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Abstract 1 

 2 

The recent increase of mobile devices able to measure individual vehicles speed and 3 

position with improved accuracy brings new opportunities to traffic engineers. The large 4 

amount of individual probe measurements allows the study of phenomena previously 5 

unobservable with conventional sensing technologies, and the design of novel traffic 6 

monitoring and control strategies. However, challenges inherent to the use of speed and 7 

location data arise. One of the main challenges of measurements collected from individual 8 

vehicles lies in their ability to provide relevant information on the macroscopic properties 9 

of traffic flow.  According to the classical triangular fundamental diagram, the relation 10 

between speed and flow can be inversed in the congestion phase but not in the 11 

uncongested phase. In the latter, the flow of vehicles cannot be retrieved from the speed of 12 

vehicles, assumed to be constant. This article proposes to investigate the nature of the 13 

relationship between flow and speed from joint measurements from radar data. Two 14 

different regression methods are proposed in this article to estimate traffic flow based on 15 

individual speed measurements: regression of flow on speed and regression of flow on 16 

speed variance. The respective performance of these two methods during specific traffic 17 

periods is assessed, and recommendations on their relative strengths are provided. This 18 

empirical study is conducted using 112 NAVTEQ radars [1] measuring speed and flow on 19 

highways in the San Francisco Bay area, California. 20 
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I. Introduction 1 

The recent years have witnessed an unprecedented growth in the number of traffic data 2 

sources from connected mobile devices such as cell phones or cellular devices and 3 

embedded GPS. In contrast to conventional loop detectors which output counts of vehicles 4 

and occupancies (i.e. flows) that in turn can be used to estimate velocities, these new 5 

widely spread sources only provide velocity and location information. The understanding 6 

of the type of phenomena measurable by individual vehicles and their relation with 7 

classical sensors is critical to the development of novel fusion schemes and advanced 8 

control algorithms. 9 

Classical macroscopic traffic flow theory has been historically articulated around flow and 10 

occupancy, which are the two quantities measured by loop detectors. Modeling research 11 

driven by this type of available measurements has proposed to model traffic flow as a 12 

compressible flow. Hydrodynamics models have been shown to perform well for 13 

simulation, estimation, and control applications. Some of the major difficulties regarding 14 

traffic data processing have been related to the necessary use of a so-called g-factor 15 

behaving as a proxy for vehicle lengths [2], and to the requirement for constant conversion 16 

between measured time-mean quantities and modeled space-mean quantities, involving 17 

the computation of variances [3]. 18 

The explosion of the amount of point speed measurements poses new challenges to traffic 19 

engineers. In particular, the great potential for combination or ‘fusion’ of loop and probe 20 

data requires improved understanding of the relation between point speed and point flow, 21 

and the design of novel tools for converting one type of quantity to the other.  22 

In this article, the empirical relation between point speed and point flow for 112 NAVTEQ 23 

radars [1] in the San Francisco Bay Area, California, is studied, with the goal of assessing 24 

the feasibility of inferring traffic flow from probe speed. A proposed relation between 25 

speed variance and flow is also investigated and the two methods, regression of flow over 26 

speed and regression of flow over speed variance, are compared on the real dataset.   27 

The rest of the article is organized as follows. Section II presents fundamental concepts of 28 

traffic flow theory and the inherent difficulties associated with the conversion from speed 29 

to flow, a classical conversion method using regression of flow on speed, and a novel 30 

conversion method investigated in this article based on regression of flow on speed 31 

variance. Section III describes the dataset used and the methodology followed before 32 

proceeding onto discussing the obtained results in Section IV. Lastly, perspectives on the 33 

proposed conversion method based on the findings are given in Section V and concluding 34 

remarks are provided in Section VI.  35 
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II. General overview 1 

A. Background and problem definition 2 

The classical theory of traffic flow describes two traffic phases: the uncongested phase or 3 

free flow phase, and the congested phase. This approach has traditionally been captured 4 

with a so-called fundamental diagram. In particular, the triangular fundamental diagram 5 

[4] models the relation between traffic flow and density by a triangular relation (shown in 6 

the left subfigure of Figure 1). The speed-density and speed-flow diagrams are deduced 7 

using the fundamental traffic formula stating that for stationary conditions, flow is equal to 8 

speed times density i.e.    ( )  . 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

