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Abstract— An inverse modeling problem for systems of net-
worked one dimensional shallow water equations subject to
periodic forcing is investigated. The problem is described as
a PDE-constrained optimization problem with the objective of
minimizing the norm of the difference between the observed
variables and model outputs. After linearizing and discretizing
the governing equations using an implicit discretization scheme,
linear constraints are constructed which leads to a quadratic
programming formulation of the state estimation problem.
The usefulness of the proposed approach is illustrated with
a channel network in the Sacramento San-Joaquin Delta in
California, subjected to tidal forcing from the San Francisco
Bay. The dynamics of the hydraulic system are modeled by
the linearized Saint-Venant equations. The method is designed
to integrate drifter data as they float in the domain. The
inverse modeling problem consists in estimating open boundary
conditions from sensor measurements at other locations in the
network. It is shown that the proposed method gives an accurate
estimation of the flow state variables at the boundaries and
intermediate locations.

I. INTRODUCTION

The Sacramento San Joaquin Delta in California is ex-

periencing drastic declines in fresh water resources, while

the water demand in California keeps increasing. Large-

scale numerical flow models sponsored by the California

Department of Water Resources, such as Delta Simulation

Model II (DSM2) [2] and River-Estuary-And-Land Model

for the San Francisco Bay and Delta (REALM) [2], have

been used as water resources management tools, providing

information about tidal forcing and salinity transport in

the bays and channels of the Delta. A number of factors

affect the performance of these state-of-the-art models, such

as parameter calibration, mesh generation, and choice of

numerical solver. More importantly, the performance of the

models largely relies on the determination of open boundary

conditions, which are often unknown in practice due to the

lack of sensing in particular locations.

Traditionally, these open boundary conditions can be ob-

tained either via Eulerian observations near the boundaries,

for example tidal gauge data, or through satellite data re-

trieval. Unfortunately, these measurements at large watershed

have their intrinsic limitations, in particular partial coverage

and sparse sampling [12]. Furthermore, installed Eulerian

sensors are proven to have many failures, such as broken

gauges, process leaks, sensor drifts, improper use of mea-

suring devices, and other random sources [1] [21] [22].

In the last two decades, measurement techniques using

surface and subsurface Lagrangian buoys have significantly

advanced. Lagrangian data, in particular collected from sur-

face drifters, provide instant information about the flow,

which can be used to describe flow advection and eddy

dispersion. For this reason, Lagrangian data have been highly

valued and extensively used in numerous meteorologic and

oceanic models [17]. Lagrangian data assimilation can be

approached in different ways, including variational methods

[14], ensemble Kalman filtering [20] [7], optimal statistical

interpolation [11], and Newtonian relaxation [15].

In this article, we present a quadratic programming (QP)

based method, first introduced in [19], to determine the

open boundary conditions in tidal channel networks by using

Lagrangian measurements of the flow. More specifically, we

derive the velocity field in a channel network solely from

the position information collected by drifters. The proposed

method is to minimize the norm of the difference between the

drifter observations and model velocity predictions, subject

to the constraints given by discretized linear equations. One

of the major contributions of this article is to pose the

problem of estimating the open boundary conditions of a

channel network as a quadratic program, by minimizing a

quadratic cost function and expressing the constraints in

terms of linearized equalities and inequalities. The proposed

quadratic program can then be solved using fast and robust

algorithms, and it is capable of providing reliable open

boundary conditions in any flow simulations.

To assess the performances of the proposed QP method,

we investigate a distributed network of channels, subject to

quasi-periodic tidal forcing, in the Sacramento-San Joaquin

Delta. The main obstacle of applying a linear model in

the channel networks is the well-known tidal trapping phe-

nomenon [8]. The trapping mechanism induces a phase

shift between water elevation and velocity, in addition to

the flow dispersion and eddy diffusion at the junctions of

channels. The drifter trajectory at these junctions, because of

the turbulent mixing processes, usually displays a stochastic

“spaghetti-like” shape, which is indicative of slow currents.

Another contribution of the article is to successfully assim-

ilate this chaotic drifter data, and, as a result, the channel

network system can be adequately simulated using one-

dimensional linear Saint Venant model.

The article is organized as follows: Section II introduces

the mathematical flow model in open channels used for the

data assimilation. A linear Saint-Venant model in a single

river reach is derived after linearizing and discretizing the

governing equations. A linear channel network model is
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subsequently constructed, with the consideration of the flow

compatibility at the channel junctions. Section III formu-

lates the data assimilation problem as a quadratic program.

