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We present a method for assimilating Lagrangian sensor measurement data into a shallow water equation model.
The underlying estimation problem (in which the dynamics of the system are represented by a system of partial
differential equations) relies on the formulation of a minimisation of an error functional, which represents the
mismatch between the estimate and the measurements. The corresponding so-called variational data assimilation
problem is formulated as a quadratic programming problem with linear constraints. For the hydrodynamics
application of interest, data is obtained from drifting sensors that gather position and velocity. The data
assimilation method refines the estimate of the initial conditions of the hydrodynamic system. The method is
implemented using a new sensor network hardware platform for gathering flow information from a river, which
is presented in this article for the first time. Validation of the results is performed by comparing them to an
estimate derived from an independent set of static sensors, some of which were deployed as part of our field
experiments.
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1. Introduction

1.1 Background and motivation

Renewable freshwater is a critical resource for human
society. Human uses of freshwater include drinking,
irrigation, fish production, transportation, hydroelec-
tric power and waste disposal; the growing world
population, and societal shifts towards urbanisation
and water-intensive agriculture, will increase freshwa-
ter demand significantly over the next 50 years (Postel
2000). Improving water use efficiency can help balance
supply and demand (Jackson et al. 2001) and relieve
scarcity; this will require improved methods for
modelling and monitoring the flow of freshwater
through the hydrological cycle (Rodda, Pieyns,
Sehmi, and Matthews 1993). River flows are particu-
larly important to investigate, as they constitute the
majority of available renewable freshwater (Oki and
Kanae 2006).

River hydraulics can be modelled with shallow
water equations (SWEs) in one or two dimensions
(Chadwick, Morfett, and Borthwick 2004). SWEs are a
standard constitutive model used in the environmental
engineering community and hydraulics community to
model river flow; they are commonly used for simu-
lation and control. When dealing with experimental

measurements, techniques are required to incorporate

them into the model. One such technique is data

assimilation, which is the process of integrating mea-

surements into a flow model, and which originated in

meteorology and oceanography (Le Dimet and

Talagrand 1986).
There are many different sensor systems for mea-

suring flow fields. They can be categorised as Eulerian

or Lagrangian (using terminology from fluid mechan-

ics) according to whether they observe the medium as it

flows past a fixed location (Eulerian) or are embedded

into the flow itself, measuring the medium while

moving along a trajectory (Lagrangian).
Examples of Eulerian sensors for water velocity

measurement are stream gauges, which measure the

height of the water at one location, which can be used

to infer the stream velocity under certain conditions;

satellite imaging (Smith 1997), in which the river height

is estimated directly with radar or indirectly by

observing the water/shore interface; and statically

mounted acoustic Doppler current profilers (ADCPs),

which measure the Doppler shift in a returning

acoustic pulse due to velocity. ADCPs can also be

mounted to moving vehicles, such as submarines or

surface watercraft. Assuming that the vehicle is not
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travelling at the same speed as the water, the ADCP
sensor in this case is neither Eulerian nor Lagrangian.

The trends of electronics miniaturisation and
availability of wireless communications have increased
the interest in novel Lagrangian sensor systems, which
sometimes provide an efficent way to complement
static sensing infrastructure with mobile devices capa-
ble of sensing where fixed equipment cannot be
deployed. Numerous water management applications
require a system state estimate described in Eulerian
coordinates (e.g. to estimate whether the water level
at certain points in the system is high enough for
agricultural users to draw water, or whether the water
quality over a particular fish migration route is
adequate). This need for estimates in Eulerian coordi-
nates requires new data assimilation methods to bring
the Lagrangian data into an Eulerian framework. Most
known implementations of Lagrangian data assimila-
tion are in oceanography or meteorology (see e.g.
Gunson and Malanotte-Rizzoli 1996; Navon 1997;
Nodet 2006); in the specific case of hydraulic systems,
Lagrangian data assimilation of shallow water flows
to estimate the bottom topology is attempted in
Honnorat, Monnier, and Le Dimet (2009).
Assimilation of Lagrangian data to estimate boundary
conditions (BCs) in a tidally influenced river is
described in Strub, Percelay, Stacey, and Bayen
(2009), and assimilation into a 1D model for a network
of channels is described in Wu, Rafiee, Tinka, and
Bayen (2009). An assimilation technique on a simpli-
fied hydrodynamic model is presented in Tinka, Strub,
Wu, and Bayen (2009); we extend this work with a
more realistic model, as well as a complete treatment of
the experimental method, numerical schemes and
hardware platform.

Most existing data assimilation methods can be
categorised as either variational assimilation methods
or sequential assimilation methods (Ide, Courtier,
Ghil, and Lorenc 1997); the method presented in this
article belongs in the variational assimilation category.
Sequential methods, including Kalman filtering and its
extensions (Evensen 2007) and optimal statistical
interpolation (Molcard, Piterbarg, Griffa, Özgökmen,
and Mariano 2003), perform a series of update/analysis
steps, blending the observational data into the state
estimate one step at a time. By contrast, variational
methods, such as the ones used in Navon (1997) and
Kamachi and O’Brien (1995), perform a single opti-
misation using all the observational data at once to
minimise a cost functional. Most variational methods
use general optimisation techniques such as gradient
descent algorithms to find their optimal solution. The
major distinction between the method we present here
and the methods in the variational data assimilation
literature is that we have used a formulation that

results in a quadratic programming (QP) optimisation
problem, instead of a more general one. QP problems
can be more efficiently solved than general nonlinear
optimisation problems.

Our objective is the development of an integrated
system and architecture, including hardware, software,
communication and visualisation that is capable of
performing data assimilation for shallow water flows
using GPS measurements from passive, drifting,
Lagrangian sensors. This sensor data is assimilated
into a partial differential equation (PDE) model of the
river, for which, in general, we do not have knowledge
of the initial conditions (ICs) or BCs of the system.

The theoretical contributions made in this article
are a linearisation of the SWE that can be used for
formulating the optimisation problem with linear
constraints, and an inversion algorithm, using QP,
which takes Lagrangian measurements and uses them
for reconstruction of the distributed state. The prac-
tical contributions documented herein are the con-
struction of a hardware data gathering infrastructure,
namely a floating sensor network used to gather
Lagrangian flow data, presented for the first time in
this article; and a field operational test in the
Georgiana Slough, including our additional instru-
mentation deployment for validation purposes.
Finally, this article includes a validation procedure
and corresponding results.

