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Abstract. This article proves the existence and uniqueness of a weak
solution to a scalar conservation law on a bounded domain. A weak for-
mulation of hybrid boundary conditions is needed for the problem to be
well posed. The boundary conditions are represented by a hybrid au-
tomaton with switches between the modes determined by the direction
of characteristics of the system at the boundary. The existence of the
solution results from the convergence of a Godunov scheme derived in
this article. This weak formulation is written explicitly in the context of
a strictly concave flux function (relevant for highway traffic). The nu-
merical scheme is then applied to a highway scenario with data from the
I210 highway obtained from the California PeMS system. Finally, the ex-
istence of a minimizer of travel time is obtained, with the corresponding
optimal boundary control.

Keywords: Weak solution of scalar conservation laws, Weak hybrid
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1 Introduction

This article is motivated by recent research efforts which investigate the problem
of controlling highway networks with metering strategies that can be applied
at the on-ramps of the highway (see in particular [46] and references therein).
The seminal models of highway traffic go back to the 1950’s with the work
of Lighthill-Whitham [36] and Richards [43] who tried to use fluid dynamics
equations to model traffic flow. The resulting theory, called Lighthill-Whitham-
Richards (LWR) theory relies on a scalar hyperbolic conservation law, with a
concave flux function. Very few approaches have tackled the problem of boundary
control of scalar conservation laws in bounded domains in an explicit manner
directly applicable for engineering. Unlike the viscous Burgers equation, which
has been is focus of numerous ongoing studies, very few results exist for the
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inviscid Burgers equation, which is traditionally used as a model problem for
hyperbolic conservation laws. Differential flatness [42] and Lyapunov theory [30]
have been explored and appear as promising directions to investigate.

The proper notion of weak solution for the LWR partial differential equation
(PDE), called entropy solution was first defined by Oleinik [39] in 1957. Even
though this work was known to the traffic community, it does not (as far as we
know) appear explicitly in the transportation literature before the 1990’s with
the work of Ansorge [4]. The entropy solution has been since acknowledged as
the proper weak solution to the LWR PDE [18] for traffic models. Unfortunately
the work of Oleinik in its initial form [39] does not hold for bounded domains,
i.e. it would only work for infinitely long highways with no on-ramps or off-
ramps. Bounded domains, i.e. highways of finite length (required to model on
and off-ramps) imply the use of boundary conditions, for which the existence
and uniqueness of a weak solution is not straightforward.

The first result of existence and uniqueness of a weak solution of the LWR
PDE in the presence of boundary conditions follows from the work of Bardos,
Leroux and Nedelec [8], in the more general context of a first order quasilinear
PDE on a bounded open set of R

n. In particular, they introduce a weak formu-
lation of the boundary conditions for which the initial-boundary value problem
is well-posed.

We begin this article by explaining that in general, one cannot expect the
boundary conditions to be fulfilled pointwise a.e. and we provide several exam-
ples to illustrate this fact. We then turn to the specific case of highway traffic
flow, for which we are able to state a simplified weak hybrid formulation of the
boundary conditions, and prove the existence and uniqueness of a weak solution
to the LWR PDE, the former resulting from the convergence of the associated
Godunov scheme to the entropy solution of the PDE. This represents a major
improvement from the existing traffic engineering literature, where boundary
conditions are expected to be fulfilled pointwise and therefore existence of a
solution and convergence of the numerical schemes to this solution are not guar-
anteed. We illustrate the applicability of the method and the numerical scheme
developed in this work with a highway scenario, using data for the I210 high-
way, obtained from the California PeMS system. In particular, we show that the
model is able to reproduce flow variations on the highway with a good accuracy
over a period of five hours. The last part of the article is devoted to the boundary
control of the LWR PDE and its application to a highway optimization problem,
in which boundary control is used to minimize travel time on a given stretch of
the highway.

