
60

Transportation Research Record: Journal of the Transportation Research Board, 
No. 2554, Transportation Research Board, Washington, D.C., 2016, pp. 60–68.
DOI: 10.3141/2554-07

Traffic management and traffic information are essential in urban 
areas and require reliable knowledge about the current and future traf-
fic state. Parametric and nonparametric traffic state prediction tech-
niques have previously been developed with different advantages and 
shortcomings. While nonparametric prediction has shown good results 
for predicting the traffic state during recurrent traffic conditions, para-
metric traffic state prediction can be used during nonrecurring traffic 
conditions, such as incidents and events. Hybrid approaches have pre-
viously been proposed; these approaches combine the two prediction 
paradigms by using nonparametric methods for predicting boundary 
conditions used in a parametric method. In this paper, parametric and 
nonparametric traffic state prediction techniques are instead combined 
through assimilation in an ensemble Kalman filter. For nonparametric 
prediction, a neural network method is adopted; the parametric pre-
diction is carried out with a cell transmission model with velocity as 
state. The results show that the hybrid approach can improve travel 
time prediction of journeys planned to commence 15 to 30 min into the 
future, with a prediction horizon of up to 50 min ahead in time to allow 
the journey to be completed.

Traffic management and traffic information are essential in urban 
areas. Reliable knowledge about the current and future traffic state is 
required. Today, the road infrastructure in urban areas is commonly 
equipped with different types of sensors, capturing speed, flows, 
and travel time data. Using these data for traffic state estimation is 
a well-studied area and involves data-filtering techniques and traf-
fic simulation models. Examples of filtering approaches for traffic 
state estimation can be found elsewhere (1–4) as can traffic simu-
lation approaches (5–9). With the deployment of traffic sensors of 
various kinds, it has become more important to combine these two 
approaches (10–12).

While traffic state prediction in general is based on the current 
traffic state estimate, it is usually considered to be a more complex 
problem than estimating the traffic state since the future is always 

unknown. The literature consists of several examples of applica-
tions for traffic state prediction. First and most important, it is a 
critical component for real-time traffic control and management; 
see for example, Chen and Grant-Muller (13), Bajwa et al. (14), 
van Lint et al. (15), and Wang et al. (16). The ability to accurately 
predict the traffic state could increase the traffic manager’s ability 
to take action before the system reaches congestion and then at least 
forestall that event.

Common nonparametric methods for traffic state and travel time 
estimation are linear time series, k–nearest neighbors, locally weighted 
regression, fuzzy logic, Bayesian networks, and neural networks. 
For an overview of commonly used methods, see, for example, van 
Hinsbergen et al. (17). In nonparametric models, parameters and the 
structure of the model need to be determined from data. Such models 
are created from a large amount of historical data. They can capture 
the traffic dynamics even though no knowledge of the traffic pro-
cesses as such is needed. Nonparametric models all inherit the prop-
erty that only traffic states that already occurred can be predicted. 
Thus, they are appropriate for predicting recurring traffic conditions, 
but less appropriate for nonrecurring traffic conditions.

Several examples of parametric models can be applied for the 
purpose of traffic state prediction. Such examples include the micro-
scopic simulation approach in Ben-Akiva et al. (5) and Torday (9), 
the mesoscopic simulation approach in Mahmassani et al. (6), and 
the macroscopic traffic flow models in Meschini and Gentile (7) and 
Papageorgiou et al. (8). Common for all these models is that they 
include parameters with a predetermined structure. Still, these param-
eters need to be calibrated according to empirical data. Parametric 
models all inherit the property of describing only traffic phenom-
ena that follow from the predetermined relationship between model 
parameters. Also, they rely on boundary conditions, such as traffic 
demand, which need to be predicted for the entire prediction horizon.

One way of approaching the shortcomings of nonparametric and 
parametric models is to combine them in a hybrid model approach 
(18). This is, for example, done in Calvert et al. (19) and Pan et al. 
(20) with nonparametric models for predicting demand profiles to 
be used in a parametric model. Accurate measurements of inflows at 
on-ramps and outflows at off-ramps will be required, however, and 
this information can be difficult to obtain.

