
Indoor occupant positioning system using active

RFID deployment and particle filters

Kevin Weekly∗, Han Zou†, Lihua Xie†, Qing-Shan Jia‡, and Alexandre M. Bayen∗

∗Department of Electrical Engineering and Computer Sciences

University of California Berkeley

kweekly@eecs.berkeley.edu, bayen@berkeley.edu
†EXQUISITUS, Centre for E-City, School of Electrical and Electronics Engineering

Nanyang Technological University

{zouh0005,elhxie}@ntu.edu.sg
‡Center for Intelligent and Networked Systems, Department of Automation, TNLIST

Tsinghua University

jiaqs@tsinghua.edu.cn

Abstract—This article describes a method for indoor posi-
tioning of human-carried active Radio Frequency Identification
(RFID) tags based on the Sampling Importance Resampling (SIR)
particle filtering algorithm. To use particle filtering methods, it
is necessary to furnish statistical state transition and observation
distributions. The state transition distribution is obstacle-aware
and sampled from a precomputed accessibility map. The obser-
vation distribution is empirically determined by ground truth
RSS measurements while moving the RFID tags along a known
trajectory. From this data, we generate estimates of the sensor
measurement distributions, grouped by distance, between the
tag and sensor. A grid of 24 sensors is deployed in an office
environment, measuring Received Signal Strength (RSS) from
the tags, and a multithreaded program is written to implement
the method. We discuss the accuracy of the method using a
verification data set collected during a field-operational test.

I. INTRODUCTION

The application area for Indoor Positioning Systems (IPS)
is rapidly expanding as researchers discover location-aware
services such as on-demand lighting or ventilation control.
However, due to the unstructured nature of indoor envi-
ronments, designing an IPS has many different challenges
and requirements in comparison to outdoor and large-scale
positioning systems [19]. The requirements of an IPS vary
in cost, power usage, accuracy, reliability, and computational
efficiency, depending on the application. This has led to many
IPS concepts which fill particular niches. For example, a robot
needs highly accurate positioning to avoid obstacles, whereas
a location-aware service for occupants may only need to know
which room an occupant is in. For the former case, a highly
accurate ultrasound system [18] might be used. However, in
the latter case, power consumption is a greater concern than
positioning accuracy, where room-level accuracy might be
sufficient.

*This research is funded by the Republic of Singapore’s National Research
Foundation through a grant to the Berkeley Education Alliance for Research
in Singapore (BEARS) for the Singapore-Berkeley Building Efficiency and
Sustainability in the Tropics (SinBerBEST) Program. BEARS has been
established by the University of California, Berkeley as a center for intellectual
excellence in research and education in Singapore.

Advances in low-power radios and improved wireless net-
work protocols have enabled Radio Frequency Identification
(RFID) as a practical solution to the occupant tracking prob-
lem, with many approaches of how to use radio measurements
for positioning [15]. A popular avenue of research is to use
existing IEEE 802.11 infrastructure by measuring received
signal strength (RSS) to the building’s access points [13],
[3]. However, many buildings do not have the access point
density needed for the IPS to function, and more must be
installed. Also, IEEE 802.11 devices inherently have higher
power requirements than other technologies, but are consid-
ered practical since many occupants already carry and use
these types of devices, such as smartphones. Alternatively,
IEEE 802.15.4 is a low-cost and low-power wireless sensor
network technology which can be deployed for positioning and
other low data-rate applications [14], [17]. A device based on
this technology can be installed in an employee ID badge, or,
in our case, a small fob that the occupant carries.

The approach is to process RSS measurements using a
sequential Monte-Carlo Bayesian estimation technique [16],
[10], also known as a particle filter. We implement the most
basic form of the algorithm, called Sampling Importance
Resampling (SIR). Particle filtering methods are especially
applicable to unstructured environments due to their ability
to elegantly handle non-continuous systems and integrate het-
erogeneous measurements. They have been used successfully
in robotics [22], and in IPS installations with a combination
of sensors such as RFID, inertial, infrared, and laser scan-
ning [20], [9], [4].