2 The Need for a Weak Formulation of Hybrid Boundary
Conditions

This section shows three examples of the sort of trouble one runs into when
prescribing the boundary conditions in the strong sense. Numerous articles solve
a discrete version of this type of problems. Regardless of the numerical schemes
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used (Godunov [22], Jameson-Schmidt-Turkel [25, 26], Daganzo [17, 18]), these
methods suffer from the same difficulties: the authors solve a discrete problem
with strong boundary conditions which entails that the corresponding continuous
problem is usually ill-posed, i.e. does not have a solution. While the numerical
schemes listed above might still yield a numerical output, this numerical data
would be meaningless since the initial boundary-value problem does not have a
solution in the first place. The object of this work is not to make an endless list
of engineering articles which exhibit such shortcomings: we will just mention a
previous paper from one of the authors [9] and let the reader discover that this
is far from being an exception... To sum up, boundary conditions may only be
prescribed on the part of the boundary where the characteristics are incoming,
that is entering the domain.

Example 1: Advection equation. We start by considering the simple example
where the propagation speed is a constant c,

∂ρ

∂t
+ c

∂ρ

∂x
= 0 for (x, t) ∈ (a, b) × (0, T ).

In that case, one can clearly see that the boundary condition is either prescribed
on the left (x = a) if the speed c is positive or the right (x = b) if the speed is
negative. While finding the sign of the speed is quite simple in the linear case,
it becomes more subtle when dealing with a nonlinear conservation law such as
the LWR PDE as this sign is no longer constant.

Example 2: LWR PDE, shock wave back-propagation due to a bottleneck. For this
example, we consider the LWR PDE with a Greenshields flux function [24]:

∂ρ

∂t
+ v

(
1 − 2ρ

ρ∗

)
∂ρ

∂x
= 0 (1)

where ρ = ρ(x, t) is the vehicle density on the highway, ρ∗ is the jam density and
v is the free flow density (see [17, 18] for more explanations on the interpretation
of these parameters). We consider a road of length L = 30, ρ∗ = 4 and v = 1
(dummy values), and an initial density profile given by ρ0(x) � ρ(x, 0) = 2 if
x ∈ [0, 10], ρ0(x) � ρ(x, 0) = 4 if x ∈ (10, 20], ρ0(x) � ρ(x, 0) = 1 if x > 20. The
highway might be bounded or unbounded on the right at x = L = 30 (it does not
matter for our problem). We assume free flow conditions at x = L, that we can
control the inflow at x = 0, and we try to prescribe it pointwise, i.e. ρ(0, t) = 2
for all t (this corresponds to sending the maximum flow onto the highway). The
solution to this problem can easily be computed by hand (for example by the
method of characteristics, see Figure 1, left). The solution to this problem reads
����
���

ρ(x, t) = 2 if t ≤ 2(10 − x) AC: shock
ρ(x, t) = 4 if 2(10 − x) ≤ t ≤ 20 − x BC: left edge of exp. wave
ρ(x, t) = 2(1 − (x − 20)/t) if t ≥ max{20 − x, 2(x − 20)} CBD is an expansion wave
ρ(x, t) = 1 if t ≤ 2(x − 20) BD: right edge of exp.wave

As can be seen, limx→0+ ρ(x, t) = 2 for t ≤ 20 and limx→0+ ρ(x, t) = 2(1 + 20/t)
for t > 20. Thus, the boundary condition ρ(0, t) = 2 is no longer verified as soon
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Fig. 1. Left: Characteristics for the solution of the LWR PDE for Example 2. Right:
corresponding value of the solution at successive times. The arrow represents the value
of the input at x = 0, which becomes irrelevant for t ≥ 20.

as t ≥ 20. This phenomenon is crucial in traffic flow models: it represents the
back-propagation of congestion (i.e. upstream). If the location x = 0 was the end
of a link merging into the highway (that we could potentially control), the case
when ρ(0+, t) > ρ∗ is congested would correspond to a situation in which the
upstream flow (x = 0−) is imposed by the downstream flow (x = 0+), i.e. the
boundary condition on the left becomes irrelevant. When ρ(0+, t) < ρ∗ is not
congested, the boundary condition is relevant and can be imposed pointwise.

