler information. 

5.1 Case Study I: Micro-Simulation Data Set 

The micro-simulation is for an 8.7-mile freeway segment along I-880 in the 
San Francisco Bay Area. Fig. 4 provides an overview of the network in Paramics, 
in which “1” and “3” indicates respectively the origin and destination of the route. 
The simulation model was developed as part of the Corridor Management Plan-
ning Demonstration project for Caltrans (CCIT07, 2007). Detailed descriptions on 
how the simulation network was constructed, calibrated, and validated can also be 
found in Ban et al. (2007). We run the simulation for 2 hours 30 minutes for 
morning peak hours from 5:30 am to 8:00 am. We then choose the last 2 hours as 
the study period, i.e. H=240. We divide the freeway segment into 100-foot sec-
tions, resulting in N=459. The “representative” vehicles are selected as those who 
traveled the entire segment and started their trips within the 2-hour study period. 
There are 3,586 such vehicles, i.e., M=3586. The average travel time of the ve-
hicles is 796 seconds and standard deviation is 227 seconds.  
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Fig. 4 Paramics Simulation Network               Fig. 5 DP Objective Values vs. Number of Sensors 

We solve the shortest path problems on directed acyclic graphs in order to 
solve our DP model.  We vary the number of sensors from K=3 to K=25, or equi-
valently an average spacing from about 3 miles to 0.3 mile. Fig. 5 depicts how the 
objective value computed by equation (2) decreases as the number of sensors in-
creases from 3 to 25. The decrease is monotonic, but the marginal benefit decreas-
es as well. We can also observe that the Coifman method usually has a smaller ob-
jective value than that of the instantaneous method. As one example, Fig. 6(a) 
depicts the obtained optimal sensor locations (marked using triangles on the y-axis 
in the figure) when K=6 using the instantaneous travel time method. In the figure, 
the speed contours of the segment are 
also displayed. We can observe that 
this freeway segment has two major 
bottlenecks, which are due to merg-
ing at about PM26.0 and PM 23.5 re-
spectively. In the latter half of the si-
mulation, the first bottleneck propa-
gates backward and combines with 
the second one. In this sense, we can 
treat them as a single congested area, 
spanning from PM 26 to PM20. At 
PM 18.5, there is also a minor bottle-
neck for a short period of time 
(roughly from 7:20 am to 8:00 am). 

 
The DP model, using the instantaneous method, puts four sensors at the major 

bottleneck area (PM 26.2, 25.5, 24.8, 23.5), one at the free flow regime (PM 20.4), 
and another one at the minor bottleneck (PM 18.0), which intuitively makes sense. 
We also ran the model using the Coifman method and the solution is shown in Fig. 
6 (b). The Cofiman method generates similar results to the instantaneous method, 
i.e. four sensors in the congested area, one in the free flow area, and the last one in 
the minor bottleneck area. There are however some differences. Especially, the 

Fig. 6(a) Optimal Sensor Locations for Instan-
taneous Method for Simulation Data  
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Coifman method tends to be able to 
distinguish the two major bottlenecks 
by putting three on the first bottleneck 
and one on the second bottleneck. 
This is intuitive since the Cofiman 
method constructs travel times by 
“walking through” both the spatial 
and temporal domains and thus is able 
to capture the dynamic evolution of 
bottlenecks. The instantaneous me-
thod on the other hand only focuses 
on a snapshot of traffic conditions and 
is thus less sensitive to the actual 
shapes of bottlenecks. 