Section V describes the experiment protocol used in the

study of the Sacramento-San Joaquin Delta, and computes

the drifter trajectories generated by nonlinear shallow water

model simulations. Section V-C shows the application of the

inverse modeling procedure. The effectiveness of the method

is substantiated by correlating the model estimations with

field data at selected locations in the network. Section VI

summarizes our studies and presents the scope of future

work.

II. HYDRODYNAMIC MODEL IN TIDAL CHANNEL

NETWORK

A. Saint-Venant Model

The Saint-Venant equations are a system of non-linear hy-

perbolic PDEs that describe the dynamics of one-dimensional

flow in open-channel hydraulic systems [4],[6]. For a rect-

angular cross-section, these equations are given by:

Yt + (V Y )x = 0 (1)

Vt + V Vx + gYx + g (Sf − Sb) = 0 (2)

for (x, t) ∈ (0, L) × ℜ+, where L is the river reach (m),
V (x, t) is the average velocity (m/s) across cross-section

A(x, t) = T (x) · Y (x, t), Y (x, t) is the water depth (m),
T (x) is the free surface width (m) for rectangular cross-

section, Sf (x, t) is the friction slope (m/m), Sb is the bed

slope (m/m), g is the gravitational acceleration (m/s2).
The boundary conditions are V (0, t) and Y (L, t). The initial

conditions are given by V (x, 0) and Y (x, 0) for x ∈ [0, L].
The friction slope is empirically modeled by the Manning-

Strickler’s formula

Sf =
V 2n2(T + 2Y )4/3

(TY )4/3
(3)

where n is the Manning’s roughness coefficient (sm−1/3).
Under the proper constant boundary conditions, equations

(1), (2) admit a steady state solution. Let the flow variables

corresponding to the steady state condition be denoted by a

zero subscript, i.e. V0(x), Y0(x) etc., where x ∈ [0, L]. The

steady state equations are given by

V0(x)
dY0(x)

dx
+ Y0(x)

dV0(x)

dx
= 0 (4)

dY0(x)

dx
=

Sb − Sf0

1 − F0(x)2
(5)

where C0 =
√

gY0 is the wave celerity, F0 = V0/C0 is

the Froude number, and V0 is the steady state velocity.

In this article, we assume the flow to be sub-critical

(F0 < 1) and non-uniform. This non-uniform flow can be

best approximated using a backwater profile model [9] [10].

Remark 1 (Non-Uniform flow): In natural channels, the

shape, size, and slope may vary along the channel length

x. In the case of non-uniform flow, the flow variables vary

along the length of the channel: the velocity V0(x) and the

stage Y0(x) depend on x.

B. Linearized Saint-Venant Model

The Saint-Venant model equations (2) are nonlinear in the

flow variables V and Y . Each term f(V, Y ) in the Saint-

Venant model can be expanded in Taylor series around the

steady state flow variables V0(x) and Y0(x). The lineariza-

tion process integrates first-order perturbations: f(V, Y ) ≈
f(V0, Y0) + (fV )

0
v(x, t) + (fY )

0
y(x, t) in the Taylor ex-

pansion, where the first order perturbations in velocity (resp.

stage) is given by v(x, t) = V (x, t)−V0(x) (resp. y(x, t) =
Y (x, t)− Y0(x)). The linearized Saint-Venant model for the

perturbed flow variables v and y is:

yt + Y0(x)vx + V0(x)yx +
dY0(x)

dx
v − α0(x)y = 0 (6)

vt + V0(x)vx + gyx + β0(x)v − γ0(x)y = 0 (7)

with α0(x), β0(x) given by:

α0(x) =
V0(x)

Y0(x)

dY0(x)

dx
(8)

β0(x) =
g

V0(x)

[

2Sb − (2 − F
2
0 )

dY0(x)

dx

]

(9)

γ0(x) =
4T0g

3Y0(x)(T0 + 2Y0(x))

[

Sb − (1 − F
2
0 )

dY0(x)

dx

]

(10)

In the above equations, to emphasize that the free surface

width T is uniform, it is denoted as T0 and the dependence

on x is omitted for readability. The upstream and down-

stream boundary conditions are respectively given by the

upstream velocity perturbation v(0, t) and the downstream

stage perturbation y(L, t). The initial conditions are given

by y(x, 0) = 0 and v(x, 0) = 0 for all x ∈ [0, L].