As seen in the left subfigure of Figure 1, for a triangular fundamental diagram, the 21 

uncongested phase is characterized by a positive linear relation between flow and density 22 

i.e.      where   is a positive number. The associated velocity, noted    and equal to the 23 

slope of the line connecting the origin and the point of interest on the fundamental 24 

diagram, is the free flow velocity and is the highest theoretical velocity at which vehicles 25 

may travel on the corresponding roadway segment; it is constant in the uncongested phase 26 

and is equal to   in this case. The congested phase is characterized by a negative linear 27 

relationship between flow and density i.e.        where   is a negative number. As the 28 

associated speed is equal to the slope of the line connecting the origin with the point of 29 

                  

                       

   

  

  
          

                 

    
 

 
                 

  

  

  
      

                    

  
  

   
               

  

  

            

 

Figure 1: Flow-density, speed-density, and speed-flow relationships (assuming triangular fundamental diagram). 
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interest on the fundamental diagram, speed decreases with density in this phase; this is 1 

illustrated in the middle subfigure of Figure 1. 2 

In the uncongested phase, velocity remains constant at the free-flow speed. This models the 3 

fact that up to a certain threshold density, the spacing between vehicles travelling on a 4 

roadway segment is sufficiently large for commuters not to be affected or constrained by 5 

surrounding vehicles, and as such they travel at the free-flow speed. 6 

As seen in the fundamental and speed-flow diagrams in Figure 1, the speed-to-flow 7 

conversion is straightforward in the congested phase as speed monotonically decreases 8 

with density in said state. In the uncongested phase, however, the conversion is 9 

theoretically impossible as speed is theoretically constant at the free-flow speed. The 10 

reader is referred to [5] and [6] for related research on the topic. 11 

B. Learning improved speed/flow relation 12 

A natural method of conversion consists in using a classical regression in speed-flow 13 

coordinates. Joint measurements of speed and flow are gathered in a learning phase, and a 14 

linear regression is run on the data corresponding to the uncongested state. As is 15 

empirically shown in a subsequent section of this report, this method yields results that are 16 

not always accurate and provides only a “blurred” picture of ground truth flow. A 17 

competing technique is thus desirable. 18 

This article proposes and investigates the performance of an alternative conversion 19 

technique based on individual speed variances. The intuition behind it is the following: in 20 

the uncongested phase, at low flows, commuters are able to drive at the speed they 21 

feel comfortable with; hence individual speed variance is expected to be relatively 22 

large. At higher flows, however, in the uncongested phase, the individual speed 23 

variance is expected to be relatively small because commuters are constrained by 24 

other surrounding vehicles and hence cannot freely choose their traveling speeds. 25 

This hypothesis therefore postulates a decreasing relationship between individual speed 26 

variance and flow in the uncongested phase. 27 

III. Data and methodology 28 

A. Data source and format 29 

The dataset used in this analysis consists of speeds and flows of vehicles travelling on 30 

highway and freeway segments, as recorded by 112 radars in the Bay Area, California, 31 

during the month of September 2010.  The radars output speed (miles per hour) and flow 32 

(vehicles per minute) measurements per lane of roadway for every minute of every hour of 33 
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every day. The raw data was derived from NAVTEQ Traffic Patterns™ and made available to 1 

the California Center for Innovative Transportation courtesy of the NAVTEQ University 2 

Program (http://www.NN4D.com/university).  Traffic Patterns data © 2011 NAVTEQ. 3 

B. Methodology 4 

The validity of the proposed speed-to-flow conversion method is assessed by computation 5 

of different statistics for each of the 112 available radars. The following sections discuss the 6 

experimental procedures considered. 7 

1. Aggregate speed/flow diagrams 8 

The aggregate speed/flow diagrams are relations between speed and flow at the radar 9 

location. Total flow in every minute is simply the sum of the flows on each lane during that 10 

minute. In other words, total flow is the number of cars traveling on the highway facility 11 

that pass the radar location every minute. Speed is the flow-weighted speed i.e. the average 12 

speed over all lanes weighted by the flow prevailing on each of these lanes. It reads: 13 

 ̅  
∑     
 
   

∑   
 
   

 14 

where:  ̅   is the flow-weighted speed in the minute of interest 15 
l    is the number of lanes 16 

     is the average speed of vehicles on lane i in the minute of interest 17 
     is the flow on lane i in the minute of interest 18 
 19 