Our IPS strictly uses RSS measurements, although we
envision adding other types of sensors to improve the tracking
performance. This article is an account of how our IPS is built
up from the principles of particle filtering, including practical
implementation details one might need if installing an RSS-
based IPS system of their own. In particular, we provide a
unique method of incorporating the RSS sensor measurements
in a way that reduces dependence on a physical transmission
model by creating empirical estimates of sensor error distribu-
tions. This leads our IPS implementation to achieve within a

2014 IEEE International Conference on Distributed Computing in Sensor Systems

978-1-4799-4618-1/14 $31.00 © 2014 IEEE

DOI 10.1109/DCOSS.2014.53

35

5m accuracy for 90% of estimates. Also, we have found, that
our method is well-suited to a multithreaded C++ implemen-
tation by achieving 18000-times real-time performance, with
memory use of less than 10MB.

The rest of the article proceeds as follows: In Section II,
we introduce the SIR algorithm and describe the modelling
decisions we made to incorporate RSS measurements and
occupant dynamics. This follows with Section III, where we
describe the architecture of RSS measurement collection and
programming the IPS. In Section IV, we discuss the results of
a field operational test using the deployed IPS, and conclude
the article in Section V.

II. INDOOR POSITIONING USING SIR

A. SIR Estimation Framework

In this section, we instantiate the SIR algorithm [10], [22]
for our system. For this article, we denote xt as a three-
dimensional random variable corresponding to time t. We use
a discrete-time algorithm with a time interval of δt, in seconds.
The first two dimensions, xt,1:2, are the coordinates, in meters,
of the occupant-carried RFID tag being positioned, and the last
dimension, xt,3, represents an attenuation factor, in dBm, of the
tag’s local environment. This third term attempts to correct for
calibration errors or differences in radio propagation between
different tags. To simplify notation when discussing the state
in a general context, we use x1:2 to represent the coordinates
of the tag and x3 to represent the attenuation factor. We define
yt as the RSS observations measured at time t by the RFID
system. This observation vector has Nsensors dimensions and
measured in units of dBm.

The goal of the algorithm is to estimate the belief distri-
bution

Pr (xt|y1...t) , (1)

i.e. the probability at time t of state xt being the actual state
of the system, given all of the past observations from t = 1. If
we estimate the belief perfectly, then the maximum likelihood
estimate,

x̂t = argmax
x

Pr (x|y1...t) ,

is the ideal estimation of the tag’s position given all of the
previous data.

If we assume a hidden Markov Model, then the current
observations only depend on the current state, i.e.

Pr (yt|x1...t, y1...t) = Pr (yt|xt) ,

and the next state depends only on the last state, i.e.

Pr (xt+1|x1...t) = Pr (xt+1|xt) .

Applying Bayes rule and the above assumptions gives

Pr
(
xt

∣∣y1...(t−1)) = (2)∫
Pr (xt|xt−1) Pr

(
xt−1

∣∣y1...(t−1)) dxt−1,

Pr (xt|y1...t) =
Pr (yt|xt) Pr

(
xt

∣∣y1...(t−1))
Pr

(
yt
∣∣y1...(t−1)) (3)

= ηPr (yt|xt) Pr
(
xt

∣∣y1...(t−1)) ,
where η is a normalization constant and essentially accounted
for by (4).

Thus, (2) and (3), are a recursive solution to (1), and are
termed the prediction and update steps, respectively.

For many problems, including the indoor positioning task,
analytically evaluating (2) and (3) is infeasible, therefore we
turn to Monte-Carlo methods where samples are used to
estimate the distribution.

We track the belief by a set of n particles, where the i-th
particle consists of a state estimate, x(i), and importance fac-
tor, w(i). Although not strictly necessary, when the importance
factors are updated, they are renormalized so that

n∑
i=1

w(i) = 1. (4)

The prediction and update steps are adapted to propagate
samples and are as follows:

Prediction: For each particle, sample

x̄
(i)
t ∼ Pr

(
x
(i)
t

∣∣∣x(i)t−1

)
,

so that the particles are now distributed as (2). The state

transition distribution, Pr
(
x
(i)
t

∣∣∣x(i)t−1

)
represents the system

dynamics and is described in Section II-B.