For real-time traffic state estimation purposes, output from a 
parametric model is assimilated with live sensor data in Work et al. 
with a Kalman filtering approach (11). In this paper, the use of this 
approach will be extended to traffic state prediction. The result is 
a novel hybrid model using the filter for assimilating parametric  
traffic state prediction output with nonparametric prediction of the 
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point speed at several radar sensor locations. Thus, errors from 
demand profiles based on uncertain measurements can be compen-
sated for with the use of point speed predictions at main-line sensor 
locations, which are based on more reliable speed measurements.

As a parametric model, the cell transmission model (CTM) will be 
used with velocity as state (CTM-v), which is a macroscopic traffic 
flow model from the family of cell transmission models (11). This 
family includes several models that have previously been applied suc-
cessfully for traffic state estimation on highways. For nonparametric 
prediction, neural networks will be used; these have been shown to  
be a powerful tool for nonparametric traffic state, travel time, and 
demand profile prediction (21–23). The contribution of this paper is 
not, however, in the development of parametric and nonparametric 
models, but in the way they are combined in the hybrid framework.

The rest of this paper is organized as follows. The hybrid model-
ing framework is presented, including the macroscopic flow model 
and the Kalman filter. Next, the experimental setup is introduced and 
the results are presented for a 7-km-long section of the Stockholm, 
Sweden, ring road, followed by final conclusions and suggestions 
for future work.

Hybrid Prediction Framework

macroscopic Flow model

The traffic state estimation and prediction will be based on the CTM-v, 
which is a first order traffic model developed from the density-based 
cell transmission model (CTM-ρ). The CTM-ρ model is, in turn, based 
on the Godunov discretization of the well-known Lighthill–Whitham–
Richards model (24). It is possible to directly formulate a velocity-
based version of that model, but the resulting partial differential 
equation can be solved numerically only if the relationship between 
speed and density is assumed to be affine. Therefore the transfor-
mation from density to velocity in the CTM-v is done within the 
discretization scheme.

In the CTM-v, the traffic state is discretized into cells, and for each 
cell the velocity is used as the traffic state. At each time step, the 
Lighthill–Whitham–Richards partial differential equation is solved 
numerically with the use of the CTM-v. For each cell, the relation-
ship between speed, v, and density, ρ, is given by a fundamental 
diagram, v = V(ρ). Using the velocity as state makes it easy to com-
bine the model output with actual speed measurements from traffic 
detectors. This feature is the main reason for adopting the CTM-v 
rather than the CTM-ρ. The CTM-v, however, requires the velocity 
function to be strictly decreasing and invertible. Thus, the commonly 
applied Daganzo–Newell fundamental diagram cannot be used and 
instead a hyperbolic–linear velocity function is adopted with a linear 
expression in free flow and a hyperbolic expression in congestion
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where

 ρmax = jam density,
 vf = free-flow speed,
 wf = backward propagating shock wave speed, and
 ρcr = critical density.

The demand is specified in regard to inflow rates and split ratios 
at diverging nodes. Inflow rates are considered as boundary condi-
tions to the CTM-v, and the split ratios are specified as parameters 
in the model. For a comprehensive description of the CTM-v, see 
Work et al. (11).

traffic State estimation Using  
ensemble kalman Filtering

As the basis for the traffic state and travel time prediction, the current 
traffic state needs to be estimated. The data fusion model, developed 
in the Mobile Millennium project and described in Work et al. (11) 
and Bayen et al. (25), is appealing for many reasons. First, it is devel-
oped to run in real time and for a large network. Furthermore, it can 
fuse different types of point speed measurements, but the Kalman fil-
ter also provides the possibility to include travel time measurements 
(26). The state–space model of the system is formulated as
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where

 vn =  state vector in time step n, including speed for each part 
of road network (cell) according to spatial resolution of 
system;

 M(•) = system model, here CTM-v model;
 yn = observation vector in time step n;
 hk(•) = observation model for observation type k; and
 η and χ =  possibly time-varying model uncertainty (with mean 

µmod and covariance Q) and observation noise (with 
µobs and covariance R), respectively.