 
To illustrate how bottleneck areas impact the optimal sensor locations generat-

ed by the DP algorithm, we show in Fig. 7 how the sensor locations change as we 
increase the number of sensors from 3 to 12, using the instantaneous travel time 
method. We can observe from this figure that when the number of sensors is small 
(e.g. K=3), they will be first deployed to major bottlenecks (i.e. PM 25.5 and PM 
23.7). For the free-flow area, only one sensor is needed (i.e. at PM 20.1). As more 
sensors are available, they will be deployed to bottleneck areas to capture the 
complicated traffic conditions in bottlenecks. Also, as the number of sensors in-
creases, minor bottlenecks may also be captured and enhanced by additional sen-
sors, while usually one sensor is sufficient for free flow areas. More importantly, 
as additional sensors are added in, the locations of previously deployed sensors in 
bottleneck areas remain almost unchanged. This is illustrated using the thin lines 
in the figure, which show that locations of newly deployed sensors just “branch 
out” from existing sensors in bottleneck areas. This implies that the DP algorithm 
has the ability to capture the most significant bottlenecks and if more sensors are 
available, the second most significant bottlenecks can be captured and so on. The 
locations of sensors in free flow areas however may change since the speeds de-
tected in free flow areas are not sensitive to the actual sensor locations. The evolu-
tion of optimal sensor locations for the Coifman method is similar to the one 
shown in Fig. 7. The above discussions illustrate the close relation between the 
optimal sensor locations generated by the DP algorithm and the bottleneck areas 
of the freeway. They also show that the results from DP are stable and predictable, 
which is desirable in practice. 

The DP objective function defined in (2) focuses on the summation of all link 
MSEs. We next show that this produces reasonable sensor configurations to both 
the entire route and its sub-routes. First, to evaluate the performance of the entire 
route, we define the following objective function: 
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Fig. 6(b) Optimal Sensor Locations for Coifman 
Method for Simulation Data
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Equation (19) defines the MSE on the entire route in a relative sense since 
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for that vehicle. To show that the DP results are also (nearly) optimal for the ob-
jective in (19), we compare such objective values of the DP solutions with those 
from 1,000 randomly generated sensor configurations for 2 to 25 sensors. The re-
sults are shown in Fig. 8 for the instantaneous method. In this figure, the solid line 
represents the average objective values across all random configurations with the 
best and worst random configurations represented by the ends of the error bars. 
The line with rectangle signs represents objective values via evenly spaced confi-
gurations, while the line with asterisks represents the objective values from the DP 
solution. Clearly, the DP solution curve is very close to or lower than the smallest 
objective values by all random configurations. This indicates that the DP solution 
significantly outperforms the random configuration even evaluated under (19) 
(note that the DP solution was generated using equation (9)). We can also observe 
that evenly spaced sensors cannot produce satisfactory travel time estimation es-
pecially when the number of sensors is small. For example, when the number of 
sensors is K=3, the objective value of the DP solution is 32%, while evenly spaced 
configuration produces 68% error. In addition, the performance of the evenly 
spaced configurations tends to vary significantly when the number of sensors va-
ries. The performance of the DP solution however is very stable. These differences 
tend to reduce as the number of sensors increases. For example when K=25, the 
objectives values for the DP solution and evenly spaced configuration become 
28% and 37% respectively. This indicates that optimal sensor placement is more 
critical for limited number of sensors than that for sufficient number of sensors (in 
this case, evenly spacing the sensors may work properly). 
 

 
Fig. 7 Evolution of Optimal Sensor Locations (Instantaneous Method) for Simulation Data 
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We now focus on the sub-route as indicated in Fig. 4 using “2” and “3”, which 
is about 2.5 miles. We particularly evaluate how the obtained DP solution and the 
best random configuration perform on this sub-route for each given number of 
sensors (2 to 25). For this purpose, we first select sensors that are deployed on this 
sub-route by the DP solution; we then calculate the objective value similar to that 
in (19) using these selected sensors on the sub-route. Also, we select the best ran-
dom configuration for the entire route for each given number of sensors, and eva-
luate its objective value as in (19) for the sub-route. The results are depicted in 
Fig. 9. In the figure, the solid line with asterisks and the dash line represent, re-
spectively, the objective values on this sub-route by the DP solutions and the best 
random configurations. The two curves show that the DP solution is consistently 
superior to the best random configuration on the sub-route. More importantly, the 
performance of the DP solutions is very stable across different numbers of sen-
sors, while the random configurations tend to have varied performances depending 
on the actual number of sen-
sors. Hence we can conclude 
that random configurations 
may perform well on the en-
tire route, but may be poorly 
performed on sub-routes. The 
DP solution, however, per-
forms well on both the entire 
route and the sub-routes. This 
is mainly due to the objective 
function used by the DP mod-
el, which focuses on individu-
al links rather than just the en-
tire route. 