Update: For each particle, evaluate the non-normalized
importance weight

w̄
(i)
t = Pr

(
y
(i)
t

∣∣∣x(i)t

)
,

where the observation distribution, Pr
(
y
(i)
t

∣∣∣x(i)t

)
, represents

the sensor noise and is described by Section II-C. Then, the
importance weights are normalized by

w
(i)
t =

⎛
⎝ n∑

j=1

w̄
(j)
t

⎞
⎠
−1

w̄
(i)
t .

We then take n samples,
{
x
(i)
t : i = 1, . . . ,n

}
, from the

discrete distribution defined over
{
x̄
(i)
t : i = 1, . . . ,n

}
, where

Pr
(
x = x̄

(i)
t

)
= w

(i)
t .

After both steps are run, the particles are will be approx-
imately distributed according to the belief (1). Additionally,

the pairs of x̄
(i)
t and w

(i)
t approximate the probability density

function (PDF) of the belief, i.e.

w
(i)
t ≈ Pr

(
x̄
(i)
t

∣∣∣y1...t)
Two more implementation details remain. Since this is a

recursive algorithm, an initial state must be chosen for each of

the particles
{
x
(0)
1 , . . . ,x

(n)
1

}
, from a given prior distribution

36

Fig. 1. Obstacle map of the domain. Black areas represent obstacles that
occupants cannot enter or pass through.

f1(x). The initial states are sampled from uniform distributions
since little is known about the state of the system before
any measurements arrive. For the coordinate states, x1:2, the
uniform distribution is over the entire floor area of the office
space, whereas for the attenuation factor, x3, we sample from
U (−amax, amax), where amax is a model parameter.

The second implementation detail is the method used to
select the actual estimate, x̂t, of the state from the set of
particles. We the estimate using the nearest weighted mean
particle (NWMP) method:

x̂t = x̄
(i)
t ,

i = argmin
j

‖x̄
(j)
t,1:2 −mt‖2,

mt =
1

n

n∑
k=1

w
(k)
t x̄

(k)
t,1:2.

B. State Transition Distribution

During the update step, there is the need to sample from

Pr
(
x
(i)
t

∣∣∣x(i)t−1

)
. The state is comprised of the x-y coordinate

pair of the tag, xt,1:2, and the attenuation factor, xt,3, which
are sampled from two separate models.

Tag Coordinates: The state transition distribution essen-
tially adds knowledge about the system dynamics into the
estimation. For our problem, this means describing where
a tracked occupant could move to (i.e. their future position

x
(i)
t+1,1:2) between time t and time t + 1, given their current

position is x
(i)
t,1:2.

Common choices for the transition distribution for robot
and occupant tracking problems incorporate the velocity or
heading in the state and use kinematic models with additive
gaussian white noise [4], [22]. Other, more complex models
try to add intuition about human motion [6], or learn the model
using machine learning techniques [5].

Our initial approach is to use a circular uniform distribution

centered on x
(i)
t,1:2 with radius of v · δt, where v is an average

��

C

x
(i)
t−1,1:2

x
(i)
t ,1:2

Cell c

Cell r

Fig. 2. Illustration of the state transition sampling approach. Grey cells
are obstacles, green and orange cells are reachable from cell c within a grid
distance of 4. The orange cell r is picked at random from the reachable set.
Blue and yellow circles represent the last and current state, respectively.

occupant’s walking speed in m/s. This is easy to sample
from, but does not incorporate any information about the local
environment, such as the fact that occupants will not move
into or through obstacles, such as walls and tables.

Therefore, we devise a method which includes reachability
information in the transition distribution. We start with an
obstacle map of the office space, shown in Figure 1, defining
the domain of the space and the obstacles, such as walls or
desks, which obstruct movement. The domain is discretized
into square cells of width C in meters.