An earlier version of the linearisation and varia-
tional assimilation formulation presented herein is
developed for shallow water flows in Strub, Percelay,
Tossavainen, and Bayen (2009), for a different math-
ematical and operational context.

This article is organised as follows. In Section 2, we
describe the PDE used to model the hydrodynamical
systems under study. In Section 3, we explain the QP
variational assimilation method we use. In Section 4,
we introduce the Lagrangian passive floating sensor
platform for gathering experimental data. In Section 5,
we describe a field experiment performed in the
Sacramento River in California, the results of our
assimilation method and the results of our validation
procedure. Finally, in Section 6 we present the
conclusions of our study and suggest future avenues
for research.

1.2 Nomenclature

For convenience, we present here some brief defini-
tions of terms which may be unfamiliar to readers.

. Passive drifting sensor: A floating sensor that is
deployed in a body of water and allowed to
move with the water current. Its form is designed
so as to mimic the motion of an ‘ideal particle’ in
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the water. ‘Passive’ sensors have no way of
modifying their trajectory; ‘active’ sensors may
occasionally modify their trajectory using some
form of propulsion.

. Data assimilation: The process of estimating
some part of the state of a system by combining
(or ‘integrating’) physical measurements with a
model of the system. Data assimilation is often
distinguished from general estimation problems
by the sparsity of observation data compared to
the dimension of the model. Historically, the
study of data assimilation was developed in
oceanography and meteorology, independently
from the study of estimation which developed in
the literature of control theory.

. Variational data assimilation: Data assimilation
methods can be broadly categorised into
‘sequential’ methods and ‘variational’ methods
(Ide et al. 1997). The difference between these
methods, and the use of the term ‘variational’, is
discussed in Sections 1.1 and 3.1.

. Implicit and explicit finite difference schemes:
Finite difference methods are a category of
approximation methods for numerical solutions
of PDEs. For most PDEs, the time derivative is
approximated with terms from the state at the n
and nþ 1 time step. These schemes can be
classified by whether the approximation for the
spatial derivative includes terms from the state
at time step n only, in which case the scheme is
‘explicit’, or whether it includes terms from time
step nþ 1 as well, in which case the scheme is
‘implicit’.

2. Hydrodynamic model

2.1 Shallow water equations

In the following, we use the SWE as our constitutive
hydrodynamic model. We will present the equations,
followed by a specific linearisation and discretisation.
For legibility we suppress the arguments for dependent
variables. The governing hydrodynamic equations
for the modelled system are (Vreugdenhil 1994;
EDF 2003):

@u

@t
þ ~u � ru ¼ �g

@�

@x
þ Fx þ

1

h
r � ðh�truÞ, ð1Þ

@v

@t
þ ~u � rv ¼ �g

@�

@y
þ Fy þ

1

h
r � ðh�trvÞ, ð2Þ

@h

@t
þ ~u � rhþ hr � ~u ¼ 0: ð3Þ

Equations (1) and (2) represent momentum balance,
and Equation (3) represents mass balance. They
can be obtained from fundamental principles

(conservation of mass for an incompressible fluid,

and Newton’s second law) in a differential setting

(Sturm 2010). The symbol r is used to denote the

gradient operator and r� is used to denote the

divergence operator. The variables (x, y) are space

coordinates; t is time in seconds; ~u ¼ ðuðx, y, tÞ,
vðx, y, tÞÞ is depth-averaged water velocity in m/s;

h¼ h(x, y, t) is water depth in metres; b¼ b(x, y) is

elevation of bottom surface in metres; �¼ hþ b¼

�(x, y, t) is free surface elevation in metres; g is the

acceleration of gravity in m/s2; �t is the coefficient of

turbulence diffusion, obeying the so-called k-epsilon

model (EDF 2003); and Fx¼Fx(x, y, t), Fy¼Fy(x, y, t)

are friction terms

Fx ¼ �
1

cos �

gn2

h4=3
u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
, ð4Þ

Fy ¼ �
1

cos �

gn2

h4=3
v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
, ð5Þ

where �¼ �(x, y) is the slope of the river bed; n is the

Manning coefficient. The Manning coefficient is an

empirical term that depends on the roughness of the

channel bed. For this study we took the Manning

coefficient to be 0.04 uniformly over the domain. This

is a reasonable estimate for a major natural stream

without significant brush obstruction on the banks

(Sturm 2010). The friction terms are derived from the

classic Gauckler–Manning hydraulic equation (Chow

1959), using the shallow water assumption (that the

depth of the water is significantly smaller than the

cross-sectional width of the channel).
Following common assumptions in fluvial hydrau-

lics, our first simplification is to neglect the turbulence

terms. We linearise the equations about a steady but

non-uniform flow U 0(x, y), V 0(x, y), H0(x, y) that

satisfies Equations (1)–(3):

@u

@t
þU0 @u

@x
þ V0 @u

@y
¼ �g

@h

@x
� g

@b

@x
þ Cu, ð6Þ

@v

@t
þU0 @v

@x
þ V0 @v

@y
¼ �g

@h

@y
� g

@b

@y
þ Cv, ð7Þ

@h

@t
þU0 @h

@x
þ V0 @h

@y
þH0 @u

@x
þ
@v

@y

� �
¼ 0, ð8Þ

with the choice of

C ¼
1

cos �

gn2

H04=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U02 þ V02

q
ð9Þ

as the linearised friction coefficient.
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2.2 Non-orthogonal curvilinear grid