A number of different adaptions and extensions to the Kalman 
filter have been proposed over the years. The basic Kalman filter 
is designed for linear problems, but the extension of the CTM-v to 
networks implies a nonlinear and nondifferentiable state equation. 
Different extensions to the Kalman filter can manage nonlinearity; 
one commonly used example is the extended Kalman filter that has 
been used for traffic estimation by Wang and Papageorgiou and others 
(27). However, in the extended Kalman filter all functions have to 
be differentiable, which is not the case for CTM-v. An alternative to 
the extended Kalman filter is the ensemble Kalman filter (EnKF). 
The EnKF, first presented by Evensen (28), is an extension of the 
classical Kalman filter that has shown good performance also for 
nonlinear dynamical models (29) and can handle nondifferentia-
bility. The EnKF belongs to a class of particle methods that use 
Monte Carlo representation of the probability density functions 
and their time evolution and can be viewed as a combination of 
the Kalman filter and the particle filter.

In the EnKF, the state estimate distribution—the error covariance 
matrix—is represented as a set of ensembles that makes it suitable 
for problems with a large state vector, such as traffic state estima-
tion for large networks. The ensemble of model states is propa-
gated forward in time, making it possible to calculate the mean and 
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covariance of the error needed in the measurement update step. 
Although the EnKF uses Gaussian assumption on the probability 
density functions, the integration of ensembles through the model 
will inherit important characteristics of potentially non-Gaussian 
probability density functions, as well as nonlinearity in the model. 
See Evensen for a detailed description of the EnKF (28).

The traffic state estimation framework is presented in Figure 1. 
Currently only data from fixed sensors are available in the Stockholm  
area. These data are preprocessed and later assimilated with the 
CTM-v every 60 s. The framework, however, supports multiple data 
sources as is illustrated, including probe data [e.g., data collected 
with GPS probes (30)].

Prediction Framework

The traffic state prediction framework involves components similar 
to those of the estimation framework presented in the previous sec-
tion and is illustrated in Figure 2. Starting from a known traffic state 
(given by the most recent estimation) and predicted inflows and split 
ratios, the CTM-v can be run forward in time from a known traffic 
state estimation. Prediction of inflows and split ratios can be done 
either with nonparametric methods, as is done in Calvert et al. (19), 
Pan et al. (20), and Wu et al. (31), or by simple averaging of his-
torical data. Accurate measurements of inflow rates and split ratios 
can be difficult to obtain during congested periods. Curbside driving 
together with blocking back of either the main line or the ramps may, 
for example, result in measurements that do not represent the actual 
inflow and split ratio profiles. Also, as is pointed out in Wu et al., 
main-line flows are actually aggregations of upstream on-ramp flows 
and main-line sensor measurements, and thus have a reduced noise 
(31). This aspect makes nonparametric prediction of main-line flows 
more accurate in comparison with predictions of on-ramp flows.

It is also possible to combine the CTM-v model with nonparamet-
ric prediction of the main-line sensor data through the EnKF. This 
combination results in an alternative hybrid traffic state prediction. 
Thus, it is possible to take advantage of the parametric and non-
parametric prediction methods. With EnKF parameters to govern 
the influence of each method, either the parametric or nonparamet-

ric prediction can be trusted more or less depending on the current 
traffic situation. As an example, the nonparametric method may be 
more trustworthy during recurring congestion situations, and the 
parametric estimation more reliable when there are nonrecurring 
events, such as incidents, which can be modeled as reduced capaci-
ties in the CTM-v. The introduction of predicted sensor data in the 
EnKF, however, introduces additional filter parameters related to 
predicted measurement uncertainty, which need to be calibrated.

Prediction of sensor data to be used in the hybrid prediction can 
be done with a number of nonparametric methods. Here, a non linear 
autoregressive neural network with an exogenous input (NARX) 
model will be used. Such a model is commonly used for short-term 
predictions based on time series analysis and can include time delay 
of inputs as well as time-delayed feedback loops of outputs. In Zeng 
and Zhang, such a model is successfully applied for travel time pre-

FIGURE 1  Traffic state estimation framework.

FIGURE 2  Prediction framework.
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dictions on a freeway (32). A similar approach is the state–space neural 
network, applied in van Lint et al. for prediction of travel times using 
travel times and flows from fixed traffic sensors as input (15).

The input for predicting speeds at a specific sensor with the NARX 
neural network will be speeds measured at the specific main-line sen-
sor location, as well as speeds from the surrounding sensors. The 
NARX model will include time-delayed inputs, as well as time-
delayed feedback of outputs. Thus, the predictions will be based not 
only on the most recent measurements, but also on the trend from 
several recent measurements and on time of day and day of week 
(clustered in Mondays to Thursdays as one cluster, and Fridays and 
weekend days as their own clusters). Outputs are the speeds for 
coming time periods at sensor locations.