Example 3: Burgers equation. We now consider the inviscid Burgers equation on
(0, 1) × (0, T ). If we try to prescribe strong boundary conditions at both ends,
the problem becomes ill-posed. Burgers equation reads:

∂u

∂t
+ u

∂u

∂x
= 0 (2)

The initial value is u(x, 0) = 1, and the boundary conditions u(0, t) = u(1, t) = 0
on [0, 1]. The solution of (2) with these boundary conditions is for t < 1 :{

u(x, t) = x
t if x < t self similar expansion wave

u(x, t) = 1 if x > t convection to the right with speed 1

We notice that the boundary condition is not satisfied at x = 1. Since the data
propagates at speed u, they are leaving [0, 1] at x = 1 while they stay in [0, 1] as
a rarefaction wave at x = 0.

3 Traffic Flow Equation with Hybrid Boundary
Conditions

We consider a mixed initial-boundary value problem for a scalar conservation
law on (a, b) × (0, T ).

∂ρ

∂t
+

∂q(ρ)
∂x

= 0 (3)

with the initial condition
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ρ(x, 0) = ρ0(x) on (a, b)

and the boundary conditions

ρ(a, t) = ρa(t) and ρ(b, t) = ρb(t) on (0, T ).

As usual with nonlinear conservation laws, in general there are no smooth solu-
tions to this equation and we have to consider weak solutions (see for example
[10], [19], [45]). In this article we use the space BV of functions of bounded vari-
ation which appears very often when dealing with conservation laws. A function
of bounded variation is a function in L1 such that its weak derivative is uniformly
bounded. We refer the intrigued readers to the book from Ambrosio, Fusco and
Pallara [1] for many more properties and applications of BV functions. Other
valuable references on BV functions include the article by Vol’pert [48] and the
book from Evans and Gariepy [20].

In our problem, we make the assumption that the flux q is continuous and
that the initial and boundary conditions ρ0, ρa, ρb are functions of bounded
variation. When the flux q models the flux of cars in terms of the car density
ρ we obtain the LWR PDE. As explained earlier on, boundary conditions may
not be fulfilled pointwise a.e., thus following [8], we shall require that an entropy
solution of (3) satisfy a weak formulation of the boundary conditions:

L(ρ(a, t), ρa(t)) = 0 and R(ρ(b, t), ρb(t)) = 0

where
L(x, y) = sup

k∈I(x,y)
(sg(x − y)(q(x) − q(k)) and

R(x, y) = inf
k∈I(x,y)

(sg(x − y)(q(x) − q(k)) for x, y ∈ R

and I(x, y) = [inf(x, y), sup(x, y)] with sg denoting the sign function. In the
case of a strictly concave flux (such as the Greenshields [24] and Greenberg [23]
models used in traffic flow modeling), the boundary conditions can be written
as (Le Floch gives analogous conditions in the case of a strictly convex flux in
[33]): ⎧⎪⎨

⎪⎩
ρ(a, t) = ρa(t) or
q′(ρ(a, t)) � 0 and q′(ρa(t)) � 0 or
q′(ρ(a, t)) � 0 and q′(ρa(t)) � 0 and q(ρ(a, t)) � q(ρa(t))

(4)

Similarly, the boundary condition at b is:⎧⎪⎨
⎪⎩

ρ(b, t) = ρb(t) or
q′(ρ(b, t)) � 0 and q′(ρb(t)) � 0 or
q′(ρ(b, t)) � 0 and q′(ρb(t)) � 0 and q(ρ(b, t)) � q(ρb(t))

(5)

As noticed in [33], we can always assume the boundary data are entering the
domain at both ends. Indeed, if for example q′(ρa(t)) < 0 on a subset I of R+
of positive measure, the boundary data:
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ρ̃a(t) =