C. Discretization numerical scheme

The Preissman implicit finite difference scheme [3] is

applied to equations (6), (7):

f(x, t) ≈ θ

2
(fk+1

j+1 + fk+1
j ) +

1 − θ

2
(fk

j+1 + fk
j ) (11)

∂f

∂x
≈ θ

fk+1
j+1 − fk+1

j

∆x
+ (1 − θ)

fk
j+1 − fk

j

∆x
(12)

∂f

∂t
≈

fk+1
j+1 + fk+1

j − fk
j+1 − fk

j

2∆t
(13)

where f(x, y) is the flow variables (either v or y in our case),

θ ∈ (0, 1) is a time weighting coefficient, j denotes the space

step and k the time step. This scheme has the advantage

of allowing non-equidistant grids ∆x and is unconditionally

stable for θ > 0.5. This enables a more flexible schematiza-

tion of the river, especially in the case of strongly varying

cross sections. The time step is a function of the required

accuracy only and can be chosen freely. The discretization

form of equations (6), (7) can be written as:
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yk+1

j+1
+ yk+1

j − yk
j+1

− yk
j

2∆t
=

−Y0(xj)

[

θ
vk+1

j+1
− vk+1

j

∆x
+ (1 − θ)

vk
j+1

− vk
j

∆x

]

−V0(xj)

[

θ
yk+1

j+1
− yk+1

j

∆x
+ (1 − θ)

yk
j+1

− yk
j

∆x

]

−
dY0

dx
(xj)

[

θ

2
(vk+1

j+1
+ vk+1

j ) +
1 − θ

2
(vk

j+1 + vk
j )

]

+α0(xj)

[

θ

2
(yk+1

j+1
+ yk+1

j ) +
1 − θ

2
(yk

j+1 + yk
j )

]

(14)

vk+1

j+1
+ vk+1

j − vk
j+1

− vk
j

2∆t
=

−V0(xj)

[

θ
vk+1

j+1
− vk+1

j

∆x
+ (1 − θ)

vk
j+1

− vk
j

∆x

]

−g

[

θ
yk+1

j+1
− yk+1

j

∆x
+ (1 − θ)

yk
j+1

− yk
j

∆x

]

−β0(xj)

[

θ

2
(vk+1

j+1
+ vk+1

j ) +
1 − θ

2
(vk

j+1 + vk
j )

]

+γ0(xj)

[

θ

2
(yk+1

j+1
+ yk+1

j ) +
1 − θ

2
(yk

j+1 + yk
j )

]

(15)

Using the above discretization of the linearized Saint-Venant

equations (14) (15), the discretized linear model for a single

channel i can be represented as:

Ek,iXk+1,i = Ak,iXk,i + Bk,iUk,i (16)

where Xk,i is the state variable

Xk,i = (vk,i,1, yk,i,1, · · · , vk,i,li , yk,i,li)
T (17)

Uk,i is boundary conditions at time k∆t

Uk,i = (vk,i,1, yk,i,li)
T (18)

where li denotes the downstream point of each channel i,
and 1 is the upstream point of each channel i. Ek,i, Ak,i

and Bk,i are matrices constructed by assembling equations

(14) and (15) above. vk,i,j and yk,i,j are respectively the

velocity and stage perturbation at location j∆x at time k∆t
in channel i.

D. Linear Network Model

A linear channel network model can be constructed by

decomposing the channel network into individual channel

reaches, and applying the model (16) to each branch. The in-

ternal boundary conditions are also imposed at every junction

to ensure flow compatibility. Consider a simple river junction

illustrated in Figure 1. The linear equations of hydraulic

internal boundary conditions at a junction are specified by

equations of mass and energy conservation. Assuming no

change in storage volume within the junction, the continuity

equation can be expressed as:

vk,1,li · T1 = vk,2,1 · T2 + vk,3,l · T3

When the flows in all the branches meeting at a junction

are subcritical, the equation for energy conservation can be

approximated by a kinematic compatibility condition as:

yk,1,li = yk,2,1 = yk,3,1

Channel 3

Channel 1

Channel 2

1
2

3

Internal BC

External BC

External BC

External BC

Fig. 1. Flow compatibility of channel junctions

The equations are assembled for each individual channel and

interior junctions together to model the entire network. The

flow variables inside the domain are represented by a linear

relationship:

EkXk+1 = AkXk + BkUk (19)

where Xk is the concatenated vector of Xk,i and Uk is the

boundary conditions of the channel network system. The

boundary conditions of (23) are given by

Uk =
[

u(k, i, j)|∂Ωupstream
, y(k, i, j)|∂Ωdownstream

]

(20)

and initial conditions are

X0 = 0 (21)

The linear network model parameters which appear im-

plicitly in (14) (15) via (8) (9) (10) are the average free

surface width T0,i, the average bottom slope Sb,i, the average

Manning’s coefficient n, the average velocity V0,i, and the

average downstream stage Yli,i for each channel i (i =
1, · · · , 3). These parameters can be determined experimen-

tally.