The setups of the parametric and nonparametric estimation 
methods are further described in the next section.

exPerimental SetUP

Stockholm test Site

To analyze the prediction framework a section of the highway just 
north of central Stockholm will be studied. The section is 7 km long 
and part of the southbound Stockholm ring road. Data from January 
to March 2013 are used, and for this period radar detector data were 
available. During March, Bluetooth sensor data were also available. 
The radar detectors collected speed and flow for each lane, aggre-
gated at 1-min intervals, and are illustrated in Figure 3. Bluetooth 
sensors are placed every 500 to 1,000 m and collect travel times 
from all active Bluetooth units that pass two consecutive sensors. 
The sections with Bluetooth measurements are marked in Figure 3 
with BT1 up to BT7, together with the length of each section. There 
are three on-ramps and three off-ramps in the studied section, and 
the number of lanes varies between two and four. Bluetooth data 
were available only for a limited number of days and had been used 
only for calibration of EnKF parameters and for validation of the 
results presented in this paper.

In Figure 3, radar sensors with available data are marked with 
“+”. For sensors that are used for the nonparametric prediction, 
sensor IDs are included for future reference.

Setup and calibration of ctm-v model

Speeds and flow measurements from 23 days (only Mondays to 
Fridays were selected) have been used for calibrating the funda-

mental diagrams as well as the inflow at on-ramps and split ratios 
at diverging nodes.

For cells in each of the marked sections in Figure 3, the same fun-
damental diagram is used. All fundamental diagrams are specified 
with the same jam density, which is measured from aerial photos 
over the Stockholm highway system (33). Free-flow speed has been 
measured with data from Bluetooth sensors. The most downstream 
section is a bottleneck, which is usually activated during the morn-
ing and afternoon peak periods. Capacity measurements have been 
used for calibrating the shockwave speed (given jam densities and 
free-flow travel times) for the bottleneck. For the remaining sec-
tions, standard capacities have been applied from Olstam et al., with 
manual adjustments for the merging sections to achieve a better fit 
between model output and measured data (34).

Profiles with daily variations of inflows and split ratios are con-
structed by taking mean values for 15-min periods from the 23 days 
used for calibrations. For the most upstream on- and off-ramp, these 
profiles are computed by comparing the flow before and after the 
on- and off-ramp, respectively. For the remaining on-ramps, the 
inflows were measured on the ramp itself; and for the split ratios, 
flow measurements from the main-line and off-ramp sensors were 
compared. In the presence of queues, this computation of inflow 
and split ratios introduces potential errors. The measured split ratios 
may be an effect of the main-line lane functioning as an extended 
ramp, and the inflows may be restricted by the blocking back of 
queues from the main line. This information is the best information 
available.

Sink capacities can be used for restricting the outflow, marked by 
outflow arrows. If the outflow exceeds the sink capacity, the flow 
will block back. This can be used to model capacities in the sur-
rounding network or to model blocking back from the surrounding 
network. For the studied highway section, sink capacities are set only 
for the outflow at the most downstream subsection since blocking  
back from the remaining network is an issue mainly in this sub-
section. The sink capacity is lower than the bottleneck capacity only 
at the most downstream section during the afternoon. A sink capac-
ity, as well as the start and end times of the reduced capacity period, 
has been calibrated on the basis of the 23 calibration days. The length 
of the afternoon congestion period and the maximum queue length 
have been the main comparisons used for this calibration. Overall, 
the afternoon is more difficult to model because of the blocking back 
from the remaining traffic network. Validation of the model has been 
done with data from March 21, and the resulting mean average per-
centage error (MAPE)—as well as the mean and maximum errors—
are presented in Table 1.

FIGURE 3  Stockholm test site (not to scale).