In reality, it is almost impossible to measure trajectories of all vehicles travers-
ing a given segment of freeway. Therefore, one crucial issue is to study how sam-
pling rate impacts the results of the DP algorithm. Since DP solutions are closely 
related to bottleneck areas of the route as discussed above, we focus on the speed 
contour map for this purpose. In particular, we vary the sampling rate from 0.5% 
to 100%. For a given sampling rateα , we select each of the M total vehicles with 
probability α .  The objective function is the root mean squared difference be-
tween the speed contour map by all the vehicles and that by the sampled vehicles, 
defined as follows: 
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Here sE  denotes the average absolute error of two speed contour maps, tnv ,   
and tnv ,ˆ  are the average speeds for section n at time interval t computed using all 
vehicles and sampled vehicles respectively. 

Fig. 8 Comparison of DP and Random Config. on 
the Entire Route for Simulation Data
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archival data collected from the experiment can be of great use for traffic analysis. 
The present study uses the data to showcase the algorithm. 

The experiment was conducted from 9:00 am to 7:00 pm. Fig. 11 (a) and (b) 
show the speed contour map for the entire freeway segment generated by GPS da-
ta and loop detector data respectively. We can observe that the GPS data can re-
produce almost exactly the same speed contour as the detectors do. Note also that 
this section of freeway is very 
unrepresentable of US freeways 
because of its unusually high 
concentration of loop detectors 
(19 over 8.7 miles). It clearly 
shows that the GPS data is suffi-
cient to capture speed contours 
or bottlenecks of the freeway. 
The high accuracy of the data is 
of interesting, especially in light 
of the penetration rate for the 
study (up to 5%). Notice that the 
bottleneck at 10:45 am was due 
to a five car pile-up accident on 
the freeway. 

We select the shortest loop which has the largest penetration rate. The selected 
route is depicted in Fig. 12 as labeled “1” and “3” for the origin and destination 
respectively. The average travel time of the loop is about 20 minutes, implying 
that the 100 experiment cars represent about 300 vehicles/hours extra freeway 
traffic volume. Since the freeway has three through lanes in this area, the capacity 
of the freeway is roughly 6000 vehicles/hour. In other words, the resulting sam-
pling rate of the obtained trajectories is about 5%. In this article, we focus on the 
northbound of the loop from 10:15 am to 1:45 pm. 

  
 
 

Fig. 11 Speed Contour Maps

Fig. 12 Experiment Site of Mobile Century          Fig. 13 DP Objective Value vs. Number of Sen-
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We run the DP algorithm by varying the number of sensors from 2 to 25, or 
equivalently for an average spacing from about 3 miles to 0.2 mile. Fig. 13 depicts 
how the objective value used in the DP model changes as the number of sensors 
increases. Similarly to the results for simulation data, the objective value decreas-
es as the number of sensors increases, and the Coifman method always has smaller 
objective values. Fig. 14 depicts the obtained optimal sensor locations when K=6 
using the instantaneous travel time method. Similarly to the results in Section 4.1 
for simulation data, the DP method puts most sensors (5) to the only bottleneck at 
the far north of the segment, while only one sensor is deployed to the free flow 
area. Furthermore, if we look at the evolution 
of optimal sensor locations as the number of 
sensors increases from 2 to 12, as shown in 
Fig. 15, similar observations can also be ob-
tained: most sensors are deployed to the ma-
jor bottleneck area and only one sensor to the 
free flow region (2 sensors when the number 
of sensors is 10 or 11); as the number of sen-
sors increase, previously deployed sensors in 
the bottleneck area remain almost unchanged 
and new sensors branch out from existing 
sensors. Same results can also be obtained for 
the Coifman method. 