For general geometries, the river region does not line

up well with the Cartesian axes. Discretising using a

Cartesian mesh would be inefficient; the grid size

would have to be very fine in order to capture the

spatial features properly. Generating a non-orthogonal

grid to efficiently cover the domain while also repre-

senting the boundary is a standard problem with many

approaches in the literature. For this study, the domain

was manually decomposed into large, approximately

rectangular regions that were then algorithmically

subdivided into smaller quads. This is called the

‘macro-element’ or ‘multi-block’ approach, and was

first described in Zienkiewicz and Phillips (1971). The

interested reader is referred to Löhner (2008) for an

overview of grid generation methods. The coordinate

changes are characterised by the deviation of the local

axes from the Cartesian axes, called � and �, respec-
tively (Figure 1) (George 2007). When working with

water velocity in the curvilinear system, we must

distinguish between the curvilinear (or covariant)

velocity, whose components are parallel with the

local axes, and the contravariant velocity, whose

components are perpendicular to their complementary

axes (Figure 1). Covariant velocity, denoted by uCL,

vCL is used for the momentum balance equations (1)

and (2), while contravariant velocity, denoted by uCV,

vCV is used for the mass balance equation (3).
A summary of the derivations in George (2007) is

presented here. In order to develop expressions for the

curvilinear and contravariant velocity in terms of the

Cartesian velocity components u and v, it is convenient

to begin by expressing the velocity in polar coordinates

R, � with respect to the Cartesian axes. Expressions

for the curvilinear velocity are derived by analysing

triangle iOCV with the sine rule, then solving for uCL

and vCL:

R

sinð�2 þ �� �Þ
¼

uCL
sinð�2 � � þ �Þ

¼
vCL

sinð� � �Þ
,

uCL ¼ R cosð� � �Þ secð�� �Þ,

vCL ¼ R sinð� � �Þ secð�� �Þ:

The process for the contravariant velocity is the same,

analysing triangle iODV:

R

sinð�2 � �þ �Þ
¼

uCV
sinð�2 � � þ �Þ

¼
vCV

sinð� � �Þ
,

uCV ¼ R cosð� � �Þ secð�� �Þ,

vCV ¼ R sinð� � �Þ secð�� �Þ:

Using the sum and difference identities, we expand the

{cos, sin}(��{�,�}) terms, and substitute R cos(�)¼ u

and R sin(�)¼ v. This leads to systems of equations

which can be solved for the forward and inverse

transforms between Cartesian velocity components

and the two types of curvilinear components.

uCL

vCL

� �
¼ secð�� �Þ

cos� sin�

�sin � cos�

� �
u

v

� �
,

u

v

� �
¼

cos� �sin �

sin � cos�

� �
uCL

vCL

� �
,

uCV

vCV

� �
¼ secð�� �Þ

cos� sin�

�sin � cos�

� �
u

v

� �
,

u

v

� �
¼

cos� �sin �

sin � cos�

� �
uCV

vCV

� �
,

uCV

vCV

� �
¼

secð�� �Þ tanð�� �Þ

tanð�� �Þ secð�� �Þ

� �
uCL

vCL

� �
,

uCL

vCL

� �
¼

secð�� �Þ �tanð�� �Þ

�tanð�� �Þ secð�� �Þ

� �
uCV

vCV

� �
:

All other variables have trivial transformations,

and we will abuse notation by not distinguishing them

from their original forms.
The linearised SWEs (6)–(8) are transformed into

the curvilinear coordinates (George 2007):

@uCL
@t
þU0

CL

@uCL
@xCL

þ V0
CL

@uCL
@yCL

þ U0
CL

@uCL
@yCL

þ V0
CL

@uCL
@xCL

� �
sinð�� �Þ

¼ �g
@h

@xCL
� g

@b

@xCL
þ CuCL, ð10Þ

@vCL
@t
þU0

CL

@vCL
@xCL

þ V0
CL

@vCL
@yCL

þ U0
CL

@vCL
@yCL

þ V0
CL

@vCL
@xCL

� �
sinð�� �Þ

¼ �g
@h

@yCL
� g

@b

@yCL
þ CvCL, ð11Þ

Figure 1. Example of non-orthogonal curvilinear axes. OX,
OY: global Cartesian axes. OX0, OY0: local non-orthogonal
curvilinear axes. OV: velocity vector. uCL, vCL, uCV, vCV:
curvilinear and contravariant components of OV.
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@h

@t
þU0

CV

@h

@xCL
secð�� �Þ þ V0

CV

@h

@yCL
secð�� �Þ

þH0 @uCV
@xCL

þ
@vCV
@yCL

� �
secð�� �Þ ¼ 0: ð12Þ:

These transformed equations are algebraically

more involved, but from a practical perspective,

simply add static trigonometric terms to the discretised

scheme (16)–(18), to be derived next. They require that

the velocity components be transformed back and

forth between Cartesian and curvilinear axes. In

particular, linearity is preserved.

2.3 Boundary conditions

For the BCs, we imposed a condition that there be no

velocity component perpendicular to the shoreline:

~u � ~s
��
@�land
¼ 0, ð13Þ

where ~s ¼ ~sðx, yÞ is a vector perpendicular to the

shoreline, and @� is the boundary of the domain.

No-slip conditions (~u
��
@�land
¼ ~0) are also commonly

used, but are inappropriate for a linear scheme, since

shear forces arise from the nonlinear terms in the

original momentum equations (1) and (2). This is a

common BC in the hydrodynamics literature, and

sometimes called the ‘slip BC’; see, for example George

(2007) and Honnorat et al. (2009). The implicit

assumptions for the slip BC are that the bathymetry

is steep enough at the shore that the water height will

not significantly affect the location of the land bound-

ary, and that there is no significant influx or outflux of

water from or into the soil. This would be an

inappropriate assumption, for example, for a shallow

mud flat that wets and dries during the tidal cycle

(Whitehouse 2000; Uchiyama 2004); but for steep

banked river channels, such as the ones studied in this

article, the assumption is justified.
This constraint is enforced on the curvilinear mesh

by forcing the uCV or vCV component of the water

velocity at specific nodes to zero.
The upstream velocity and downstream height BCs

are implicitly defined as being equal to the value at

the IC:

~uðtÞ
��
@�upstream

¼ ~uð0Þ
��
@�upstream

, ð14Þ

hðtÞ
��
@�downstream

¼ hð0Þ
��
@�downstream

: ð15Þ

This is an appropriate assumption for assimilation

over short times compared to the tidal cycle.