64 Transportation Research Record 2554

Prediction of Sensor data

The nonparametric prediction of speeds at radar sensor locations 
using the NARX neural network is done for Sensors 230, 231, 
235, 236, 238, 239, and 244. These predictions will be referred 
to as “predictions of measurements.” The time resolution of the 
predicted measurements is important to capture changes in the 
traffic state. A prediction horizon of 1 h is used, and for the first 10 

min, measurements for 2-min periods are predicted on the basis 
of the mean speed measurements of all sensors for 2-min periods. 
For predictions 10 to 30 min ahead in time, a time resolution of 
5-min periods is used; for 30 to 60 min ahead in the future, 10-min 
periods are used. Using a time delay of five periods in the NARX 
neural network, one looks 10 min back in time for prediction  
10 min ahead, 25 min back when predicting 10 to 20 min ahead 
in time, and 50 min back when predicting 30 to 60 min ahead in 
time. The NARX neural network is set up with an output feed-
back loop of the two most recent time periods and one layer with  
10 neurons. Each time period results in a neural network to train, 
and 12 neural networks were trained for each sensor location, with 
hour of day and day of week (grouped into Monday to Thursday, 
Friday, and weekends), and speed measurements from all sensors. 
The training was done with 53 days during January, February, and 
March 2013.

MAPE values for predicted measurements on March 21, 2013, 
are presented in Table 2. The MAPE values are based on the dif-
ference between predicted and measured mean values for 2-, 5-, 
and 10-min periods, depending on how far ahead in the future the 
prediction is. While the MAPE values are not necessarily increased 
when one predicts one time period further ahead in time, the overall 
trend is that uncertainty is increased when measurements are pre-
dicted further ahead. Sensor 244 stands out with the lowest MAPE 
value; the reason is that there are very few time periods of day when 
the congestion reaches this sensor, and predicting speeds during 
noncongested traffic states has been shown to be much easier than 
to predict speeds during congested periods.

estimation and calibration of ensemble  
kalman Filter Parameters

The measurement noise is assumed to have zero mean, and the stan-
dard deviation has been estimated to be 1 m/s from measurements. 
The model noise is assumed to have a zero mean and a standard 
deviation of 0.8 m/s. The model noise standard deviation has been 
calibrated with an evaluation of MAPE values between estimated and 
Bluetooth travel times for a number of different parameter settings. 
The resulting MAPE values are presented in Table 1.

Predicted measurement uncertainty was assumed to have a zero 
mean, and the initial guess of the standard deviation was to use the 
same as for the measurement noise. There is, however, an increased 
uncertainty in the predicted measurements, and the best result has been 
obtained with a standard deviation twice that of the measurement 
noise (2 m/s).

TABLE 1  Comparison of Predicted and Estimated  
Travel Times with Measured Travel Times

Prediction–Estimation 
Method

Horizon

0 5 15 30

MAPE Based on Subsection Travel Times (%)

Estimation 11.5 na

CTM-v 19.3

Naive prediction 13.8 14.7 18.5 27.0

CTM-v prediction 13.0 17.6 16.9 16.9

Hybrid prediction 13.0 15.7 15.3 16.6

MAPE Based on Total Subsection Travel Times (%)

Estimation 4.8 na

CTM-v 12.8

Naive prediction 5.3 6.6 19.5 19.7

CTM-v prediction 5.1 9.2 10.1 10.9

Hybrid prediction 5.5 6.8 7.7 7.9

Mean Absolute Error Based on Total Subsection Travel Times (s)

Estimation 22 na

CTM-v 56

Naive prediction 28 32 50 87

CTM-v prediction 25 45 48 49

Hybrid prediction 28 32 39 41

Maximum Absolute Error Based on Total Subsection  
Travel Times (s)

Estimation 205 na

CTM-v 378

Naive prediction 245 342 397 571

CTM-v prediction 304 423 445 378

Hybrid prediction 213 237 367 374

Note: na = not applicable.

TABLE 2  MAPE for Predicted Measurements

Prediction Horizon Measured in Minutes Ahead in Time (%)

Sensor 1–2 3–4 5–6 7–8 9–10 11–15 16–20 21–25 26–30 31–40 41–50 51–60

230 4.41 4.51 4.77 4.60 4.76 5.61 5.12 5.44 5.42  7.10  7.35  7.48

231 6.05 6.17 6.37 6.55 6.50 7.41 7.62 7.65 7.98  8.46  9.23 10.23

235 6.15 5.65 6.21 6.15 6.09 6.71 7.11 7.00 6.36 11.51 13.01 11.42

236 4.91 4.99 6.38 5.03 6.08 6.82 5.93 6.20 5.97 11.88 13.59 11.89

238 4.70 4.27 5.11 4.88 5.23 7.52 7.01 7.28 7.08 14.69 16.56 15.26

239 4.46 4.35 4.80 4.54 4.67 5.69 6.17 5.97 6.89  9.97 10.07  9.16

244 2.73 2.84 2.92 2.78 2.79 3.29 3.28 3.18 3.06  4.56  4.86  4.98
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evaluation of Prediction Framework

For evaluation of the hybrid prediction framework, results with data 
from March 21, 2013, will be presented. These data have not been 
used for either calibration or training purposes.