The interested reader is referred to [7] for more information concerning flow-weighted 20 

speed quantities. If all flows are equal to zero, the flow-weighted speed is not defined as 21 

there is no car passing by and hence there is no speed for which we can compute an 22 

‘average’. Note however that this is a very rare case. 23 

2. Variance computation 24 

In the process of evaluating the relationship postulated to exist between speed variance 25 

and flow, four different speed variances are computed. These are defined below and 26 

described in greater detail in the subsequent sections: 27 

 Variance over time of Flow-Weighted Speeds: This variance is noted as     
  ( ) 28 

where the subscript ‘t’ stands for time and the superscript ‘as’ stands for aggregated 29 

speeds. 30 

 Variance over time of Individual-Lane Speeds: This variance is noted as     
  ( ) 31 

where the subscript ‘t’ stands for time as before and the superscript ‘is’ stands for 32 

individual speeds. 33 
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 Variance over flow of Flow-Weighted Speeds (speeds higher than critical speed): 1 

This variance is noted as     
  ( ) where the subscript ‘f’ stands for flow and the 2 

superscript ‘as’ stands for aggregated speed. 3 

 Variance over flow of Individual-Lane Speeds (speeds higher than critical speed): 4 

This variance is noted as     
  ( ). 5 

The computation of the variance over flow is required for evaluating the relationship 6 

between speed variance and flow and assessing the existence of a decreasing relation 7 

between the two quantities.  8 

The variance over time is computed for estimating the flow from the speed variance under 9 

the assumption of local traffic stationarity. Indeed, in a practical setting where no loop 10 

detector is available, the speed variance for a given flow cannot be computed since no flow 11 

measurement is available. Hence the speed variance over time, which is the only quantity 12 

which can be computed from streaming point speed, is used equivalently under the 13 

assumption of local stationarity.  14 

a) Variance over time 15 

(1) Aggregate speeds 16 

The variance over time of the aggregate speeds is the variance of the flow-weighted speeds 17 

(computed earlier) in every time interval of t minutes. In this work the size t of the time 18 

intervals is taken to be 10 minutes in order to have sufficient values for computing the 19 

variance without having to discard the assumption of stationary traffic state over the time 20 

interval. As radars report data every minute, a size t of 10 minutes means 10 values of flow-21 

weighted speeds are used for every variance calculation. Mathematically, this variance is 22 

computed according to the following equation: 23 

 24 

    
  ( )  

 

    
∑(   ̅̅̅̅    ̿)

 
 

   

 

 25 

where:  t     is the number of values in time interval j 26 

    ̅̅̅̅    is flow-weighted speed i in time interval j 27 

   ̿    is the average flow-weighted speed in time interval j :  
 

 
∑    ̅̅̅̅
 
    28 

 29 

(2) Individual speeds 30 

The variance over time of the individual speeds is the variance of the individual-lane 31 

speeds on all lanes in every time interval of t minutes. It is computed from k values of 32 
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individual speeds where k is equal to t times the number of lanes on the highway/freeway 1 

facility. Mathematically, it is calculated according to the following equation: 2 

    
  ( )  

 

     
∑ (      ̅)

   
    3 

 4 

where: l        is the number of lanes of the roadway segment at the radar location of interest 5 

  t       is the time interval size in minutes 6 

      is the average vehicle individual-lane speed in the minute of interest in time 7 

interval j  8 

    ̅     is the average vehicle individual-lane speed over time interval j:  
 

  
∑    
  
    9 

b) Variance over flow 10 

(1) Aggregate speeds 11 

The variance over flow of the aggregate speeds is the variance of the flow-weighted speeds 12 

corresponding to every value of flow. Since we are interested in the relation between speed 13 

variance and flow of vehicles in the uncongested state, speed values corresponding to the 14 

congested state should not enter the variance calculation. As such, a threshold or critical 15 

speed, noted as    and defined as the speed at which the congested and uncongested 16 

branches of the speed/flow diagram intersect, is identified for each radar. 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

As seen in Figure 2, the critical speed is the speed corresponding to the intersection of the 27 

two clouds of points representing the uncongested and congested states respectively. After 28 

identifying the critical speed, the variance over flow of the aggregate speeds is computed 29 

for each value of flow taking only speed values that are larger or equal to the critical speed 30 

(the congested branch is only described and its speed values do not enter any calculations). 31 