{
q′−1(0) if t ∈ I

ρa(t) otherwise
(6)

will yield the same solution. With this assumption the boundary conditions can
be written as:

{
ρ(a, t) = ρa(t) or
q′(ρ(a, t)) � 0 and q(ρ(a, t)) � q(ρa(t))

(7)

and {
ρ(b, t) = ρb(t) or
q′(ρ(b, t)) � 0 and q(ρ(b, t)) � q(ρb(t))

(8)

We can now define an notion of entropy solution for a scalar conservation law
(3) with initial and boundary conditions.

Interpretation of the hybrid automaton for concave flux functions. Figure 2
(left) shows the three-mode automaton corresponding to (4). The first mode,
ρ(a, t) = ρa(t) corresponds to the situation in which the boundary condition
ρa(t) is effectively applied (as in the strong sense). The second mode q′(ρ(a, t)) �
0 and q′(ρa(t)) � 0 corresponds to a situation in which the characteristics exit
the domain at x = a for both the solution ρ(a, t) and the prescribed boundary
condition ρa(t) (therefore the boundary condition does not ‘affect’ the solution).
The third mode corresponds to a supercritical ρ(a, t), i.e. ρ(a, t) ≥ ρc (see Fig-
ure 3 and [17, 18]), a subcritical ρa(t), i.e. i.e. ρa(t) ≤ ρc, and a prescribed inflow
q(ρa(t)) greater than the actual flow q(ρ(a, t)) at x = a. This corresponds to a
shock moving to the left (to see this, plug the previous quantities in the Rankine-
Hugoniot conditions), which means that the prescribed boundary condition does

Fig. 2. Left: Hybrid automaton encoding the boundary conditions at x = a, corre-
sponding to (4). A similar automaton can be constructed for (5). Right: Simplification
of the automaton corresponding to the transformation of (4) into (7). A similar au-
tomaton can be constructed for (8) from (5).
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not ‘affect’ the solution. The guards for this hybrid systems are thus determined
by the sign of the flux derivative q′(·) and the values of the flux q(·) at x = a.

Definition: A solution of the mixed initial-boundary value problem for the PDE
(3) is a function ρ ∈ L∞((a, b)×(0, T )) such that for every k ∈ R, ϕ ∈ C1

c ((0, T )),
the space of C1 functions with compact support, and ψ ∈ C1

c ((a, b)×(0, T )) with
ϕ and ψ nonnegative:

∫ b

a

∫ T

0
(|ρ − k|∂ψ

∂t
+ sg(ρ − k)(q(ρ) − q(k))

∂ψ

∂x
)dxdt � 0

and there exist E0, EL, ER three sets of measure zero such that :

lim
t→0,t/∈E0

∫ b

a

|ρ(x, t) − ρ0(x)|dx = 0

lim
x→a,x/∈EL

∫ T

0
L(ρ(x, t), ρa(t))ϕ(t)dt = 0

lim
x→b,x/∈ER

∫ T

0
R(ρ(x, t), ρb(t))ϕ(t)dt = 0

With this definition, we now establish the uniqueness by proving an
L1- semigroup property following the method introduced by Kružkov [31] (see
also the articles from Keyfitz [28] and Schonbek [44]).

Let ρ, σ be two solutions of (3), ϕ and ψ two test functions in C1
c ((0, T )) and

C1
c ((a, b)) respectively and nonnegative; the aforementioned definition yields:

b

a

T

0
(|ρ(x, t)−σ(x, t)|ψ(x)ϕ′(t)+sg(ρ(x, t)−σ(x, t))(q(ρ(x, t))−q(σ(x, t)))ϕ(t)ψ′(x)))dxdt � 0

For ψ approximating χ |[a,b], the characteristic function of the interval [a, b], we
have:

� b

a

� T

0
|ρ(x, t)−σ(x, t)|ϕ′(t)dt� lim inf

x→b

� T

0
sg(ρ(x, t)−σ(x, t))(q(ρ(x, t)−q(σ(x, t)))ϕ(t)dt

− lim sup
x→a

� T

0
sg(ρ(x, t) − σ(x, t))(q(ρ(x, t)) − q(σ(x, t)))ϕ(t)dt.