Speed maps will be used for comparing predictions of the traffic 
state—with and without measurements—with estimation results. 
Here, the estimation will be used as a reference (obtained by run-
ning the EnKF framework) since it is the best available information 
according to all available sensor data and CTM-v output.

Travel times will be predicted for a car entering the highway at 
time t, by driving a car through the speed map corresponding to 
the prediction made at time t. Thus, this travel time prediction will 
make use of predicted traffic states ranging from 0 to 20 min ahead 
in the future, depending on how long it will take to drive through the 
evaluated highway section (i.e., depending on the level of congestion). 
Similarly, a travel time prediction for a car starting 30 min from now 
will make use of information from a prediction horizon ranging from 
30 to 50 min into the future. As a comparison, a naive prediction, 
assuming the current traffic conditions will prevail during the next  
60 min, is computed (resulting in an instantaneous travel time). The 
naive prediction makes use of only the most recent traffic state estima-
tion. A MAPE value based on 5-min averaged travel times will be used 
for comparing the predicted travel times with the reference travel time 
obtained from driving a car through the estimation speed map. This 
comparison will be biased from the fact that the estimation may not 
correspond to the ground truth. Also, since the prediction is done for 
a car driving the whole section, predicted traffic states further ahead 
into the future will be used for predicting the later part of the journey 
in comparison with the early part of the journey. The size of this differ-
ence depends on how long it will take for a driver to drive through the 
complete highway section and thus depends on the level of congestion.

To avoid the shortcomings of comparing predicted and estimated 
travel times, MAPE values of predicted travel times versus measured 
travel times (also for 5-min averages) measured with Bluetooth sen-
sors are computed for seven subsections for which Bluetooth data 
exist. The seven subsections cover all but the last section of the high-
way in Figure 3, and two different MAPE values based on the mea-
surements will be computed. The first one is the mean error across 
all sections; for the other, the subsection travel times are added to 
provide a total travel time across all subsections. Thus, the latter will 
give approximate travel times for the seven subsections. For the total 
travel times, mean and maximum absolute errors are also provided. 
All errors computed between predicted and Bluetooth travel times 
will be based on cars starting at different locations (the beginning 
of each Bluetooth segment) of the highway at the same time. Each 
subsection is short, however, and thus predictions at most 35 min 
ahead into the future will be used.

The error values related to the estimation in Tables 1 and 3 are 
based on a car driving through the speed map corresponding to an 
estimation done after the arrival of the car. Thus, the estimation 
makes use of measurements that were not available at the time the 
car entered the section. In comparison, the naive prediction makes 
use of the most recent estimation and assumes prevailing traffic 
conditions during the time it takes to drive through the section.

reSUltS

Table 1 shows the MAPE as well as the mean and maximum abso-
lute error value for comparison of the predicted travel times with 
measured travel times. For comparison, these error values for the 

prediction done by running only the CTM-v with boundary condi-
tions but not using the EnKF framework are also provided. The 
entry marked “estimation” is not a prediction but based on the real-
ized travel times as given by the estimation framework. Similarly 
“CTM-v” refers to the case using the CTM-v with the historical 
boundary conditions only. In the other three methods, the predic-
tion is always started from the current estimation (denoted “naive 
prediction,” “CTM-v prediction,” and “hybrid prediction”). Table 3 
shows the same error values for the comparison of predicted travel 
times with estimated travel times.

The three prediction methods, which are based on the most recent 
estimation plus a prediction, show similar results for a car starting 
its journey at the time of the prediction when compared with the 
Bluetooth reference travel times. For a journey taking place 15 and 
30 min ahead in time, the hybrid prediction is the best-performing 
prediction considering subsection MAPE values although the dif-
ferences are rather small when compared with the CTM-v predic-
tion. For the case of a prediction 30 min ahead in time, the naive 
prediction performs worse than the CTM-v. Considering the total 
travel time in Table 2, the hybrid prediction results in the lowest 
maximum absolute error values for all prediction horizons, but for 
predictions far ahead into the future, it tends to the same value as 
the CTM-v prediction. This finding could be related to the quality 
of the predicted measurements being less reliable for predictions 
further ahead in time.

