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Place du Maréchal de Lattre de Tassigny, 75775 Paris cedex 16, France
patrick.saint.pierre@gmail.com

http://www.dauphine.fr

Abstract. This article proposes a new capture basin algorithm for com-
puting the numerical solution of a class of Hamilton-Jacobi-Bellman
(HJB) partial differential equations (PDEs) [3], based on a Lax-Hopf
formula [2]. The capture basin algorithm is derived and implemented
to perform numerical computations. Its performance is measured with
highway data obtained for interstate I80 in California.

Assumptions. We posit the following assumptions

1. A concave function ψ : X �→ R on [0, ω], which vanishes at 0 and ω, equal
to ψ′(0)v for v ≤ 0 and ψ′(ω)(ω − v) for v ≥ ω.

2. A bounded continuous function v : R+ �→ Dom(ψ),
3. An upper semicontinuous initial datum N0 : X �→ R+. We set N0(0, x) :=

N0(x) and N0(t, x) := −∞ if t > 0.
4. A Lipschitz function b : R+ × X �→ R ∪ {−∞} setting the upper constraint.

We set ∀ x ∈ ∂K, ∀ t ≥ 0, γ(t, ξ) := 0 and ∀ x > ξ, γ(t, x) = −∞. This is
required to satisfy consistency assumptions

⎧
⎨

⎩

(i) ∀ t ≥ 0, ∀ x ∈ K, max (N0(t, x), γ(t, x)) ≤ b(t, x)

(ii) ∀x ∈ K, N0(x) ≤ inf
s≥0

(
x − ξ

s

∫ s

0
v(τ)dτ

)
(1)

When the function v(·) ≡ v is constant, condition (1)(ii) boil down to

∀ x ≥ ξ, N0(x) ≤ v(x − ξ)

Problem statement. Under the above mentioned assumptions, that are as-
sumed all along this paper, we shall solve the existence of a solution to the
non-homogenous HJB PDE:
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∀ t > 0, x ∈ Int(K),
∂N(t, x)

∂t
+ ψ

(
∂N(t, x)

∂x

)

= ψ(v(t)) (2)

satisfying the initial and Dirichlet conditions
{

(i) ∀ x ∈ K, N(0, x) = N0(x) (initial condition)
(ii) ∀ t ≥ 0, N(t, ξ) = 0 (Dirichlet boundary condition) (3)

and the user defined viability constraints.
∀ t ≥ 0, x ∈ K, N(t, x) ≤ b(t, x) (upper inequality constraint) (4)

Flux functions. The assumption that the flux function ψ is concave and upper
semicontinuous plays a crucial role for defining the viability hyposolution. In-
deed, since ψ is concave, the function ϕ(p) := −ψ(p) is convex and its Fenchel
transform is defined by:

ϕ∗(u) := sup
p∈Dom(ϕ)

[p · u − ϕ(p)] = sup
p∈Dom(ψ)

[p · u + ψ(p)] (5)

Recall that the fundamental theorem of convex analysis states that ϕ = ϕ∗∗ if
and only if ϕ is convex, lower semicontinuous, and non trivial (i.e. Dom(ϕ) :=
{p | ϕ(p) < +∞} �= ∅). Therefore we can recover the function ψ from ϕ∗ by

ψ(p) := inf
u∈Dom(ϕ∗)

[ϕ∗(u) − p · u] (6)

Proposition 1. Let us consider a concave flux function ψ0 defined on a neigh-
borhood of the interval [0, ω] and satisfying ψ0(0) = ψ0(ω) = 0. We assume
for simplicity that ψ is differentiable at 0 and ω, and we set ν� = ψ′(0) ≥ 0 and
ν� = −ψ′(ω) ≥ 0 We associate with it the continuous concave function ψ:

ψ(p) =

⎧
⎨

⎩

ν�p if p ≤ 0
ψ0(p) if p ∈ [0, ω]
ν�(ω − p) if p ≥ ω

Then the Fenchel transform ϕ∗ is bounded above, and its domain Dom(ϕ∗) =
[−ν�, +ν�] is bounded:

ϕ∗(u) =
{

ϕ∗
0(u) if u ∈ [−ν�, +ν�]
+∞ if u /∈ [−ν�, +ν�]

Viability hyposolution of the HJB equation [1]. We define a target C := Hyp(c)
as the subset of triples (T, x, y) ⊂ R+ × X × R such that y ≤ c(T, x) (which is
the hypograph of the function c), where the function c(t, x) is defined (here) by:

c(t, x) :=

⎧
⎨

⎩

−∞ if t > 0 and x > ξ
N0(x) if t = 0 and x ≥ ξ
0 if t ≥ 0 and x = ξ
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Fig. 1. Left: Flow-time curves. The (actual) measured inflow on the boundary x = ξ
is represented by the dashed curve. The continuous curve shows the simulated inflow
through boundary x = ξ, taking into account the highway capacity. The number of
corresponding (remaining) vehicles stored at the x = ξ boundary is shown on the dash
dotted curve. Right: Comparison between experimental values and simulated values
for the cumulated vehicle number N(t, ξ + L) between ξ and L.