Before the IPS program can start, we must precompute a
look-up table (LUT). For each cell in the domain, we compute
the set of cells reachable within a grid distance of �vδtC−1�.
We use depth-limited dynamic programming [8] and a 4-
adjacency graph model of the cells to compute these sets.

Although the precomputation step is computationally in-
tensive, it only needs to performed once if v, C, and δt are
constant. The benefit is that we can construct a distribution
which is easy to sample from and physically intuitive. Our
sampling method is illustrated by Figure 2 for �vδtC−1� = 4.
The steps are as follows:

1) Find the index of the cell, c, corresponding to the

coordinates given by x
(i)
t−1,2:3 (blue circle), shown by

the red-bordered and green shaded cell,
2) Using the precomputed LUT, find the reachable set,

R, of cells for cell c, shown by the green and orange
shaded cells,

3) Pick a cell r at random from R, shown by the orange
shaded cell,

4) Sample x
(i)
t,2:3 (yellow circle) from a uniform distri-

bution over the points in r.

Other map-matching techniques rely on detecting obstacle
crossings during the prediction step and either redrawing sam-

37

−100−90−80−70−60−50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

f
1
(y)

f
2
(y)

f
3
(y)

f
4
(y)

f
5
(y)

Fig. 3. Example of learned probability distributions for a receiver for
Nbins = 5 and dmax = 21m.

ples that are within an obstacle or terminating and reinitializing
the particle [4]. Our method saves the computational load of
detecting and handling obstacle crossings, at the cost of map
precision, since it requires discretization. Our method also
allows a more accurate representation for large δt, as it allows
a particle to travel around an obstacle, provided it is reachable
within δt time.

Attenuation Factor: In addition to the position components
of the state, x1:2, we also describe the state transition distri-
bution of the attenuation factor x3 by

Pr
(
x
(i)
t,3

∣∣∣x(i)t−1,3

)
= U

(
x
(i)
t−1,3 − δa,x

(i)
t−1,3 + δa

)
,

where δa is a model parameter.

Repositioning: One problem of particle filters is that the
particle state estimates converge as more information becomes
available and the variance of the belief is reduced. While this
seems to be ideal, this means that the particle states cover less
and less of the domain, and we lose information about that part
of the distribution. Thus, we augment the sampling algorithm
with a repositioning step:

x
(i)
t ∼

{
f1(x) z < Γ

Pr
(
x
(i)
t

∣∣∣x(i)t−1

)
otherwise

z ∼ U (0, 1)

where Γ ∈ [0, 1] is the repositioning ratio, and an algorithm
parameter. A Γ > 0 ensures that some fraction of particles are
artificially moved to “explore” parts of the domain that might
have been missed.

C. Observation Distribution

It is well known that modelling propagation of radio signals
in an unstructured indoor environment is highly complex [11]
due to varied reflection and attenuation properties of materials
in the space, as well as multi-path affects, which are especially
present with narrow-band and high-frequency channels. There-
fore, there are a variety of models used for radio positioning

systems such as ours. Some directly derive the model from
physical phenomena [3], and others are data-driven models
where many measurements are taken at fixed points to create
an RSS fingerprint [17], [23], [13].

Our method is a data-driven model, but motivated by the
physical property that the RSS will, in general, be lower as the
sensor is farther from the transmitter. A broad description of
the method is that, for each sensor, r, we radially partition the
domain into Nbins evenly-spaced bins. For each bin, b, there is
a corresponding empirically-derived PDF, fr

b (·), of the signal
strength measurement if the sensor is inside the corresponding
partition.

To derive the method, we start by assuming the sensor
outputs are independent from each other, given the state. Thus,
we can decompose the observation distribution by

Pr (y|x) =

Nsensors∏
r=1

Pr (yr|x) ,

where yr is the RSS reading from the rth receiver. We model
the individual sensor distributions as

Pr (yr|x) =

{
fr
b (yr) + x3 b ≤ Nbins

0 otherwise

b =

⌊
Nbins

dmax
‖pr − x1:2‖2

⌋
+ 1,

where pr is the coordinates of the rth sensor and dmax is
an algorithm parameter and represents the maximum distance
between any sensor and a possible tag’s position.