 
     

 
Fig. 15 Evolution of Optimal Sensor Locations for Mobile Century 

Fig. 14 Optimal Locations for 6 Sensors for 
the Mobile Century 
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Fig. 16 Comparison of DP and Random Config. on the Entire Route for Mobile Century 

As previously done, we compute the objective values as defined in equation 
(19) for the DP solution and 1,000 randomly generated sensor configurations for 
the entire route. Fig. 16 depicts that the DP solution is near-optimal compared 
with the best random configuration for any given number of sensors. Again, the 
performance of evenly spaced configurations varies significantly and cannot com-
pare with the DP solutions, whose performance is very stable. We then select the 
best random configuration for the entire route and evaluate its objective value (19) 
on the sub-route (from “2” to “3” as 
shown in Fig. 12). The results are 
shown in Fig. 17 using the dashed 
line. The figure also depicts the DP 
solution on this sub-route using the 
solid line with asterisks. We can see 
that objective values of the best ran-
dom configurations vary significantly 
and are inferior to those of the DP so-
lutions. This again verifies that the 
DP solutions work well for both the 
entire route and the sub-routes of the 
studied freeway segment. 

6. Conclusion 

We studied the optimal sensor placement problem for freeway travel time esti-
mation. The study is based on the assumption that (some) vehicle trajectories are 
available and sensors only provide aggregated speeds.  This is a reasonable as-
sumption for analysis, and becomes a reality with the advent of GPS-enabled cel-
lular phones as a new way to collect traffic information. Based on an objective de-
fined on link MSEs, the problem of determining optimal sensor locations can be 
modeled as a dynamic programming (DP) formulation and solved using shortest-

Fig. 17 Comparison of DP and Random Config. 
on the sub-Route for Mobile Century 
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path search in an acyclic graph. Therefore, the proposed model can be solved in 
polynomial time and can be applied to large-scale problems. We also showed how 
to incorporate existing sensors in the proposed DP framework. We provided two 
case studies based on trajectory data from micro-simulation and the Mobile Cen-
tury experiment. The results showed that 1) it is optimal to place many sensors in 
bottleneck areas and place just a few sensors in free flow areas (one is usually suf-
ficient for one free flow area); 2) the DP solution is more stable and predictable 
than random configurations, and thus is more desirable in practice; and 3) there 
seems to be an optimal number of sensors that should be deployed, and beyond 
which deploying more sensors is not very beneficial. 

The DP model and solution algorithm are the first step in determining optimal 
sensor placement to provide freeway travel times. There are several issues that 
remain unanswered. Below are some of them: 
• How sensitive is the model to different travel time estimation methods? We 

only tested the instantaneous and Coifman methods. How sensitive the result-
ing sensor locations to other travel time methods merits further study. 

• How sensitive is the model to different sets of vehicle trajectories? In this ar-
ticle, we only utilized trajectories from one simulation run and one experi-
ment. Therefore, day-to-day traffic variations are not considered. How differ-
ent sets of trajectories will impact the “optimal” sensor locations is an 
interesting research topic. This issue is under investigation now and results 
will be reported in subsequent papers. 

• How to account for sensor errors? In reality, most sensor data are subject to 
detection errors. How to consider sensor errors when determining sensor loca-
tions is a practical yet challenging problem. In this regard, quantifying the er-
rors of different types of sensors seems necessary. The proposed DP model 
may be extended for this purpose, which may result in the so-called stochastic 
dynamic programming problems and merit further investigations. 
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