III. VARIATIONAL DATA ASSIMILATION USING

QUADRATIC PROGRAMMING

A. General Considerations

In this section, open boundary condition estimation is for-

mulated using velocity and position measurements provided

by a number of drifters which are released in a channel

network. Following a standard procedure in variational data

assimilation, the cost function is constructed as a weighted

quadratic norm of the difference between the measured

velocity at the location of the drifters and the velocity

predicted by the model. With the linear model constraints, the

problem can be formulated as a quadratic program and solved

efficiently. Furthermore, with the assumption that tidal flow

variables can be expressed by dominant oscillatory modes,

the number of estimation variables is reduced.

B. Notations

We employ the traditional notation of variational data

assimilation in discrete time and space [16]:

• Xk : Vector of state variables (v, y) for each mesh point

at time k∆t.
• Yk : Vector of observed variables at time k∆t.
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Fig. 2. Spectral analysis of the discharge at one of the USGS Stations.

• Rk : Covariance matrix of the observation error at time

k∆t.
• Hk : Observation operator, which projects the state

vector Xk into the observation subspace containing Yk.

We deploy a finite number of passive drifters in the channel

network to collect Lagrangian velocity data, and estimate

boundary conditions by minimizing the ℓ2-norm of the error

between the observed data and the corresponding model

predictions:

J =
∑

k

(Yk − Hk[Xk])T R−1

k (Yk − Hk[Xk]) (22)

This positive semi-definite quadratic cost function is con-

strained by:

EkXk+1 = AkXk + BkUk (23)

In this way, the variational data assimilation problem can be

posed as a quadratic program:

min
1

2
XT PX + qT X

s.t. GX ≤ h

FX = b (24)

where X is the concatenated vector of Xk from time 0 to

the final time step; P is a symmetric matrix reducing the ℓ2-

norm of the error, and q is vector containing the information

of Yk, Hk and Rk; F and b are the block diagonal matrix

of Ak and Bk. Normally G and h are 0, and the QP can

be solved by a linear system. In our case, we may impose

heuristic inequality constraints to reduce the search space.

C. Decision Variables

The decision variables of the quadratic program problem

(24) are the flow variables at the open boundaries. If it is

expressed in time domain, the number of decision variables

would equal to the number of boundaries times the number of

time steps. Using spectral analysis, it is proven experimen-

tally that flow variables in a tidal system can be modeled

with seven dominant tidal modes, as shown in Figure 2.

These dominant tidal modes are listed in Table I. Thus, any

flow variables at the boundaries can be evaluated as:

u(k∆t) ≈
7

∑

l=0

[

dle
jωlk∆t + dle

−jωlk∆t
]

(25)

TABLE I

THE DOMINANT TIDAL MODES IN SACRAMENTO DELTA

Tide
Tide Period Tide Frequency

Tl(hours) ωl = 2π
Tl

(rad · s−1)

K1 23.9345 7.2921 · 10−5

M2 12.4206 1.4082 · 10−4

MK3 8.1771 2.1344 · 10−4

M4 6.2103 2.8104 · 10−4

M6 4.1202 4.2360 · 10−4

O1 25.8193 6.7598 · 10−5

N2 12.6584 1.3788 · 10−4

where ωl = 2π
Tl

is the frequency associated with one of

the seven dominant tidal periods. The decision variables

of this inverse modeling problem become the unknown

coefficients dl corresponding to specified tidal frequencies

for each boundary to be estimated. In this way, the number

of decision variables is substantially reduced, which speeds

up the convergence of quadratic program process.

IV. EXPERIMENT PREPARATION

A. Experiment Protocol

We now describe an experiment to test the proposed

method. The intuitive way is to assimilate field Lagrangian

data into our linear model and compare the estimated bound-

ary conditions with Eulerian measurements at the boundaries.