For a fixed x /∈ EL and t ∈ (0, T ), we can always define k(x, t) ∈ I(σ(x, t), ρa(t))∩
I(ρ(x, t), ρa(t)) such that:

sg(ρ(x, t)−σ(x, t))(q(ρ(x, t))−q(σ(x, t))) = sg(ρ(x, t)−ρa(t))(q(ρ(x, t))−q(k(x, t)))

+sg(σ(x, t)−ρa(t))(q(σ(x, t))−q(k(x, t))) � L(ρ(x, t), ρa(x, t))+L(σ(x, t), ρa(x, t)).

The situation is similar in a neighborhood of b which eventually yields:
∫ b

a

∫ T

0
|ρ(x, t) − σ(x, t)|ϕ′(t)dtdx � 0.
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Therefore, for 0 < t0 < t1 < T ,
∫ b

a

|ρ(x, t1) − σ(x, t1)|dx �
∫ b

a

|ρ(x, t0) − σ(x, t0)|dx

which proves the L1-semigroup property from which the uniqueness follows.

4 Numerical Methods for the Initial-Boundary Value
Problem

In this section, we prove the existence of a solution to equation (3) through the
convergence of the Godunov scheme. Let h = b−a

M and Ii = [a + h(i − 1
2 ), a +

h(i + 1
2 )) for i ∈ {0, ..., M}. For r > 0, let Jn = [(n − 1

2 )rh, (n + 1
2 )rh) with

n ∈ {0, 1, ..., N = E(1 + T
rh )}. We approximate the solution ρ by ρn

i on each cell
Ii ×Jn, with ρh the resulting function on [a, b]× [0, T ]. The initial and boundary
conditions can be written as:{

ρ0
i = 1

h

∫
Ii

ρ0(x)dx , 0 � i � M

ρn
0 = 1

rh

∫
Jn

ρa(t)dt and ρn
M = 1

rh

∫
Jn

ρb(t)dt , 0 � n � N

According to the Godunov scheme [22], ρn+1
i is computed from ρn

i by the
following algorithm:
{

ρn
i+ 1

2
is an element k of I(ρn

i , ρn
i+1) such that sg(ρn

i+1 − ρn
i )q(k) is minimal

ρn+1
i = ρn

i − r(q(ρn
i+ 1

2
) − q(ρn

i− 1
2
))

Let M0 = max(‖ρ0‖∞, ‖ρa‖∞, ‖ρb‖∞); if the CFL (Courant-Friedrichs-Lewy)
condition ([35])

r sup
|k|<M0

|q′(k)| � 1

is verified, ρh converges in L1((a, b)×(0, T )) to a solution ρ ∈ BV ((a, b)×(0, T )).
The CFL condition yields the following estimates:

|ρn+1
i | � (1 + C0h) sup(|ρn

i− 1
2
|, |ρn

i |, |ρn
i+ 1

2
|) + C1h for every i ∈ Z

∑
1�i�M

|ρn+1
i+1 − ρn+1

i | � (1 + C2h)
∑

|i|�M+1

|ρn
i+1 − ρn

i | + C3Mh2 for every M ∈ N

∑
|i|�M

|ρn+1
i − ρn

i | �
∑

|i|�M+1

|ρn
i+1 − ρn

i | + C4Mh(1 + sup
i∈Z

|ρn
i |) for every M ∈ N

from which we can deduce that a subsequence ρhn converges strongly to a func-

tion ρ ∈ L∞((a, b)× (0, T )) of bounded variation and verifying the initial condi-
tion. We also have for k of I(ρn

i , ρn
i+1)

|ρn+1
i −k| � |ρn

i −k|−r(sg(ρn
i+ 1

2
−k)(q(ρn

i+ 1
2
)−q(k))−sg(ρn

i− 1
2
−k)(q(ρn

i− 1
2
)−q(k)))
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which shows that ρ is a weak solution of (3). If ϕn = 1
rh