2.4 Discretisation

We use an implicit discretisation scheme, consisting of
backward Euler for the time derivative and centred
differencing for the spatial derivatives, also known as
the backwards time centred space (BTCS) method
(Hoffman 2001). This scheme was chosen for compu-
tational efficiency, since it is an implicit, single step
scheme. The number of decision variables in the
optimisation programme is proportional to the
number of time steps in the discretisation, which will
be seen in Section 3.1. A multi-step scheme (where
intermediate states are computed for each time step)
would result in a similar proportional growth of
decision variables. Implicit methods, named for their
implicit time update equation, are not constrained by the
Courant–Friedrichs–Lewy (CFL) stability condition on
the time step. Using an explicit method would require
satisfying the CFL condition, whichwould require more
time steps, which would increase the number of decision
variables in the variational assimilation problem. As
will be discussed in Section (3.1), however, the method
developed in this article is applicable to all single and
multi-step schemes, explicit or implicit.

We use the covariant velocity variables. The mass
conservation equation (12) uses contravariant velocity,
not covariant velocity, which means an additional
transform is necessary, as can be seen in (18).

ukþ1CLi, j � ukCLi, j

Dt
¼ �U0

CLi, j

ukþ1CLiþ1, j � ukþ1CLi�1, j

Dxi�1, j þ Dxi, j

� V0
CLi, j

ukþ1CLi, jþ1 � ukþ1CLi, j�1

Dyi, j�1 þ Dyi, j

� sinð�i, jÞU
0
CLi, j

ukþ1CLi, jþ1 � ukþ1CLi, j�1

Dyi, j�1 þ Dyi, j

� sinð�i, jÞV
0
CLi, j

ukþ1CLiþ1, j � ukþ1CLi�1, j

Dxi�1, j þ Dxi, j

� g
hkþ1iþ1, j � hkþ1i�1, j

Dxi�1, j þ Dxi, j
� g

biþ1, j � bi�1, j
Dxi�1, j þ Dxi, j

þ Ci, ju
kþ1
CLi, j, ð16Þ

vkþ1CLi, j � vkCLi, j

Dt
¼ �U0

CLi, j

vkþ1CLiþ1, j � vkþ1CLi�1, j

Dxi�1, j þ Dxi, j

� V0
CLi, j

vkþ1CLi, jþ1 � vkþ1CLi, j�1

Dyi, j�1 þ Dyi, j

� sinð�i, jÞU
0
CLi, j

vkþ1CLi, jþ1 � vkþ1CLi, j�1

Dyi, j�1 þ Dyi, j

� sinð�i, jÞV
0
CLi, j

vkþ1CLiþ1, j � vkþ1CLi�1, j

Dxi�1, j þ Dxi, j

� g
hkþ1i, jþ1 � hkþ1i, j�1

Dyi, j�1 þ Dyi, j
� g

bi, jþ1 � bi, j�1
Dyi, j�1 þ Dyi, j

þ Ci, jv
kþ1
CLi, j, ð17Þ
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hkþ1i, j � hki, j
Dt

¼ �secð�i, jÞ secð�i, jÞU
0
CLi, j

hkþ1iþ1, j � hkþ1i�1, j

Dxi�1, j þ Dxi, j

�secð�i, jÞ tanð�i, jÞV
0
CLi, j

hkþ1iþ1, j � hkþ1i�1, j

Dxi�1, j þ Dxi, j

�secð�i, jÞ tanð�i, jÞU
0
CLi, j

hkþ1i, jþ1 � hkþ1i, j�1

Dyi, j�1 þ Dyi, j

�secð�i, jÞ secð�i, jÞV
0
CLi, j

hkþ1i, jþ1 � hkþ1i, j�1

Dyi, j�1 þ Dyi, j

�secð�i, jÞ secð�i, jÞH
0
i, j

ukþ1CLiþ1, j � ukþ1CLi�1, j

Dxi�1, j þ Dxi, j

�secð�i, jÞ tanð�i, jÞH
0
i, j

ukþ1CLiþ1, j � ukþ1CLi�1, j

Dxi�1, j þ Dxi, j

�secð�i, jÞ tanð�i, jÞH
0
i, j

ukþ1CLi, jþ1 � ukþ1CLi, j�1

Dyi, j�1 þ Dyi, j

�secð�i, jÞ secð�i, jÞH
0
i, j

vkþ1CLi, jþ1 � vkþ1CLi, j�1

Dyi, j�1 þ Dyi, j
,

ð18Þ

where the subscript indexes i and j are for the x and y
grid directions, respectively; the superscript index k is
the time index; Dt is the time step; Dxi, j is the distance
between node (i, j ) and (iþ 1, j ); and Dyi, j is the
distance between node (i, j ) and (i, jþ 1). � i, j is an
abbreviation for �i, j� �i, j.

3. QP-based variational data assimilation

3.1 Variational framework

Our method uses variational data assimilation. The
variables in the discretised equations (16)–(18) are
concatenated into vectors, using the standardised
framework set out in Ide et al. (1997), as follows:

Xn Concatenated vector of state variables (u, v, h)
for all mesh points at time tn.

XB Background term vector to improve well-
posedness of the problem.

Yn Vector of observed variables at time tn. No
observations are taken at time 0.

B Covariance matrix of the background error
(the vector difference between the initial state
X0 and the background term XB).

Rn Covariance matrix of the observation error at
time tn.

Hn Observation operator, which projects the state
vector Xn into the observation subspace con-
taining Yn.

The method is referred to as variational data assim-
ilation because the method estimates the
optimum IC functions u(x, y, 0), v(x, y, 0) and h(x, y, 0).

The objective function expressed in (19) is a function of
the discretised state, but in the original formulation the
objective is actually a functional of the ICs. This
terminology serves to distinguish the method from the
broad category of sequential methods, which typically
estimate the state at the observation times (Ide et al.
1997). It can be argued that, because of the discretisa-
tion, the objective is no longer a functional and that the
method is no longer variational. The terminology is
useful, however, for placing our method in context with
the data assimilation literature.