Since the field instrument development and data collection

is still underway, the Lagrangian drifter data in the article

is generated by using TELEMAC-2D [18], a fully nonlinear

shallow water equation solver, with an unstructured trian-

gular grid mesh and finite element method. The simulated

drifter data will be replaced by field measurements collected

by GPS equipped drifters in future studies.

A set of fixed Eulerian U.S. Geological Survey (USGS)

sensors (see Figure 3(a)) on this hydraulic system is em-

ployed as the boundary conditions for model simulation, and

a finite number of passive drifters are virtually released in

the experiment period. During the inverse modeling process,

only these simulated drifter data are used to re-construct

open boundary conditions, which are then compared with

the initial boundary setting. Another set of USGS Eulerian

sensors, along with the deployed fixed Acoustic Doppler

Current Profiling (ADCP) instrumentation and Water Pres-

sure Sensors (see Figure 3(b)), are used to validate the flow

characteristics inside the experiment domain. The flow chart

of the experiment process is shown in Figure 4.

B. Two-dimensional Shallow Water Equations and Numeri-

cal Forward Simulation

In this subsection, we will set the forward simulation and

introduce the Lagrangian measurements.

FrC08.3

8261



(a) USGS Sensor station. (b) UC Berkeley deployable
ADCP sensor.

Fig. 3. (a) USGS Sensor station at GSS, used as a measurement sensor.

(b) ADCP sensor deployed by UC Berkeley in the Sacramento River, used

in Section 5.3 for gathering the validation data.

Drifter Trajectory

Open Boundary
Estimation

Flow Prediction
inside the Domain

Field Measured
Drifter Trajectory

Data Assimilation: 1D QP

USGS sensors (     )

2D Nonlinear Model:
TELEMAC

USGS sensors (     ) USGS sensors (    )
Berkeley Sensors (    )

IMPLEMENTED FUTURE

Fig. 4. Data Assimilation Flow Diagram. Note: Different shapes are

used to represent external data (©), procedure(3) and calculated data (2);

different lines stand for computations (→) and comparisons (=); different

marker colors and shapes indicate the data are measured by sensors at

different locations, which will be explained in Figure 5.

1) Two-dimensional Shallow Water Equations: The gov-

erning hydrodynamic equations for forward simulation are:

∂h

∂t
+ ~u · ∇h + h∇ · ~u = 0 (26)

∂u

∂t
+ ~u · ∇u = −g

∂η

∂x
+ Fx +

1

h
∇ · (hνt∇u) (27)

∂v

∂t
+ ~u · ∇v = −g

∂η

∂y
+ Fy +

1

h
∇ · (hνt∇v) (28)

The friction forces are given by the Manning law:

Fx = − 1

cos α

gn2

h4/3
u
√

u2 + v2 (29)

Fy = − 1

cos α

gn2

h4/3
v
√

u2 + v2 (30)

(31)

where h is the total depth of water, ~u = (u, v) is the velocity

in the domain, g is the gravitational acceleration, η is the free

surface elevation, νt is the coefficient of turbulence diffusion,

α is the bed slope of river bottom, and n is the Manning

coefficient. The boundary condition and initial condition are

given by:

u(x, y, t)|∂Ωland
= 0, v(x, y, t)|∂Ωland

= 0 (32)

(u(x, y, t), v(x, y, t))|∂Ωupstream
= f(x, y, t) (33)

η(x, y, t)|∂Ωdownstream
= g(x, y, t) (34)

u(x, y, 0) = u0, v(x, y, 0) = v0, h(x, y, 0) = h0, (35)

where ∂Ω represents the boundaries of our computational

domain and f and g are known functions.

2) Lagrangian drifters: The deployed drifters is modeled

as passive Lagrangian tracers. In this framework, the drifters

move along local flow streamlines, obeying the following

equations:

dxD(t)

dt
= u[xD(t), yD(t), t] (36)

dyD(t)

dt
= v[xD(t), yD(t), t] (37)

with the drifter initial conditions

xD(t) = xD,0, yD(t) = yD,0 (38)

3) Numerical solution: The numerical solutions of the 2D

shallow-water equations and drifter positions are computed

using a commercial hydrodynamic software TELEMAC-

2D [18]. TELEMAC-2D uses a streamline upwind Petrov-

Galerkin based finite element solver for hydrodynamic equa-

tions. The turbulence and mixing processes at the estuaries

are modeled in the software as well.