∫
In

ϕ(t)dt for ϕ ∈
C1

c ((0, T )), non negative, we have:�
0�n�N

sg(ρn
i+ 1

2
− k)(q(ρn

i+ 1
2
) − q(k))ϕnrh �

�
0�n�N

sg(ρn
1
2

− k)(q(ρn
1
2
) − q(k))ϕnrh+

+ih‖ϕ′‖∞T (M0 + |k|).
Let λ(t) be the weak * limit in L∞((0, T )) of a subsequence of q(ρi

1
2
); the

following inequality holds:
� T

0
sg(ρ(x, t) − k)(q(ρ(x, t)) − q(k))ϕ(t)dt �

� T

0
sg(ρa(t) − k)(λ(t) − q(k))ϕ(t)dt+

+|x − a|‖ϕ′‖∞T (M0 + |k|),

using that sg(ρn
1
2

− k)(q(ρ 1
2
) − q(k)) � sg(ρn

0 − k)(q(ρ 1
2
) − q(k)).

ρ(x, .) is of bounded variation, therefore it converges strongly in L1 sense to
a limit α ∈ L∞((0, T )) and it verifies:

sg(α(t) − k)(q(α(t)) − q(k)) � sg(ρa(t) − k)(λ(t) − q(k))

for every k ∈ R and a.e. t ∈ (0, T ). This inequality shows that λ = q(α) a.e.
and L(α(t), ρa(t)) � 0 and ρ verifies the weak boundary condition at x = a.
Similarly, ρ verifies the corresponding condition at x = b and the existence is
proved.

5 Implementation and Simulations for I201W

We now turn to the practical implementation of the Godunov scheme for the
LWR PDE. The scheme is written as follows:

ρn+1
i = ρn

i − r(qG(ρn
i , ρn

i+1) − qG(ρn
i−1, ρ

n
i ))

If the flux q is strictly concave, which is often the case in traffic flow modeling,
it reaches its only maximum at a point ρc (see Figure 3) and the numerical flux
is defined by:

qG(ρ1, ρ2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min(ρ1, ρ2) if ρ1 � ρ2,

q(ρ1) if ρ2 < ρ1 < ρc,

q(ρc) if ρ2 < ρc < ρ1,

q(ρ2) if ρc < ρ2 < ρ1.

The boundary conditions are treated via the insertion of a ghost cell on the left
and on the right of the domain, that is:

ρn+1
0 = ρn

0 − r(qG(ρn
0 , ρn

1 ) − qG(ρn
−1, ρ

n
0 ))

with ρn−1 = 1
rh

∫
Jn

ρa(t)dt, 0 � n � N for the left boundary condition and

ρn+1
M = ρn

M − r(qG(ρn
M , ρn

M+1) − qG(ρn
M−1, ρ

n
M ))
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Fig. 3. Left: Illustration of the empirical data obtained from the PeMS system. The
horizontal axis represents the normalized density ρ (i.e. occupancy, see [41, 38] for more
details). The vertical axis represents the flux q(·). Each track corresponds to a loop
detector measurement. This data can easily be modelled with a strictly concave flux
function (solid fit), for which we display the critical density ρc and the jam density, ρ∗.
Right: Location of the loop detectors used for measurement and validation purposes.

with ρn
M+1 = 1

rh

∫
Jn

ρb(t)dt, 0 � n � N on the right of the domain. We illustrate
an application of this Godunov scheme to the simulation of highway traffic. A
comparison of the density obtained numerically with the corresponding experi-
mental density measured by the loop detectors is performed. We consider I210
West in Los Angeles and focus on a stretch going from the Santa Anita on-ramp
1 to the Baldwin on-ramp 2 in free-flow conditions between midnight and 05:00
a.m. The data measured by the loop detectors is accessible through the PeMS
system (Performance Measurement System [41]); in our case the two detectors
ID are 764669 and 717664.