The distribution fr
b (yr) is empirically derived from a

ground truth training data set

GT = {(y1, g1), . . . , (yT , gT)} ,

where yi is an RSS measurement, gi is the coordinates where
the transmitter is located when yi is taken, and T is the total
number of training data points.

The RSS measurements are partitioned into Nbins sets

{BIN
r
i : i ∈ 1 . . . Nbins} ,

where

BIN
r
i � {yj : (i− 1) · s ≤ ‖gj − pr‖2 ≤ i · s} ,

and s = dmax/Nbins.

Finally, we make a gaussian kernel estimate [21] using the
scipy.stats.gaussian_kde function of the Scipy [12]
distribution. The estimate is sampled at 100 points from
−125 dBm to −10 dBm and used as the numerical estimate
for fr

b (·). Figure 3 shows the family of PDFs, fr
b (·) for b =

{1, . . . , 5}, learned from a 40min ground truth experiment, for
a single sensor.

III. SYSTEM ARCHITECTURE

A. Sensor Placement

A grid of 24 sensors are installed in the false ceiling of
a 16.5m × 13.2m (217.8m2) office area, above the ceiling
tiles, to be hidden from view. The grid configuration is 6
by 4 sensors and the spacing between sensors is 3.3m and

38

Active RFID Tag

Active RFID Sensors
(6 × 4 grid)

ZigBee Mesh Network

ZigBee Coordinator

BeagleBone
embedded
computer

TCP/IP Link

Virtual
Server

Fig. 4. Network diagram showing data flow from beacons emitted by
occupant-carried RFID tags to an Internet server which stores the data and
runs the positioning program.

4.4m, respectively. Power to the sensors is supplied by 5V
low-voltage wires run through the false ceiling, with 4 cable
runs powering 6 sensors each. We measured the voltage drop
at the end of each cable run to be less than 1V, even when
the system is powered on. Though this means there is only
4V available to the last sensor, this is not a cause for concern
since the sensors internally regulate the input power to 3.3V.

B. Network Setup

A diagram of the network configuration of our RFID-
based IPS system is shown in Figure 4. Our sensor network is
constructed of a low-cost network of ZigBee devices based on
the TI CC2530 System-on-Chip [23]. There are three types of
devices in the network:

• The tags (see Figure 5a) are small key-fob devices
which are programmed with a unique 16-bit ID and
broadcast this ID every second. They are designed to
operate continuously for 1 month on a small lithium
battery.

• The sensor (see Figure 5b) devices are low-cost (ap-
prox. 15 USD) and also programmed with a unique
16-bit ID. They form a ZigBee mesh network with
the other sensors and coordinator. Upon receiving a
beacon from any tag, they note that tag’s ID and the
RSS value of the beacon, and send it along the ZigBee
network to the coordinator. The radios of the sensors
must always be listening in order for the system to
operate, thus these sensors cannot be battery-powered.

• There is one coordinator which initializes the ZigBee
network and collects data packets from the sensor
nodes. These packets are output in a custom format
out of an external serial connection.

Not every beacon from the tags actually arrives at the
coordinator due to network collisions or interference. For
example, we experienced only a 8-20% successful transmission
rate. We believe a higher transmission rate would greatly
improve the performance of the IPS method.

A BeagleBone [1] embedded computer is connected to the
coordinator and parses the custom format. The BeagleBone
connects over the Internet via a TCP/IP socket to a Virtual
Private Server (VPS) instance which handles sensor data

(a) Tag (b) Sensor

Fig. 5. Active RFID devices used by the IPS sensor network.

storage and processing. Every second the software on-board
the BeagleBone reports the RSS measurements received from
the sensor network in the last second to the VPS.

The VPS runs an instance of the sMAP [7] server, which
efficiently stores the sensor data. The VPS also runs custom
software to aid in translating information to and from the
sMAP format.