Critical speed ≈ 51 mph 

Figure 2: Illustration of critical speed using 
speed/flow diagram for radar 165421. 
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Mathematically, this variance is computed according to the following equation: 1 

 2 

    
  ( )  

 

    
∑(    ̅̅ ̅̅ ̅     ̿̿ ̿̿ )

 
 

   

           ̅̅ ̅̅ ̅        

 3 

where: n        is the number of flow-weighted speed values that correspond to a flow of                                                                              4 

and a   speed greater or equal to    5 

     ̅̅ ̅̅ ̅       is the flow-weighted speed i having a flow of    6 

    ̿̿ ̿̿         is the average flow-weighted speed having a flow of    = 
 

 
∑     ̅̅ ̅̅ ̅ 
    7 

  8 

(2) Individual Speeds 9 

The variance over flow of the individual speeds is the variance of all individual-lane speeds 10 

whose corresponding flows sum up to a certain value of total flow. For every value of total 11 

flow, all speeds whose flows sum to that total flow are identified and their variance 12 

computed. Mathematically, it reads as follows: 13 

    
  ( )  

 

    
∑(        ̅̅ ̅̅ )

 
 

   

                 

where: m        is the number of flow-weighted speed values whose corresponding flows sum 14 

to    in any minute 15 

       is the individual-lane speed i whose value is greater or equal to   and whose 16 

flow,  when summed with the other individual- lane flows of the given minute, 17 

adds to    18 

   ̅̅ ̅̅  is the average individual-lane speed = 
 

 
∑     
 
    19 

Table 1: Summary of the different computed variances. 20 

Variance Notation Equation 

Variance over time of flow-weighted speeds     
  ( ) 

 

    
∑(   ̅̅̅̅    ̿)

 
 

   

 

Variance over time of individual-lane speeds 
 

    
  ( ) 

 

     
∑(      ̅)

 
  

   

 

Variance over flow of flow-weighted speeds  
higher than critical speed 

    
  ( ) 

 

    
∑(    ̅̅ ̅̅ ̅     ̿̿ ̿̿ )

 
 

   

     ̅̅ ̅̅ ̅         

Variance over flow of individual-lane speeds  
higher than critical speed 

    
  ( ) 

 

    
∑(        ̅̅ ̅̅ )
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3. Regression models 1 

a) Speed/flow regression 2 

The conventional method of conversion is based on a linear regression. Data is gathered 3 

about speed and flow, and speeds in the uncongested state are then linearly regressed on 4 

flow. The regression allows the estimation of the coefficients of the following model: 5 

 6 

 ( )         

 7 
where       is velocity 8 
       is flow 9 
      is the intercept which is the speed at ‘zero’ flow and density 10 
      is the regression line slope which can be thought of as the spacing in free flow 11 
 12 

In this study, the regression is done using a subset consisting of data for one week only; all 13 

speeds that are greater or equal to the critical speed (pre-determined using the data for the 14 

whole month) for the radar of interest are regressed onto their respective flows. 15 

 16 

After calibrating the model by determining the ‘beta’ coefficients using ordinary least-17 

squares regression [8], the performance of the model is assessed by comparing the 18 

estimated flow from speed data with the observed data, for the week following the week of 19 

the data used for calibration. The flow estimate is determined by inverting the calibrated 20 

model so as to have flow as a function of speed: 21 

 22 

 ( )  
 

  
  

  
  

 

 23 

b) Speed variance/flow regression 24 

The speed variance/flow regression is defined as: 25 

 26 

   ( )         

where    ( )     is the speed variance 27 

                  is the flow 28 

The speed variance here is the variance over flow of the individual speeds described in the 29 

previous section and noted     
  ( ). As with the speed/flow regression method, this 30 

method is calibrated using flow data and associated speed variances for one week in 31 

September. If the speed variance/flow relationship exhibits two or more domains with 32 

 ( ) and   belong to the 

uncongested phase 
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significantly different slopes, a separate regression is done on each domain separately, in 1 

order to have a piecewise linear relationship such as the one shown in Figure 3. 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

Similarly, the model performance is assessed by inverting the previous equation and 20 

comparing the flow estimate with the observed flow using data corresponding to the week 21 

that follows the week used for calibration. The inverted equation is: 22 

 23 

 24 

 (   ( ))  
 

  
   ( )  

  
  