We measure the flow at the loop detector 764669 (left subfigure in Figure 4).
The need for signal processing is quite visible; for this example, it was done using
Fast Fourier Transform methods. Noise levels are a very important issue with
PeMS measurements, that has been covered extensively in the literature and is
out of the scope of this work. The comparison with the actual measurements
is performed at the next downstream loop detector (detector 717664), see right
subfigure in Figure 4. The results shown in this figure illustrate the fact that the
method is able to reproduce traffic flow patterns over an extended period of time
(5 hours in the present case). The numerical simulation was done with Fortran

codes from the Clawpack software developed by LeVeque and available at [12],
implemented on a Sun Blade workstation. Further model refinements would be
needed to obtain an enhanced matching of the two curves. This is also out of
the scope of this article (the reader is referred to [38] for more on this topic).

6 Optimization of Travel Time Via Boundary Control

Our next endeavor is directed towards the minimization of the mean time spent
by cars traveling through a stretch of highway between x = x0 and x = x1 via
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Fig. 4. Left: PeMS data used for the simulation, measured at loop detector 717669.
The horizontal axis represents time, the vertical axis represents the inflow at the left
boundary. Right: Comparison between loop detector measurements 717664 and flux
simulations predicted by the model at the same location. The horizontal axis is time;
the vertical axis is the vehicle flux. Source [41] .

the adjustment of the density of cars entering the highway. The results from
Ancona and Marson ([2], [3]) enable us to solve this problem. The first step
consists in studying the attainable set at a fixed point in space x1:

A(x1, C) = {ρ(x1, .)}, ρ being a solution of the LWR PDE with ρ0 = 0 and
ρa ∈ C for a given set of admissible controls C ⊂ L1

loc.
Using the method of generalized characteristics introduced by Dafermos ([15],

[16]), the attainable set is shown to be compact, the key argument being that
the set of fluxes {q(ρa), ρa ∈ C} is weakly compact in L1 (see [32] for functional
analysis in Lp spaces). The compactness of the attainable set in turn yields the
existence of a solution to the optimal control problem

min
ρa∈C

F (S(.)ρa(x1))

for F : L1([0, T ]) → R a lower semicontinuous functional and C a set of admissible
controls. We use the semigroup notation Stρa to designate the unique solution
of the LWR PDE at time t (we refer to the textbook [19] for more on semigroup
theory). In the case of traffic modeling on a highway, we wish to minimize the
difference between the average incoming time of cars at x = x1 and at x = x0
which can be written as:

min
ρa∈C

(∫ +∞

0
tq(Stρa(x1))dt −

∫ +∞

0
tg(t)dt

) (∫ +∞

0
g(t)dt

)−1

where g(t) represents the number of cars entering the stretch of highway per
unit of time. This amounts to solving the equivalent problem:

min
ρa∈C

∫ +∞

0
tq(Stρa(x1))dt
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For this particular problem, we make the following additional assumptions:

– the net flux of cars entering the highway is equal to the total number of cars
arriving at the entry: ∫ +∞

0
q(ρa(s))ds =

∫ +∞

0
g(s)ds

– for every time t > 0 the total number of cars which have entered the highway
is smaller than or equal to the total number of cars that have arrived at the
entry from time 0 to t: ∫ t

0
q(ρa(s))ds �

∫ t

0
g(s)ds

– the number of cars entering the highway is at most equal to the maximum
density of cars on the highway:

ρa(t) ∈ [0, ρm]

– after a given time T no cars enter the highway:

ρa(t) = 0 for t > T.