Our data assimilation strategy is to search for the
initial state X0 that minimises the ‘2-norm of the
difference between the state and observation variables
and the difference between the initial state and the
background term XB:

J 0ðX0Þ ¼ ðX0 � XBÞ
TB�1ðX0 � XBÞ

þ
Xnmax

n¼1

ðYn �Hn½Xn�Þ
TR�1n ðYn �Hn½Xn�Þ, ð19Þ

XB, the background term, is a ‘first guess’ about the
state of the system; it is expected that it is inaccurate,
and that the product of the assimilation will be a
refined estimate of the state. The background term
could be derived from historical data, from forecasts,
from a previous assimilation, or from forward simu-
lation based on BCs (either observed or artificially
generated). The need for a background term is
discussed further in Section 3.3.

The covariance matrices B and Rn affect the weight
given to the background term and the observations.
Choosing appropriate values for these covariances is
discussed in Section 3.3. As a simplifying assumption
we take these matrices to be a scalar times the identity
matrix: bI and rI, respectively.

General variational data assimilation schemes treat
the observation operator Hn as a non-linear operator;
however, as described in Section 4, our observations
come with both location and velocity information. Our
assimilation method is a posteriori, so our knowledge
of the observation positions can be used to represent
the observation operator as a time-varying matrix. In
the context of estimation on linear systems, Hn would
be called the observation matrix (Stengel 1994). In the
simplest case, where the assimilation time steps match
the observation times, the Hn matrix would be a {0, 1}
matrix, with element (i, j )¼ 1 if the drifter associated
with measurement i was in the cell associated with state
variable j at time n. If drifter measurements are not
synchronised with assimilation steps, then the values in
the Hn matrix should reflect the polynomial approx-
imation associated with the time discretisation scheme.
For example, for a single step method, such as the
backward Euler scheme, a drifter observation would be
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mapped into two Hn matrices using linear interpola-
tion. This mapping can be generalised to any linear
multi-step method.

The search space for the variational data assimila-
tion is the IC of the solution to the linearised, discrete
PDE; by the implicit definition of the BCs, we are at
the same time searching for the upstream velocity and
downstream height BCs. Appropriate choices for B
and Rn mean that the cost function can be represented
as a positive semidefinite quadratic term. The dis-
cretised dynamics of the flow are represented as a series
of linear constraints of the form

EXnþ1 ¼ FXn þ g, ð20Þ

where E and F are matrices determined by the time and
space difference schemes (16)–(18), and g is a vector
capturing source terms that do not depend on the state,
such as the bottom elevation. This constraint formu-
lation allows implicit discretisation schemes to be
implemented, which broadens the applicability of the
method significantly. Explicit schemes have a concep-
tually simpler process update (the E matrix is usually
the identity matrix), but the time step used in these
schemes is restricted by the CFL condition, and can
often be inconveniently short.

3.2 Quadratic programme

With a positive semidefinite quadratic cost function
and linear constraints, the data assimilation problem
can be posed as a QP problem

minimise
1

2
xTPxþ qTx

subject to Gx � h

Ax ¼ b:

ð21Þ

The variables in bold are from standard optimisation
formulations (Boyd and Vandenberghe 2004) and
should not be confused with the variables used in the
rest of this article. In particular, note that x is the
vertical concatenation of all state vectors X0 . . .Xnmax

,
P and q are found by expanding all the terms in (19)
and combining into a single quadratic expression, as
shown here:

P¼

B�1

HT
1R
�1
1 H1

HT
2R
�1
2 H2

. .
.

HT
nmax

R�1nmax
Hnmax

2
66666664

3
77777775
,

ð22aÞ

q¼ �XT
BB
�1 YT

1R
�1
1 H1 Y

T
2R
�1
2 H2 � � � Y

T
nmax

R�1nmax
Hnmax

� 	
:

ð22bÞ

The equation Ax¼ b represents the flow dynamic

constraints described in (20), and can be expanded as

�F E

�F E

. .
. . .

.

�F E

2
66664

3
77775

X0

X1

..

.

Xnmax

2
66664

3
77775 ¼

g

g

..

.

g

2
66664

3
77775, ð23Þ

G and h are normally zero, although we may impose

heuristic inequality constraints to reduce the search
space, in particular for ICs and BCs.

3.3 Background term and well-posedness of the
problem

It is a standard result in the study of hyperbolic PDEs,
discussed in Drolet and Gray (1988), that the Cauchy

problem associated with a system of SWEs (1)–(3), for

subcritical flow, with ICs provided everywhere, and
BCs (13)–(15), is well-posed as defined by Hadamard.

The ‘subcriticality’ of the flow is a condition that can
be formally defined, and has to do with the ratio of the

velocity field and the eigenvalues of a matrix which
appears when Equations (1)–(3) are written in conser-

vation law form. In physical terms, it means that the
velocity of the water is always less than the wave

propagation speed. This is a reasonable assumption for

our application. ‘Well-posedness’ means that (a) a
solution exists, (b) the solution is unique and (c) the

solution depends continuously on the ICs and BCs.
We are interested in two of the analogous properties

for the variational data assimilation problem (21);
namely that

(1) there exists an optimal x,
(2) the optimising x is unique.

A minimiser to (21) exists because of the convexity of
the objective function (P is positive semidefinite) and

the bounded, non-empty constraint set.
Observations are usually sparse compared to the

number of mesh points; the Hi matrices are rank-

deficient, and therefore the matrix P is positive

semidefinite as opposed to positive definite. Thus, the
uniqueness of an optimum x is not guaranteed; this is a

common problem in oceanography and similar fields
relying on data assimilation. However, we can argue

that by incorporating the background term XB, we
restrict x to a set of smaller dimension than it would be

otherwise.
Assume for argument that x� is a feasible, optimal

solution to the QP (21), and that 1
2 x
�TPx� þ qTx� ¼ j �.