To generate the drifter data, a forward simulation is run from

time t0 to time t1 with given boundary conditions to stabilize

the flow. At t1, drifters are released randomly inside the

domain and their trajectories are simulated using a Runge-

Kutta method and the velocity field provided by the nonlinear

shallow water forward simulation. The data assimilation pro-

cess estimates the boundary conditions, which are compared

with the previously given boundary conditions, as well as the

flow variables at intermediate locations within the watershed.

V. CASE STUDY: THE SACRAMENTO DELTA

A. General Introduction to the Sacramento Delta

The Sacramento-San Joaquin Delta in California is a valu-

able fresh water resource and an integral part of California’s

water system. This complex network covers 738,000 acres

interlaced with over 1,150 km of tidally-influenced channels

and sloughs. This network is monitored by a static sensor

infrastructure subject to the usual problems of inaccuracy and

measurement errors for sensing systems. The area of interest

for our experiment covers Sacramento River, Cache Slough,

Steamboat Slough, Sutter Slough, Minor Slough, Delta Cross

Channel, and Georgiana Slough, as shown in Figure 5. Most

of the time, the direction of mean river flow is from north to

south, as indicated with arrows. During the tidal inversion,

the water flows in the opposite way.

Ten USGS stations, named HWB, RYI, SRV, HWV, SUT,

SSS, SDC, DLC, GES, and GSS, are scatterly located in

this experiment field. The stations are marked as orange
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Fig. 5. Deployment area in the Sacramento River (1), Cache Slough (2),

Steamboat Slough (3), Sutter Slough (4), Minor Slough (5), Delta Cross

Channel (6) and Georgiana Slough (7).

diamonds and green circles in Figure 5. Both velocity and

stage data are collected every 900 seconds at these stations.

Note that in the USGS measurement system, only the stage

are measured directly. The velocity data is estimated by a

rating curve, which is a relation between stream stage and

stream flow. However, the relation of stream stage to stream

flow is in continuous change, and needs to be calibrated

frequently. It will introduce errors if the rating curve has

not been validated in time.

The field data was collected between 11/12/2007 0:00am to

8:30am. The following simplifications for the flow model

have been made in this study:

• The flow can be represented by a one-dimensional

model.

• The channel geometry is fixed, as the effects of sed-

iment deposition and scour are negligible during the

experiment period.

• The channel geometry can be considered as a rectangu-

lar cross-section.

• The lateral and vertical accelerations are negligible.

• The pressure distribution is hydrostatic.

• There is no significant jump along the bathymetry of

the channel, and the bed slope is smooth and small.

• The water surface across any cross-section is horizontal.

B. Drifter Data Generation

TELEMAC-2D conducts a nonlinear flow simulation using

velocity data measured at USGS stations SRV, RYI, GSS,

and stage data measured at DLC and SUT. The geometry

of the area is complex; thus we use an unstructured finite

element mesh (41375 nodes, 74983 triangular elements).

The bottom friction is modeled using Manning’s law. The

Manning coefficient is chosen as a constant 0.02, both in

time and space, corresponding to a straight gravel bottom

[5]. The turbulence process is included such that the flow

streamline at the estuaries are similar to the reality. The

simulation runs for two and a half hours before the release of

the drifters so that a steady state is reached. The drifters were

released from 2:30AM to 6:30AM on November 11, 2007.

This time period was chosen to capture the highly varying

flow in Sacramento Delta. A total of 39 drifters were released

during the experiment (6 hours). The first thirteen drifters

were released at 2:30AM on the centerline of selected sub-

channels. The other two sets of thirteen drifters were released

at 4:30AM and 6:30AM, respectively. Drifter positions were

recorded every 60 seconds until the end of the experiment

at 8:30AM. Figure 6 shows the drifter trajectories and the

snapshots of the drifter positions corresponding to the three

releases of the drifters.

C. Implementation of the Algorithm

Following the method described in Section III, we assim-

ilate the drifter data generated by TELEMAC (as described

in Section V-B) to reconstruct the boundary conditions at

SRV, RYI, GSS, DLC and SUT. The reconstructed boundary

condition data is shown and compared to measured data

in Figure 7. Clearly, the estimated data is very close to

the measurements. The QP problem was expressed by the

optimization modeling language AMPL and solved with

CPLEX. The assimilation process takes approximately 65

minutes to calculate all 13 sub-channels with a 2.33 GHz

Pentium dual core processor.

