Hydromorphology of an Urbanizing Watershed Using Multivariate Elasticity

Presenter:Julian FultonInstructor:Prof. Alexandre BayenCourse:CE291FDate:04/30/2007Acknowledgement:Richard Vogel, Tufts U.

Definitions and Details

- Hydromorphology: The structure and evolution of hydrologic systems.
- Question: How do hydrologic systems evolve in response to a variety of anthropogenic (human) and natural (climatic) influences?
- Goal: Better understand interactions between streamflow and trends in climate, land use, and water use.
- Case: Santa Ana River Watershed within Orange County

Santa Ana Watershed

Data Collection: 1940 - 1999

Variable	Metric	Unit	Source	Resolution	Points
Streamflow	Discharge	cubic feet per second	USGS	daily average	21,900
Climate	Precipitation	1/100 inch	NOAA	monthly average	720
Water Use	Groundwater Levels	feet below ground surface	USGS	sporadic measurements	419
Land Use	Population	individuals	CDF	10-year census	7

Flow duration curve

— 1940s-1950s — 1960s-1970s — 1980s-1990s

Natural Influences

Natural Influences

Natural Influences

Human Influences (ft. below groundsurface) **Groundwater Depth** Groundwater Depth (ft) Population (thousands)

Population (thousands)

Elasticity

 Econometric concept applied to hydrology to describe sensitivity of streamflow to changes in other phenomena, for example precipitation:

The precipitation elasticity of streamflow, defined as

$$\varepsilon_{\rm P} = \frac{dQ/\overline{Q}}{dP/\overline{P}} = \frac{dQ}{dP}\frac{\overline{P}}{\overline{Q}}$$
 (1)

relates the proportional change in streamflow (at mean) to proportional change in precipitation. If $\varepsilon_{p}=2$ for annual streamflows, then a 1% change in precipitation leads to a 2% change in streamflow.

Multivariate Elasticity

 Consider the total differential (Chapter 1) of streamflow resulting from simultaneous changes in precipitation (P), land use (L) and water use (W):

$$dQ = \frac{\partial Q}{\partial P} dP + \frac{\partial Q}{\partial L} dL + \frac{\partial Q}{\partial W} dW$$
(2)

• It is useful to estimate the differentials as a percentage of change from the mean for each variable in (2):

$$\left(\frac{Q-\overline{Q}}{\overline{Q}}\right) = \frac{\partial Q}{\partial P} \frac{\overline{P}}{\overline{Q}} \left(\frac{P-\overline{P}}{\overline{P}}\right) + \frac{\partial Q}{\partial L} \frac{\overline{L}}{\overline{Q}} \left(\frac{L-\overline{L}}{\overline{L}}\right) + \frac{\partial Q}{\partial W} \frac{\overline{W}}{\overline{Q}} \left(\frac{W-\overline{W}}{\overline{W}}\right)$$
(3)

or
$$q = \varepsilon_{P} \cdot p + \varepsilon_{L} \cdot l + \varepsilon_{W} \cdot w$$
 (4)

Regression Analysis

• To find coefficients $\varepsilon_p, \varepsilon_L, \varepsilon_w$ use Ordinary Least Squares, which "fits" observed data, and returns standard errors and accuracy measurements. To do this, use datapoints (x_i, y_i) with i=1, 2, ..., n to find f such that $y_i \approx f(x_i)$

..by minimizing
$$S = \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- Analysis performed on three streamflow conditions:
 - Average Streamflow \overline{Q}
 - Flood Condition Q_{max}
 - Low Flow Condition $Q_{_{90}}$

Results

		Explanatory Variables				
Streamflow		Climate, $\varepsilon_{\rm p}$	Land Use, $\varepsilon_{\rm L}$	Water Use, ε_{W}		
(in cfs)		Annual Precipitation,	Watershed Population,	Well Levels, W (in ft.		
(III CIS)		P (in inches)	L (thousands)	bellow groundsurface)		
Flood - Q_{\max}	ε	1.749	0.664	-1.504		
	$\{S_{\varepsilon}\}$	0.227	0.219	0.993		
	p	0.000	0.004	0.135		
Average - \overline{Q}	ε	2.312	0.674	-2.116		
	${S_{\varepsilon}}$	0.413	0.397	1.803		
	p	0.000	0.095	0.245		
Drought - Q_{90}	ε	2.857	0.694	-2.377		
	${S_{\varepsilon}}$	0.606	0.584	2.650		
	p	0.000	0.240	0.373		

The variables ε , S_{ε}, and p are the elasticity estimate, its standard deviation, and p-value (confidence interval), respectively.

Goodness of Fit

Conclusions

About Data

- Real data can be problematic
- Climate has larger effect
 on average and low flows
- Land use has small effect but most on low flows
- Consistent with findings by others who have used this method

About Model

- Larger coefficients have greater accuracy (lower p-value)
- Any number of independent variables could be added to model
- Could be used to predict changes in development patterns or climate

Streamflow Prediction

- Population is expected to double over the next 50 years
 - Holding precipitation and water use constant...
 - > Daily Average Streamflow \overline{Q} goes from 71 cfs to 110 cfs
- If precipitation increases with climate change (e.g. 20%)
 - Holding population and water use constant...
 - > Daily Average Streamflow \overline{Q} goes from 71 cfs to 95 cfs