For simplicity, we will drop the Gx� h constraint. To
investigate the uniqueness of x�, we consider the

1692 A. Tinka et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
i
n
k
a
,
 
A
n
d
r
e
w
]
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
C
a
l
i
f
o
r
n
i
a
,
 
B
e
r
k
e
l
e
y
]
 
A
t
:
 
1
9
:
1
2
 
3
1
 
J
u
l
y
 
2
0
1
0



related feasibility problem

1

2
xTPxþ qTx ¼ j �,

Ax ¼ b:
ð24Þ

We already have one feasible solution, so we consider

x¼ x�þ x0:

1

2
x0

T
Px0 þ x�

T
Pþ qT


 �
x0 ¼ 0, ð25aÞ

Ax0 ¼ 0, ð25bÞ

x� is the unique optimising solution for (21) if and only

if (25a) and (25b) admit a single solution in x0, the zero

vector.
The uniqueness of the solution to (21) then

becomes a geometric question: whether the intersection

of the quadratic hypersurface defined by (25a) and the

linear subspace defined by (25b) contains just a single

point (the zero vector) or multiple points; and if so,

how those multiple points can be characterised. Since P

is positive semidefinite, the quadratic hypersurface

defined by (25a) is degenerate, and so we might expect

the set of solutions to include linear subspaces;

however, the block structure of P and A, when a

background term is used, preclude this possibility.
Assume for contradiction that x0 is a non-zero

member of a linear subspace that satisfies (25a) and

(25b); in other words, 	x0 also satisfies (25a) and (25b)

for any scalar 	. Because (25a) is the sum of a

linear and quadratic term, it is then necessarily true

that x0TPx0 ¼ 0. Recalling the block structure of P

from (22a),

x0
T
Px0 ¼ X0T0 B

�1X00 þ
Xnmax

i¼1

X0iTH
T
i R
�1
i HiX

0
i,

B�1 is positive definite, unlike all the other blocks of P,

so X00 ¼ 0. But the block structure of A, shown in (23),

means that if X00 ¼ 0, all the other X0i vectors must be

zero as well. This contradicts our assumption that x0 is

non-zero; and so the feasibility problem (25a) and

(25b) does not admit any non-trivial linear subspaces.
Unfortunately, the ‘true’ uniqueness of x� is not

guaranteed. Equations (25a) and (25b) still admit

solutions where x0TPx0 6¼ 0. But these solutions are

not linear subspaces; for any non-zero x0 satisfying

(25a) and (25b), the only scalar values of 	 for which

	x0 also satisfies (25a) and (25b) are 0 and 1.
If we did not use a background term for our data

assimilation problem, P would have no strictly positive

definite block, and the contradiction proof above would

not work. The set of optimal solutions to (21) could

include linear subspaces as well as non-degenerate

quadratic hypersurfaces. By adding a background
term, we exclude all linear subspaces from the set of
optimal solutions.

3.4 Choice of the covariance matrices

The covariance matrices B and Rn affect the weight
given to the background term and the observations. In
the absence of second-order statistics, they can be
approximations representing the assumed reliability of
the different sources of information. As discussed
above, we have assumed that B¼ bI and Ri¼ rI for
simplicity. A reasonable choice for r can be made from
the accuracy specifications of the GPS module.
Choosing b is less clear. If b is too small, and the
eigenvalues of B�1 become large, the assimilation
process will over-emphasise the background term,
and the observations will not significantly affect the
final estimate. If b is too large, the regularising effect of
the background term will be insufficient to improve the
convergence of the algorithm.

There is also an important relationship between the
choice of B and the accuracy of the XB term. If we had
a trusted estimate of the covariance of the error
between the background term and the true state, then
the correct choice of B is obvious; however, this is not
practically useful, since the background term is almost
always a ‘guess’. Estimating the error of the back-
ground term, when the background term is generated
from guessing, simulations or historical data, is an
extremely non-trivial task.

Clearly, it would be advantageous to be able to use
‘bad’ background terms and still get accurate assimi-
lation results. In many ways, the background term
encodes assumptions about qualitative properties of a
valid solution: for example, the overall direction of
water movement, the relative uniformity of water
height, the fact that the water velocity is locally
roughly parallel, etc. If the background term violates
these assumptions, a valid solution is extremely
unlikely. For example, if we used a background term
with water flowing in the wrong direction, we would be
asking the optimisation algorithm to find a valid PDE
solution with no external sources that somehow
performed a complete flow reversal in the short time
period between the initial time and the first observa-
tion. The result would depend on the weighting of the
B and R matrices, but would probably be some
intermediate value, inconsistent with both the back-
ground and the observations. In this sense, we see that
the background term must be qualitatively accurate.
Establishing the requirements for quantitative accu-
racy, and the corresponding choice of B, is an open
problem.
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3.5 Convergence of QP solutions to valid PDE
solutions

A feasible solution to the quadratic programme (21)

will, by construction, satisfy the finite difference

equation system (16)–(18).
Hence, in the limit case in which the discretisation

size converges to zero, the solution of the discretised

system (16)–(18) converges to the solution of the

linearised PDE system (6)–(8). This is a known result

of the Lax equivalence theorem, applied to the BTCS

method, which is unconditionally stable (Hoffman

2001).
The linearised PDE system (6)–(8) is an approxi-

mation of the original PDE system (1)–(3). These

linearisations are standard in fluid mechanics, and

obtained procedurally as follows. A nominal flow of

the nonlinear PDE is constructed, around which a

first-order Taylor expansion of the PDE system is

derived, which leads to the linear PDE system.

Accordingly, the error between the two models is of

order O(u2), O(v2), O(h2), as well as the neglected

terms. Extending properties of linearised hyperbolic

conservation PDE systems to their nonlinear counter-

parts has examples in the literature; for example,

Coron, d’Andréa-Novel, and Bastin (2007) showed

that stability properties for a 1D linearised shallow

water system under boundary control can be extended

to the nonlinear case. Extending similar properties for

the estimation problem under the conditions of this

article (arbitrary geometry, variable BCs) is beyond the

mathematical scope of this study. However, it is likely

that specific results could be proven for simpler

geometries and idealised conditions.
Our case for the applicability of the solutions

derived from our assimilation method is thus a three-

step argument: (1) the QP solution is an exact solution

for the discretised system; (2) the solution to the

discretised system converges to the solution to the

linearised PDE as the step sizes go to zero; (3) the error

in the linearised model is of quadratic order compared

to the fully nonlinear PDE model.

4. Hardware platform

We now present the passive floating sensor network
hardware platform that was developed to gather
Lagrangian flow data in shallow water environments
and used to gather the data presented later in this
article. Interior and exterior photos of the drifter
device are shown in Figure 2.