Without loss of generality, the flow variables measured by

USGS sensor GES, SDC, SSS (marked as green circles in

Figure 5), along with the velocity and stage data recorded by

selective deployable UC Berkeley sensors (marked as grey

circles in Figure 5), are used to achieve the model validation.

The simulation results are shown in Figure 8.

The difference between the modeled data and measure-

ments is further analyzed in Table II. Three primary evalua-

tion measures are used here:

• The maximum value is the maximum difference be-

tween the estimated and measured data at the same time

steps.
• The coefficient of efficiency E is defined as [13]:

E = 1 −

[

∑N

i=1
(ûi − ui)

2

∑N

i=1
(ui − ui)2

]

(39)

where ui is the flow variable of interest (for example vi

or yi in this study), ûi is the modeled flow variable, ui

is the mean of ui, for i = 1 to N measurement events.

If the measured data is perfect, E = 1. If E < 0, the

corresponding measurement is not reasonable and must

be excluded from the modeling procedure.
• The correlation coefficient ρ is given by:

ρ =

∑N

1
(ui − ui)(ûi − ûi)

√

∑N

1
(ui − ui)2

∑N

1
(ûi − ûi)2

(40)

where ûi represents the mean of model estimated flow

for i = 1 to N measurement events. If the measured

data is perfect, ρ = 1.

Figure 8 and Table II indicate that the proposed approach

possesses a good flow estimation accuracy.
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(a) Time Step 0

(b) Time Step 120

(c) Time Step 240

Fig. 6. Drifter trajectories and their release positions. 13 drifters are

released time step 0 (∗), 13 drifters at time step 120 (�) and 13 drifters

at time step 240 (∆) . The drifter positions are recorded every 60 second

until of the experiment ends.
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(b) Velocity Varying with Time at USGS station: SRV
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(c) Velocity Varying with Time at USGS station: GSS
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(d) Velocity Varying with Time at USGS station: DLC

Fig. 7. Comparison of the estimated boundary condition with USGS

measurements at the boundaries of the domain.

TABLE II

MAX-VALUE, ρ-VALUE AND E-VALUE FOR MODELED DATA AND

MEASURED DATA

Variable USGS Station Max-value E-value ρ-value

Velocity

GES 0.05 m/s 0.9930 0.9975
SDC 0.04 m/s 0.9368 0.9883
SSS 0.055 m/s 0.9968 0.9985

ADCP 0.07 m/s 0.9435 0.8923

Stage

GES 0.05 m 0.9889 0.9947
SDC 0.12 m 0.9504 0.9759
SSS 0.07 m 0.9847 0.9935

Pressure Sensor I 0.06 m 0.8479 0.8743
Pressure Sensor II 0.06 m 0.9345 0.8734

VI. CONCLUSIONS

In this article we present a boundary condition estimation

method for complex channel networks using Lagrangian

measurement data. The solution is formulated as a QP

problem based on minimizing the difference between
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(a) Velocity Varying with Time at USGS station: GES
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(b) Velocity Varying with Time at USGS station: SSS
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(c) Velocity Varying with Time at USGS station: SDC
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(d) Velocity Varying with Time at UC Berkeley sensor: ADCP

Fig. 8. Validation of the model outputs with USGS and ADCP measure-

ments inside of the domain.

measured Lagrangian data and modeled drifter trajectory,

constrained by a 1D implicit linear channel network

model. A major advantage of the 1D QP formulation

is that it requires low computational cost, making the

method applicable to many vast and complex hydraulic

networks. Modal decomposition allows the estimated outputs

being expressed in terms of dominant tidal frequencies. This

reduces the number of decision variables, which substantially

lower the computation complexity. The performance of the

method has been validated with an experiment in which the

drifter data are generated by a 2D nonlinear shallow water

model.

Future work include the use of real data collected from

GPS-equipped drifters deployed in the Sacramento San

Joaquin Delta. The effects of different number of drifters

and deployment strategies are also subject to investigate.

VII. ACKNOWLEDGMENT

Professor Xavier Litrico from CEMAGREF is gratefully acknowledged
for fruitful discussions during his stay at Berkeley, which shaped the
framework used for modeling shallow water systems. Real-time flow data at
USGS stations are downloaded from the California Data Exchange Center
(CDEC) of Dept. of Water Resources (DWR). The flow data used for
validation is obtained from deployable sensors provided by Professor Mark
Stacey and his group at UC Berkeley. We are grateful to Julie Percelay,
Maureen Downing-Kunz and Mark Stacey for their help on deploying of
these sensors.