C. Software Setup

Precomputation: The precomputation steps are to compute
the reachability LUT for the state transition distribution de-
scribed in Section II-B, and also to compute the numerical
probability distributions from the ground truth data, referred
to by Section II-C.

We relied heavily on the SciPy [12] distribution to imple-
ment loading and manipulating ground truth data for generat-
ing fr

b (·). Fortunately, despite using a non-compiled language
such as Python, an input of 14760 data points is processed in
less than 1.7 s.

Although computing the reachability LUT is computation-
ally arduous, a small cell size, C, is desirable to reduce
discretization error. Therefore, this part of the algorithm is
incorporated into our C++ framework and compiled with a
high optimization level. Computing the LUT for 49152 grid
cells at C = 25 cm, takes less than 30 s, and for the default
parameter value of C = 75 cm, computing the map takes less
than 500ms.

SIR Algorithm Program: We implement the SIR algorithm
as a multithreaded application in C++ and emphasize speed
of execution. Our development machine has 4 cores, so we
use a pool of 5 worker threads and one coordinator thread,
in an attempt to saturate the CPU with workload. We are
able to use multiprocessing techniques whenever each particle
needs to be independently processed without interaction from
others. In the SIR algorithm, this is during the prediction step

and while evaluating Pr
(
y
(i)
t

∣∣∣x(i)t

)
during the update step.

For these tasks, we divide the set of particles into 5 equal
subsets and each worker thread is responsible for predicting
and updating their respective subset. There is also the need to
sort an n-sized array during the update step, when the particles

39

�� ��

��

�� � ���

�	�
�

����

�����

���

���

������

�

����

��

����

����

�� �� ��

����

����

��

��

��

	�

����

����

����

Fig. 6. Ground truth trajectory diagram plotted over the floor plan of the
office space. Trajectory starts at anchor point A and all distances are in meters.

TABLE I. LIST OF PARAMETERS TUNED AND THEIR DEFAULTS.

Parameter Description Default value

δt Time interval 5 s

n Number of particles 100

Γ Repositioning ratio 0%

amax Maximum initial attenuation 1.5 dBm

δa Maximum change of attenuation 0.75 dBm

C Reachability LUT cell width 0.75m

v Occupant move speed 0.5m/s

Nbins
Number of partitions for the

calibration in Section II-C
5

are resampled. At this time, the worker threads are used to sort
5 subarrays and the coordinator thread merges the subarrays
into one sorted array. This leads to very fast execution: about 5
hours is simulated per real-time second. Also, because efficient
data storage is used, the average memory use is 7.8MB. Thus,
in terms of computational resource requirements, there is much
room for more complexity to be added and still maintain real-
time performance.

The C++ program also uses Simple Directmedia Layer
(SDL) [2] to animate the progress of the particle filter. The vi-
sualizer shows the obstacle map, the particle state coordinates,
sensor positions, IPS output estimate, and the actual position
of the tag, if given. These visualizations assist in debugging
the implementation and tuning parameters. An example of 4
steps of the SIR algorithm in progress is shown by Figure 7.

IV. FIELD OPERATIONAL TEST

To evaluate the method, we ran three experiments and
collected three corresponding sets of RSS measurements. All
of the described experiments consisted of walking once along
the trajectory shown in Figure 6.

GT The Ground Truth experiment was to collect the
learning data needed for the calibration described
in Section II-C. Average speed was 5 cm/s, en-
forced by pausing for 10 s every 50 cm. Three tags
were carried for this test, to increase the number
of data points collected. The experiment lasted

approximately 40 minutes and collected 14760
(8.5% of sent) RSS measurements.

TUN The Tuning experiment was to tune the model
parameters to a quicker moving particle than the
GT data set. The average speed was 50 cm/s
and 1106 (19% of sent) RSS measurements were
taken.

VER The Verification experiment was reserved to eval-
uate the performance of the method and we do not
use the results to tune or adjust the algorithm. The
procedure was the same as the TUN experiment
and 721 (12.5% of sent) RSS measurements were
taken.