The drifter fleet, consisting of 10 units, was
designed and manufactured in the Lagrangian Sensor
Systems Laboratory at UC Berkeley. Design goals
included low cost, ease of manufacture and service with
in-house techniques, 48 h mission autonomy, stable
hydrodynamic configuration, rotationally symmetric
profile and an internal volume sufficient for electronics
and future water sensors.

Drifter housing. The housing of the drifter is based
around a 11 cm ID fibreglass pipe. The top cap is
vacuum-formed polycarbonate. The lower shell is
hand-cast fibreglass. The top hull and bottom hull
are joined with epoxy to machined aluminium flanges,
which seal against the main bulkhead with O-Rings
and spring-loaded clamps. The bottom hull is water-
tight in generation one, but will be modified into a
flooded bay for water-facing sensors in generation two.

Drifter drogue. A 1.3m aluminium tube is attached to
a lug in the lower hull with a cotter pin. At the opposite
end of the tube, two polycarbonate plates, 40 cm2, are
mounted diagonally. This puts a large drag component
1.0m below the drifter hull, which makes the drifter be
driven primarily by the current below the surface as
opposed to the wind-mixed layer that may be present
at the surface.

Electronics. The main challenge of the electronics
design was the selection and integration of the various
modules. Cost, power consumption, voltage compati-
bility, communication protocols and mechanical foot-
print were the main selection criteria. Harness wiring
was kept to a minimum by integrating the three major
modules (CPU, GPS and GSM) onto a single printed
circuit board, which also provided mechanical support.

A
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W

Figure 2. Drifter hardware. (A) Fibreglass pipe (B) Cast fibreglass (C) Polycarbonate cap (D) Clasp (E) Stand (not part of
drifter) (F) Antenna plate (G) Electronics (H) Battery (I) Bulkhead (J) GSM antenna connector (K) GPS module (L) Gumstix
module (M) MMC card (N) Bluetooth antenna (O) GSM module (P) Power switch (Q) Battery connector (R) GPS antenna
(S) Hole for GSM antenna (not shown) (T) Magnetic switch (U) Status LEDs (V) Aluminium tube (W) Polycarbonate plate.
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. Power: The drifter carries a 10.4A-h, 3.7V
lithium ion battery.

. Gumstix: The main computational unit is a
Basix 400-BT from Gumstix Inc. This embedded
module contains a 400MHz Marvell XScale
PXA255 processor capable of running an
embedded Linux distribution (Intel
Corporation 2003). It has a 1GB MMC card.

. GPS: The GPS receiver is a Magellan AC-12
OEM module. It has a CEP of 1.5m, and can
record pseudorange and carrier phase data for
post-processing (Thales Navigation 2005).

. Cell phone: A Telit GM-862 GSM module is
used for communication. TCP connections can
be made with home base servers via AT&T’s
GPRS service (Telit Communications 2006).

5. Field test

5.1 Available data

The proposed platform is designed to solve practical
problems for which several types of information are
available. The following is a list of the data sources
used by the data assimilation method:

. Drifters: The Lagrangian sensors record their
position with GPS as they advect through the
water. They also record a GPS velocity signal,
which we use directly (as opposed to deriving
velocity from the successive positions using a
finite difference scheme). We built 10 drifters;

in the experiments presented here, up to eight
were deployed at a time.

. DSM-II historical data: DSM-II (Anderson and
Mierzwa 2002) is a 1D model of the entire
Sacramento/San Joaquin Delta. It was used to
generate historical flow and height values for the
background.

For validation purposes, we also gathered Eulerian
data at the boundaries of the region of interest, using
sensors described below. This data was used as the
BCs for a forward simulation using TELEMAC, a
commercial hydrodynamics simulator. TELEMAC is
essentially a specialised PDE solver for the SWEs; given
the ICs and BCs, it finds the velocity at all points in the
mesh through a forward simulation of the equation.
Since actual measurement of the ICs was unavailable,
we used the standard technique of starting with an
arbitrary IC, holding the BCs steady, and running the
simulation for a long time, essentially ‘washing away’
the arbitrary IC. This technique is only appropriate for
systems that are close to a steady state, which is a
reasonable assumption for the slowly changing river.

The Eulerian data includes the following items
(Figure 3):

. ADCP: This Eulerian sensor was installed by
our group near the upstream boundary of the
region of interest. It sits on the bottom of
the river and measures the water velocity in the
vertical column over it. This data allows esti-
mation of the upstream flow BC.

Easting (m)
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4.2336

4.2338

4.234

4.2342

4.2344
µ 10

6

Mesh boundary
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ADCP

Figure 3. Sacramento River/Georgiana Slough with modelled area, ground stations and sensor deployment locations. Image
courtesy of USGS.
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. USGS gauge stations: These Eulerian sensors
measure flow and height. One sensor in the
Sacramento River and one in the Georgiana
Slough provide information about the down-
stream boundaries.

The list of data sources must also include the
bathymetry and Manning parameters. The bathymetry
is used in the QP assimilation (see Equations (6)–(8)).
The TELEMAC forward simulations that generate
the background term and validation data use both the
bathymetry and the Manning parameters.

The data flow diagram in Figure 4 shows how the
various data are used. Historical DSM-II data is used,
with TELEMAC 2D (EDF 2003) forward simulations,
to generate the background term for the QP process.
The estimate of the state of the system is generated by
assimilating the drifter data. The Eulerian sensors are
used with TELEMAC to generate a separate state
estimate that is used for Eulerian validation.

5.2 Experimental strategy

Eight drifter deployments were performed from
12 November to 16 November 2007, at the junction
of the Georgiana Slough and Sacramento River in
California. This location was chosen for the USGS
field gauges which could be used for Eulerian
validation.