The environment K := Hyp(b) is the subset of triples (T, x, y) ⊂ R+ × X × R

such that y ≤ b(T, x), which is a user-defined function (this is the hypograph of
the function b). We define the auxiliary control system :

⎧
⎨

⎩

τ ′(t) = −1
x′(t) = u(t) where u(t) ∈ [−ν�, +ν�]
y′(t) = ϕ∗(u(t)) − ψ(v(τ(t)))

(7)

where ϕ∗ is the Fenchel conjugate function of ψ, as defined previously. To
be rigorous, we have to mention once and for all that the controls u(·) are
measurable integrable functions with values in Dom(ϕ∗), and thus, ranging
L1(0, ∞; Dom(ϕ∗)), and that the above system of differential equations is valid
for almost all t ≥ 0.

Definition 1. The Viability Hyposolution. The capture basin Capt(7)(K, C)
of a target C viable in the environment K under control system (7) is the subset
of initial states (t, x, y) such that there exists a measurable control u(·) such that
the associated solution

s �→
(

t − s, x +
∫ s

0
u(τ)dτ, y +

∫ s

0
(ϕ∗(u(τ)) − ψ(v(t − τ)))dτ

)

to system (7) is viable in K = Hyp(b) until it reaches the target C = Hyp(c).
The viability hyposolution N is defined by

N(t, x) := sup
(t,x,y)∈Capt

(7)
(K,C)

y (8)

Theorem 1. Non-homogenous Dirichlet/Initialvalue Problem with in-
equality contraints. The viability hyposolution N defined by (8) is the largest
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upper semicontinuous solution to Hamilton-Jacobi equation (2) satisfying initial
and Dirichlet conditions (3) and inequality constraints (4). If the functions ψ, ϕ∗

and v are furthermore Lipschitz, then the viability hyposolution N is its unique
upper semicontinuous solution in both the contingent Frankowska sense and in
the Barron-Jensen/Frankowska sense.

Other numerical illustrations of the article [2], such as a sup-morphism prop-
erty, have been carried out using the viability algorithm. The results can be
compared with explicit analytical solutions obtained from Lax-Hopf formulas
extended to the case of boundary-value problems. The viability kernel algo-
rithm [4] is adapted to the case in which the target C and the environment
K are hypographs, which allows us to take some specificities of the problem
into account. An example of a solution computed with the algorithm is pro-
vided in Figure 2. In this Figure, one can see two computations: one of an
unconstrained solution (thick line), and one of a constrained solution (thin
lines). A cap of b(t, x) = 40 is imposed on the constrained solution, as can
be seen in this Figure. From Figure 2, one can observe that the solution with
constraints is not the supremum of the solution without constraints and the
function b.

We use the same experimental set up as

Fig. 2. Plots of N(t, x) versus t and
x. The unconstrained solution is rep-
resented by a thick line. The thin line
represents the constrained solution of
the same system (we set b(t, x) = 40
in this example). Result obtained us-
ing a Greenshields [2] flux function.

in earlier work [5] to assess the performance
of the algorithm with highway traffic data:
we use three loop detectors in interstate I80
at Emeryville. When the measured inflow
(upstream) exceeds the modeled highway
capacity (because of noise in the measure-
ments or model inaccuracy), we “store” the
corresponding vehicles at x = ξ until they
can be released into the highway. The re-
sulting curves are shown in Figure 1 (left):
the cutoff happens at ψ(v(t)) = δ above
which the vehicles have to be stored until
the highway capacity allows them to en-
ter at x = ξ. In this Figure, all numbers
of vehicles are per lane. The correspond-
ing number of “stored” vehicles is shown
in the same subfigure, and the correspond-
ing N(t, ξ+L) curves are shown in the right

subfigures, where L represents the length of the corresponding highway stretch.
The evolution N(t, ξ+L) thus represents the evolution of the cumulated number
of vehicles between ξ and ξ + L as a function of time. Both simulated and mea-
sured curves are represented on this plot and show remarkable agreement. The
differences between simulation and theory are mainly linked with uncertainties
on the numerical values of the parameters of the model.
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