When comparing against estimated reference travel times, the 
hybrid prediction is the best-performing one from a mean value per-
spective, for all time horizons. For a worst-case scenario, the hybrid 
prediction performs best for a journey taking place 15 and 30 min 
ahead in time, and the CTM-v prediction performs best for jour-
neys taking place 0 and 5 min ahead. For the prediction of journeys 
taking place up to 15 min ahead, the differences between all three 
approaches are quite small. The major difference appears for a 
journey taking place 30 min ahead, for which the naive prediction 
performs poorly, but for which the CTM-v and hybrid predictions 
have similar results as for a journey taking place 15 min ahead 
in time.

In Figure 4, the estimated and predicted travel times are shown 
for a journey taking place at the time of the prediction and for journeys 

TABLE 3  Comparison Between Estimated and Predicted 
Travel Times

Horizon

Prediction Method 0 5 15 30

MAPE (%)

Naive prediction 4.5 6.1 10.7 17.4

CTM-v prediction 3.9 5.7 7.1 8.4

Hybrid prediction 3.9 4.8 5.7 6.1

Mean Absolute Error (s)

Naive prediction 27 40 67 107

CTM-v prediction 28 35 44 52

Hybrid prediction 26 32 38 41

Maximum Absolute Error (s)

Naive prediction 443 518 525 562

CTM-v prediction 225 285 389 341

Hybrid prediction 285 333 248 287
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FIGURE 4  Travel time for journey beginning in (a) 0, (b) 5, (c) 15, and (d ) 30 min [showing estimation (green), naive prediction (black), 
CTM-v prediction only (blue), and hybrid prediction (red)].

taking place 5, 15, and 30 min ahead into the future. For a journey 
taking place at the time of the prediction (Figure 5a), the naive pre-
diction is very similar to the estimated travel time. For journeys 
taking place 5, 15, and 30 min into the future, the naive prediction 
will simply be offset by 5, 15, and 30 min, respectively. Thus, since 
the comparison is with estimated travel times, the height of each 
peak will be correctly predicted by the naive prediction, but it will 
be offset in time. During the morning peak period, the CTM-v and 
hybrid predictions manage to follow the estimation well, but for 
the afternoon peak period the hybrid prediction performs better in 
regard to capturing the start and end of the congested period, as well 
as the length of the travel time.

Figure 5 shows speed maps for the estimation, CTM-v, CTM-v 
prediction, and hybrid prediction with a 30-min prediction horizon. 
The upper part of the speed map corresponds to the end of the high-
way section illustrated in Figure 3 and vice versa for the lower part. 
First, one can see that the morning peak period is predicted rather 

well by the CTM-v, the CTM-v prediction, and the hybrid predic-
tion. The afternoon peak period is, however, more difficult. For the 
afternoon it is only the hybrid prediction that captures the last part of 
the congestion period. Overall, the afternoon is more challenging to 
model since there is a blocking back from outside the modeled net-
work. Clearly the predicted measurements in the hybrid prediction 
approach capture that aspect better.

conclUSionS and FUtUre work

This paper evaluates a hybrid prediction approach for assimilating 
parametric and nonparametric traffic state predictions and applies 
the approach on a highway section in Stockholm, Sweden. In the 
study, the nonparametric prediction has been limited to seven sensor 
locations. The CTM-v and the hybrid predictions outperform the 
naive prediction for longer prediction horizons, but there are smaller 
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differences between the two approaches. Findings also suggest that 
the hybrid prediction is an improvement compared with the CTM-v 
prediction for all prediction horizons, especially for the afternoon 
peak, for which there are large uncertainties in the input flows, split 
ratios, and capacities used in the CTM-v model.

Overall the results are encouraging for continuing the work with 
the hybrid prediction approach. For further improvement the work 
should focus on

1. The combination of more advanced techniques for predicting 
inflows and split ratio, together with predicted measurements;

2. Calibration of EnKF parameters related to predicted measure-
ment uncertainty;

3. Evaluation of alternative techniques for predicting measure-
ments; and

4. Evaluation with an increased number of sensor locations used 
for the prediction of measurements.
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