For each experiment, between 7 and 10 drifters
were placed in the water by personnel in a small
motorcraft. The initial positions were in a roughly
straight line across the river, with approximately even
spacing, but in the centre of the river to avoid obstacles
and shallow areas on the sides. Figure 5 depicts an
example of the drop points used in experiment 4 on 16
November. The drifters were monitored as they

travelled in the river. Each experiment was planned

to last between 45 and 60min; in practice, some of the
experiments were terminated earlier. Reasons for

terminating the experiment included (i) drifters travel-

ling past the junction, eliminating line of sight, (ii)
drifters spacing out too far, making them difficult to

monitor, (iii) miscellaneous logistical concerns.
With the development of short-range and long-

range wireless communication capabilities on the

drifters, the hardware infrastructure is designed to let
the drifters operate autonomously, without direct line

of sight supervision, allowing for experiments with
expanded domains in space and time.

Figure 6 shows the water velocity at the ADCP

versus time over the 5 day experimental period. The
start times of the eight experiments are shown with ‘x’

marks. The velocity time series was processed with a

low-pass filter (zero-phase, cutoff frequency
7.85� 10�5Hz, corresponding to a period of 3.54 h,

generated by the Parks–McClellan optimum filter
algorithm (IEEE 1979)). To better show the length of

the experiments, and their relationship to the tidal
cycle, the filtered velocity signal for all 5 days was

superimposed in Figure 7, referenced to the minor

maximum of the velocity.
Post-experiment analysis showed that several drif-

ters did not record sufficient amounts of GPS data (e.g.

less than 10% of the expected amount of data); in most
cases this was traced to antenna connection problems.

This reduced the number of operating drifters at a
given time to between five and eight. Only four of the

eight experiments had enough data to proceed with the
assimilation method.
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Figure 5. Example of drop points for drifter release in the
final experiment.
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Figure 4. Data flow diagram used for the data assimilation
using the hardware platform.
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5.3 Implementation of the algorithm

The drifter measurements were sampled at 30 s. Each
drifter measurement was assigned according to its GPS
location to a specific cell of the curvilinear mesh, and
the GPS velocity was converted to curvilinear coordi-
nates. The DSM-II historical data was then used to
generate BCs for a TELEMAC forward simulation
to generate the background term. A QP problem was
formulated using the drifter measurements and the
background term for the cost function, and the
curvilinear, discretised, linearised PDE equations as
linear constraints, as described in Section 3. The
drifters do not gather information about the water
height. The friction source term was set to zero. The
QP problem was expressed using the optimisation
modelling language AMPL and solved with CPLEX.
The optimal IC was extracted from the CPLEX
solution, and the curvilinear velocity field was con-
verted back to the Cartesian grid.

One feature of the QP formulation is that the
number of sensors can vary with time, simply by
adding or removing the necessary terms from the cost
function (19). This is advantageous, because in practice
there are often gaps in the GPS tracks of the drifters
(as they pass underneath bridges, or experience similar
signal loss). Instead of trying to patch the holes in the
record with a form of interpolation, the data can be
passed as-is to the QP assimilation process.

5.4 Validation

A forward simulation of the region of interest was
performed using the data from Eulerian sensors. This
data was used as the BCs for an SWE simulation, to
generate what we will call the ‘true state’ velocity field.
This forward simulation does include the river bed
friction term. The relative error between the true state,
(uT, vT), and the estimated IC velocity field from
the QP process, (u, v), was computed by dividing

the ‘2-norm of the difference by the magnitude of the
simulated field:


E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j ðuTj � ujÞ

2
þ ðvTj � vjÞ

2
� 

P
j



u2Tj þ v2Tj

�� 
vuuut , ð26Þ

where j is the node index.

5.5 Results

Figure 8 shows the initial flow field condition assim-

ilated by the QP algorithm for one of the experiments.

The height variable is very smooth (differing by only a
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few centimetres over the region) and not interesting to
plot. Only one experiment is shown for space con-
straints. Figure 9 shows how the QP assimilated
velocity field is closer to the true state (generated by
forward simulation from Eulerian sensors) than the
background term.

Using a 2000-point mesh (16 cells across the river,
118 cells down the reach of the Sacramento segment),
performing a QP assimilation of 30min worth of
drifter data (from 5 to 8 drifters) takes approximately
10min on a single 2.0GHz processor.

6. Conclusion

In this article, we present a method for formulating the
variational data assimilation problem for Lagrangian
sensors in shallow water flows as a QP optimisation

Figure 8. Assimilated velocity field IC for experiment 1. Scale is in m/s. Decimated by two for legibility.
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problem with linear constraints. A major advantage of
the QP formulation is that the constraints can express
the model PDE discretised with an implicit scheme.
This allows our method to use longer time steps than
explicit methods. Our method also assimilates on the
ICs, in contrast to many sequential methods.

The QP assimilation method relies on a back-
ground term, as many variational data assimilation
methods do, both to guarantee well-posedness and to
provide a ‘first guess’ to the system. The metric used to
evaluate the assimilation performance is the improve-
ment made in relative error versus a true state. Care
was taken to ensure that the true state used distinct
information; the assimilation process relied on histor-
ical data (for the background term) and Lagrangian
sensor data, while the true state was simulated from
local Eulerian sensors. (Both sides use the same
bathymetry and Manning parameter data, but this is
not a major issue.)

We also present a new sensor network platform for
gathering Lagrangian flow information. The drifters
described herein provide an inexpensive flow measure-
ment capability. With the appropriate assimilation
techniques to process their data, they open up new
possibilities for modelling and understanding shallow
water systems in regions where Eulerian sensing is too
expensive or otherwise unavailable.

Our new hardware platform was demonstrated and
validated in a set of experiments that gathered flow
information in a river junction environment. The
assimilation procedure demonstrated an improved
relative error to the assumed ground truth.

Further work will focus on demonstrating larger
relative error improvements using refinements of the
technique. The PDEs used in our model are appropriate
for unsteady as well as steady flows; the flows we study
in this experiment are technically unsteady (due to the
tidal influence), but the rate of change is very slow.
Heuristically adding constraints to restrict the QP
solution to ‘almost steady’ flows would reduce the
search space, which could allow for greater weight on
the measurements. Ultimately, we hope to demonstrate
a method that can produce useful assimilations even
when the background term is severely different from the
true state. Further research into the accuracy relation-
ships between background, observations, and results
will also shed light on the role of the number of sensors
and sensor accuracy on the results. The question of how
many sensors are required for an accurate estimate of
the system is a very interesting open problem.
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