Using the default parameter values and running the IPS
program 1000 times on the VER data set, we achieve an
accuracy of 50% estimates within 3m and 90% estimates
within 5m. The mean error is 2.9m and RMS error is 3.6m.
A histogram of the 144 thousand error samples is plotted in
Figure 8. From the histogram we can conclude that, while
the mean error is within room-level accuracy, there is still a
significant probability of large errors, e.g. 1% probability of
error being greater than 9m.

From [15], we conclude that our system has one or two
more meters of error than the best radio-based RSS positioning
demonstrations. For instance, LANDMARC [17] achieves an
accuracy of 50% estimates within 1m using a dense de-
ployment of RFID tags, which include static tags. Thus, the
direction of future work will focus on improving the reliability
of our IPS by adding sensors, such as occupancy sensors,
which can constrain particle estimates closer to reality. The
particle filtering framework allows for easily including these
extra pieces of information into the estimation.

An example of the errors seen during two tests is shown
by Figure 9, where the timeseries of coordinates and the error
term is plotted. In Figure 10 we plot the true and estimated
locations on a map of the space.

Examining these results, our IPS is able to achieve sub-
stantially better tracking along the x dimension than the y
dimension. This could be a result of there being 6 sensors
along the x dimension and spaced 3.3m apart, rather than 4
sensors spaced 4.4m apart in the y dimension.

Another contributing factor is that the particle estimates
seem to lag behind the true value, especially during fast moves,
such as those along the y dimension. The difference is made
more clear in Figure 11, where we plot the estimation results
using the GT dataset, where the occupant was moving much
slower and the estimate follows the true position much more
closely.

Our motion model does not incorporate velocity or direc-
tion of movement, thus, the cloud of particles tends to expand
radially outwards, instead of following the true position. An
improvement to the algorithm would track the occupant’s
intended direction, in addition to their position, and favor
estimates in that direction. This would likely correct for the lag,
but would require a finer time resolution, to avoid overshooting
if the occupant suddenly changes direction.

40

(a) t = 0 (b) t = 50

(c) t = 200 (d) t = 250

Fig. 7. Intermediate steps of the SIR program visualized. Particle state estimates are small crosses, the NWMP estimate is a square, the actual tag’s position
is a circle, and triangles give the sensor positions. Grid lines are spaced every 5m. Parameters for the simulation were set to default values given by Table I,
except n = 600, for illustrative purposes.

0 2 4 6 8 10
0

0.004

0.008

0.012

0.016

0.02

0.024

0.028

0.032

0.036

0.04

P
D

F

Error (m)
0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Fig. 8. Histogram of error magnitudes collected over 1000 tests using the
VER data set. Dotted line shows PDF estimate and solid line shows cumulative
distribution function estimate.

� �� ��� ��� ���
�

�

��

��

��

��
�	

	

��

�
��

��
�

�

� �� ��� ��� ���
�
�
�
�
�

��
��
��

��
�	

	

��

�
��

��
�

�

� �� ��� ��� ���
� �� �����

�
�
�
�
�

��
��
��
��

�

	

�
��

�

Fig. 9. Example trajectory using default parameter values and VER data set.
Dotted line is actual trajectory of occupant.

41

Fig. 10. Plot of actual coordinates (blue circles) and estimated coordinates
(red squares) during VER experiment.

Fig. 11. Plot of actual coordinates (blue circles) and estimated coordinates
(red squares) during GT experiment.

V. CONCLUSION

We demonstrate that the proposed IPS system using parti-
cle filters achieves an average of room-level accuracy when
deployed in a real office environment. Our eventual goal
is to track all occupants in the office space (on the order
of hundreds), so the low computational requirements of our
algorithm is particularly encouraging. Additionally, there are
clear avenues for improvement, such as using more complex
motion models and incorporating other types of sensors into
the system.

REFERENCES

[1] BeagleBone. http://beagleboard.org/Products/BeagleBone, 2013.

[2] Simple DirectMedia Layer. http://www.libsdl.org/, 2013.