The map F : ρ →
∫ T

0 q(ρ(t))dt is obviously a continuous functional on L1
loc

([0, T ]), hence the existence of a solution of an optimal control ρa.
Furthermore, a comparison principle for solutions of scalar nonlinear con-

servation laws with boundary conditions established by Terracina in [47] will
allow us to find an explicit expression of the optimal control. Indeed if ρ(x, t)
is a weak solution of the LWR PDE, u(x, t) = −

∫ +∞
x ρ(y, t)dy is the viscosity

solution ([14]) of the Hamilton-Jacobi equation

∂u

∂t
+ q(

∂u

∂x
) = q(0).

Since viscosity solutions verify a comparison property [13], so will the solution
of the LWR PDE.

Since
∫ T

0 tq(Stρa(x1))dt = T
∫ T

0 q(Stρa(x1))dt −
∫ T

0

∫ t

0 q(Ssρa(x1))dsdt, the
boundary control problem can be rewritten as:

max
ρa∈C

∫ T

0

∫ t

0
q(Ssρa(x1))dsdt.

As we can assume that the boundary data is always incoming, the comparison
principle shows that the optimal control ρ̃ should verify:∫ t

0
q(ρ̃(s))ds �

∫ t

0
q(ρa(s))ds, for every t > 0 and ρa ∈ C.

Eventually we obtain the following expression of the optimal control ρ̃:

ρ̃(t)=

{
q−1(ρm) if g(t) � q(ρm) and

∫ t

0 q(ρ̃(s))ds <
∫ t

0 g(s)ds or g(t) > q(ρm)
q−1(g(t)) if g(t) � q(ρm) and

∫ t

0 q(ρ̃(s))ds =
∫ t

0 g(s)ds



564 I.S. Strub and A.M. Bayen

7 Conclusion

We have proved the existence and uniqueness of a weak solution to a scalar
conservation law on a bounded domain. The proof relies on the weak formu-
lation of the hybrid boundary conditions which is necessary for the problem
to be well posed. For strictly concave flux functions, the simplified expression
of the weak formulation of the hybrid boundary conditions was written ex-
plicitly. The corresponding Godunov scheme was developed and applied on a
highway traffic flow application, using PeMS data for the I210W highway in
Pasadena. The numerical scheme and the parameters identified for this highway
were validated experimentally against measured data. Finally, the existence of
a minimizer of travel time was obtained, with corresponding optimal boundary
control.

The hybridness of the boundary conditions is closely linked to the one-
dimensional nature of the problem (i.e. to the direction of the characteristics
and the corresponding values of the fluxes). The switches between the modes oc-
cur based on the value of the solution, which itself acts as a guard. The boundary
conditions derived in this article should thus be viewed as an instantiation of
the more general weak boundary conditions given in [8], for which a clear hybrid
structure appears in the one dimensional case, through a modal behavior.

This article should be viewed as a first step towards building sound metering
control strategies for highway networks: it defines the mathematical solution,
and appropriate hybrid boundary conditions to apply in order to pose and solve
the optimal control problem properly. Not using the framework developed here
while computing numerical solutions of the LWR PDE would lead to ill-posed
problems and therefore the data obtained through a numerical scheme would be
meaningless.

Our result is crucial for highway performance optimization, since by nature, in
most highways, traffic flow control is achieved by on-ramp metering, i.e. bound-
ary control. However, results are still lacking in order to generalize our approach
to a real highway network. For such a network, PDEs are coupled through bound-
ary conditions, which makes the problem harder to pose. Furthermore, optimiza-
tion problems arising in transportation networks often cannot be solved as the
problem derived in the last section of this article. In fact, several approaches
have to rely on the computation of the gradient of the optimization functional,
which for example could be achieved using adjoint-based techniques. Obtaining
the proper formulation of the adjoint problem, and the corresponding proofs
of existence and uniqueness of the resulting solutions represents a challenge for
which the present result is a building block.
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