REFERENCES

[1] J. S. ALBUQUERQUE and L. T. BIEGLER. Data reconciliation and
gross-error detection for dynamic systems. American Institute of

Chemical Engineering Journal, 42(10):2481–2586, 1996.
[2] California Department of Water Resources. Enhanced Calibration and

Validation of DSM2 HYDRO and QUAL.
[3] K.W. CHAU. Application of the preissmann scheme on flood propa-

gation in river systems in difficult terrain. Hydrology in Mountainous

Regions. I - Hydrological Measurements; the Water Cycle, (193), 1990.
[4] V. CHOW. Open-channel Hydraulics. McGraw-Hill Book Company,

New York, 1988.
[5] C. CROWE, D. ELGER, and J. ROBERSON. Engineering Fluid

Mechanics. US John Wiley and Sons, Inc, 2001.
[6] J.A CUNGE, F.M. HOLLY, and A. VERWEY. Practical aspects of

computational river hydraulics. Pitman, 1980.
[7] G. EVENSEN. Data Assimilation: The Ensemble Kalman Filter.

Springer-Verlag, 2007.
[8] H. B. FISCHER. Mixing in Inland and Coastal Waters: in inland and

coastal waters. Academic Press, 1979.
[9] X. LITRICO and V. FROMION. Simplified modeling of irrigation canals

for controller design. Journal of Irrigation and Drainage Engineering,
130(5):373–383, 2004.

[10] X. LITRICO and V. FROMION. Boundary control of linearized saint-
venant equations oscillating modes. Automatica, 42(6):967–972, 2006.

[11] A. MOLCARD, L.I.PITERBARG, A.GRIFFA, T.OZGOKMEN, and
A. MARIANO. Assimilation of drifter observations for the reconstruc-
tion of the eulerian circulation field. Journal of Geophysical Research,
108(C3):3056, 2003.

[12] A. MOLCARD, A.C. POJE, T.M. OZGOKMEN, and J. SAU. 06:
Directed drifter launch strategies for lagrangian data assimilation using
hyperbolic trajectories. Ocean Modelling, 12:268–289, 2006.

[13] J.E. NASH and J.V. SUTCLIFFE. River flow forecasting through
conceptual models part i - a discussion of principles. Journal of

Hydrology, 10:282–290, 1970.
[14] I.M. NAVON. Practical and theoretical aspects of adjoint parameter

estimation and identifiability in meteorology and oceanography. Dy-

namics of Atmospheres and Oceans, 27(C3):55–79, 1997.
[15] C. PANICONI, M. MARROCU, M. PUTTI, and M. BERBUNT. New-

tonian nudging for a richards equation-based distributed hydrological
model. Advances in Water Resources, 26(2):161–178, 2003.

[16] S. POLAVARAPU, M. TANGUAY, and L. FILLION. Four-dimensional
variational data assimilation with digital filter initialization. Monthly

Weather Review, 128(7):2491–2510, 1999.
[17] P.M. POULAIN, D.S.LUTHER, and W.C.PATZERT. Deriving iner-

tial wave characteristics from surface drifter velocities - frequency
variability in the tropical pacific. Journal of Geophysical Research,
97(C11):17947–59, 1992.

[18] Report EDF. TELEMAC 2D. Version 5.2 – Principle note, 2002.
[19] I.S STRUB, J. PERCELAY, M.T.STACEY, and A.M.BAYEN. Inverse

estimation of open boundary conditions in tidal channels. Ocean

Modelling, pages 85–93, 2009.
[20] O.-P. TOSSAVAINEN, J. PERCELAY, A. TINKA, Q. WU, and

A. BAYEN. Ensemble kalman filter based state estimation in 2d shal-
low water equations using lagrangian sensing and state augmentation.
In Proceedings of the 46th Conference of Decision and Control, pages
1783–1790, Cancun, Mexico, 2008.

[21] Q. WU, X. LITRICO, and A. BAYEN. Open channel flow estimation
and data reconciliation using modal decomposition. In Proceedings of

the 46th Conference of Decision and Control, 2008.
[22] Q. WU, X. LITRICO, and A. BAYEN. Data reconciliation of an open

channel flow network using modal decomposition. Advances in Water

Resources, 32:193–204, 2009.

FrC08.3

8265