[3] P. Bahl and V. N. Padmanabhan. RADAR: An in-building RF-based
user location and tracking system. In Proceedings of the 19th Joint

Conference of the IEEE Computer and Communications Societies,
volume 2, pages 775–784. IEEE, 2000.

[4] S. Beauregard, Widyawan, and M. Klepal. Indoor PDR performance
enhancement using minimal map information and particle filters. In
IEEE/ION Position, Location and Navigation Symposium (PLANS),
pages 141–147. IEEE, 2008.

[5] M. Bennewitz, W. Burgard, and S. Thrun. Using EM to learn
motion behaviors of persons with mobile robots. In Proceedings of

the Conference on Intelligent Robots and Systems (IROS), Lausanne,
Switzerland, 2002.

[6] A. Bruce and G. Gordon. Better motion prediction for people-tracking.
In Proceedings of the IEEE international conference on robotics and

automation (ICRA), 2004.

[7] S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, and D. Culler. sMAP:
a simple measurement and actuation profile for physical information.
In Proceedings of the 8th ACM Conference on Embedded Networked

Sensor Systems, pages 197–210. ACM, 2010.

[8] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[9] F. Evennou and F. Marx. Advanced integration of WiFi and inertial
navigation systems for indoor mobile positioning. EURASIP journal

on applied signal processing, 2006:164–164, 2006.

[10] N. J. Gordon, D. J. Salmond, and A. F. Smith. Novel approach to
nonlinear/non-gaussian bayesian state estimation. In IEE Proceedings

F (Radar and Signal Processing), volume 140, pages 107–113. IET,
1993.

[11] H. Hashemi. The indoor radio propagation channel. Proceedings of the

IEEE, 81(7):943–968, 1993.

[12] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific
tools for Python. http://www.scipy.org/, 2001–.

[13] K. Kaemarungsi and P. Krishnamurthy. Modeling of indoor positioning
systems based on location fingerprinting. In Proceedings of the 23rd

Annual Joint Conference of the IEEE Computer and Communications

Societies (INFOCOM), volume 2, pages 1012–1022. IEEE, 2004.

[14] S. Lanzisera, D. T. Lin, and K. S. Pister. RF time of flight ranging
for wireless sensor network localization. In International Workshop on

Intelligent Solutions in Embedded Systems, pages 1–12. IEEE, 2006.

[15] H. Liu, H. Darabi, P. Banerjee, and J. Liu. Survey of wireless indoor
positioning techniques and systems. IEEE Transactions on Systems,

Man, and Cybernetics, Part C: Applications and Reviews, 37(6):1067–
1080, 2007.

[16] S. Maskell and N. Gordon. A tutorial on particle filters for on-
line nonlinear/non-gaussian bayesian tracking. In Target Tracking:

Algorithms and Applications (Ref. No. 2001/174), IEE, pages 2–1. IET,
2001.

[17] L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil. LANDMARC: indoor
location sensing using active RFID. Wireless networks, 10(6):701–710,
2004.

[18] N. B. Priyantha. The cricket indoor location system. PhD thesis,
Massachusetts Institute of Technology, 2005.

[19] A. H. Sayed, A. Tarighat, and N. Khajehnouri. Network-based wireless
location: challenges faced in developing techniques for accurate wireless
location information. Signal Processing Magazine, IEEE, 22(4):24–40,
2005.

[20] D. Schulz, D. Fox, and J. Hightower. People tracking with anonymous
and id-sensors using rao-blackwellised particle filters. In Proceedings

of the International Joint Conference on Artificial Intelligence (IJCAI),
pages 921–928, 2003.

[21] D. Scott. Multivariate density estimation. Multivariate Density Estima-

tion, Wiley, New York, 1992, 1, 1992.

[22] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust monte carlo
localization for mobile robots. Artificial intelligence, 128(1):99–141,
2001.

[23] H. Zou, H. Wang, L. Xie, and Q.-S. Jia. An RFID indoor positioning
system by using weighted path loss and extreme learning machine.
In Proceedings of the IEEE 1st International Conference on Cyber-

Physical Systems, Networks, and Applications (CPSNA), pages 66–71,
2013.

42