 

 25 

 26 

It is to be reminded that the speed variance in the model is     
  ( ) as described earlier. A 27 

priori knowledge of flow is not known however and therefore it is not possible to identify 28 

all individual speed values that have flows that sum up to a certain total flow value in order 29 

to compute their variance. Hence, an assumption of locally stationary traffic is required. 30 

Total flow is consequently assumed to be constant over each time interval and speed 31 

variance is computed by computing the variance of all individual-lane speeds in each time 32 

interval, excluding those speeds under the predetermined critical speed for the radar of 33 

interest. The flow is then determined from the calibrated model and is compared with the 34 

observed flow prevailing in the corresponding time interval. 35 

Figure 3: Example of piecewise linear regression of 
speed variance over flow. 
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IV. Results 1 

A. Aggregate speed/flow diagrams 2 

The main characteristics of the speed-flow diagrams and their frequency of appearance for 3 

109 radars are outlined in Table 2.  4 

 5 
Table 2: Speed/flow diagrams characteristics and frequency of appearance. 6 

Uncongested Branch in (q,v) coordinates (UC) 

Decreasing Linearly (1) 36 

Increasing Linearly (2) 26 

Flat (3) 27 

Increasing Non-Linearly (4) 11 

Non-Linear (5) 9 

Total 109 

Congested Branch in (q,v) coordinates (C) 

Linear Vertical (6) 13 

Linear Inclined (7) 27 

Curved (8) 40 

Not Appearing (9) 29 

Total 109 

Other in (q,v) coordinates 

Congested branch is spread out across a large range of flow (10) 22 

Large variance of speeds at small flows (11) 30 

Existence of C-like branch at small flows (12) 4 

 7 

The characteristics of the ‘Uncongested Branch’ and ‘Congested Branch’ sections in the 8 

table partition the radars sample i.e. each plot exhibits one and only one of the indicated 9 

characteristics. That is not the case for the ‘Other’ section where a given plot may exhibit 10 

any combination of the three properties. 3 radars out of 112 provide highly irregular data 11 

and are discarded from the analysis. 12 

Examples of each of the properties indicated in Table 2 are presented in Figure 4.13 
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 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

Radar 165421 – Example of 

1 and 8 (refer to table 2) 

Radar 152153 – Example of 

2 and 9 

Radar 152103 – Example of 

3 and 10 

Radar 151595 – Example of 

5, 9, and 11 

Radar 165475 – Example of 

6, 9, and 11 

Radar 152081 – Example of 

3 and 7 

Radar 152061 – Example of 

1 and 8 

Radar 152203 – Example of 

1, 9, and 10 

Radar 152227 – Example of 

6, 9, 11, 12 

Radar 152177 – Example of 

1, 9, 10, and 12 

Figure 4: Examples of the different characteristics of the observed speed/flow diagrams. 
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B. Speed variance/flow relationship 1 

Different types of relationships are observed between speed variances and flow. In 2 

particular, 39 of the 112 radars exhibit a decreasing speed variance with flow. Examples of 3 

these are presented in Figure 5. 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

C. Calibration and performance 18 

 19 

As indicated in the previous section, the models are calibrated using data from one week in 20 

September (Monday 13th to Sunday 19th) and validated using data from the following week 21 

of September (Monday 20th to Sunday 26th). The performance of the two regression models 22 

are illustrated for radars 152157 and 165493 in Figure 6 and 7 respectively, with the 23 

following legend: 24 

 25 

 26 

 27 

Radar 152223 Radar 152351 Radar 158965 Radar 165445 

Radar 152025 Radar 152127 Radar 152157 Radar 152203 

Figure 5: Examples of Variance Plots with Speed Variance Decreasing with Flow 

Observed flow from radar 

Estimated flow from calibrated regression model 
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 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

           24 

Figure 6: Observed and estimated flow for radar 152157, speed to flow 
regression. 

Figure 7: Observed and estimated flow for radar 165493, speed variance to 
flow regression. 
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V. Discussion and analysis 1 

A. Speed variance/flow taxonomy 2 

Distinctive properties of the relationship between speed variance and flow can be noted to 3 

impact the accuracy of the speed variance method. 4 

 Radars and time periods for which an increasing relation exists between speed 5 

variance and flow exhibit higher correlation between the estimated flow and the 6 

observed flow. 7 

 Radars and time periods for which a decreasing relation exists between speed 8 

variance and flow tend to exhibit speed/flow diagrams with an uncongested branch 9 

that is increasing in flow/speed coordinate, a large variance of speeds at low flows, 10 

and a congested branch that is very light (see Figure 8). 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

On the other hand, as illustrated in Figure 9, the distribution of profiles of 27 

speed/flow diagrams is fairly uniform for the case of linear relation between speed 28 

variance and flow.  29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

Figure 8: Frequency of appearance of major characteristics of speed/flow 
diagrams associated with time plots exhibiting a decreasing relation between 
speed variance and flow. 

Figure 9: Distribution of the three types of uncongested branches across the 
speed/flow diagrams associated with the 30 radars exhibiting a linear relation 
between speed variance and flow. 
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 1 

B. Performance of speed / flow method 2 

 3 

This model is able to predict flows with more accuracy both in terms of magnitude and 4 

trend. It can be noted that an increasing uncongested branch in (q,v) coordinates tends 5 

to improve the accuracy of the results. 6 

The accuracy of the results tends to deteriorate quickly (both in terms of magnitude and 7 

trend) with the flatness of the regression function i.e. when the slope of the 8 

uncongested branch (in (q,v) coordinates) gets closer to zero. The high sensitivity of the 9 

estimate accuracy to the degree of flatness is due to the fact that the uncongested 10 

branch of the speed/flow diagrams often exhibits highly variable speeds, meaning that 11 

every value of flow has associated with it a relatively large range of vehicle speeds in 12 

free-flow. 13 

 14 

C. Performance of speed variance / flow method 15 

 16 

The flow trends obtained from the speed variance/flow regression are in general less 17 

accurate than the trends produced by the speed/flow regression, which can be traced 18 

back to the assumption of stationarity in 10 minutes time intervals. It must be noted 19 

that the assumption of stationarity is required for statistical significance of the variance 20 

value. Similarly, since several speed measurements are required to compute the speed 21 

variance, hence a flow estimate, the speed variance regression model cannot function 22 

on very refined time discretizations. 23 

The accuracy of the speed variance regression estimate decreases with the flatness of 24 

the flow to speed function in the uncongested phase, similarly to the speed regression 25 

estimate. However, this decrease is less substantial than for the speed regression 26 

method, and in such cases the estimated flow using the speed variance regression is 27 

often more accurate than the estimated flow using the speed regression.28 
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VI. Conclusions 1 

This article proposed the analysis of the relation between point speed and flow. 2 

Performance assessment of different techniques for accurate conversion of point speeds to 3 

point flows was conducted, in the prospect of fusing speed data with conventional loop 4 

detectors. 5 

The study used speed and flow measurements from September 2010, obtained from 112 6 

NAVTEQ radars [1] deployed in the San Francisco Bay Area. The major steps of the analysis 7 

presented are the following:  8 

 Evaluation and categorization of 112 measured speed/flow diagrams, 9 

 Evaluation of 112 measured variance plots, 10 

 Comparative benchmark of the speed variance to flow regression method with the 11 

speed to flow regression method. 12 

The main conclusions of this study are the following.  13 

The conventional speed/flow method is able to produce significantly more accurate results 14 

than the speed variance/flow method, in particular in the case of an increasing 15 

uncongested branch in (q,v) coordinates, which is not predicted by the theory. This 16 

accuracy deteriorates quickly however when the uncongested branch of the diagram in 17 

(q,v) coordinated becomes more flat. 18 

The proposed speed variance/flow method does not achieve the accuracy obtained with 19 

the conventional method; this may be due to the assumption of stationarity, required for 20 

statistically significant computation of the speed variance. The proposed method, however, 21 

shows more accurate results than the traditional method in the case where the 22 

uncongested branch in (q,v) coordinates is relatively flat, which is a classical assumption on 23 

the free-flow phase. 24 

The preliminary assessment proposed in this work shows promising results, with two 25 

methods with complementary behaviors providing reasonably accurate flow estimates. In 26 

particular, the evidence for traffic behaviors not well modeled by traffic theory and the 27 

characterization of the specific traffic episodes for which each method performs better lays 28 

the ground for more refined analytics. Further efforts on the topic encompass the use of a 29 

rigorous estimation setting for quantitative assessment of the proposed methods for 30 

specific applications. 31 

 32 

  33 
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