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Abstract. This paper derives an optimization-based control methodol-
ogy for networks of switched and hybrid systems in which each mode is
governed by a partial differential equation (PDE). We pose the continu-
ous controller synthesis problem as an optimization program with PDEs
in the constraints. The proposed algorithm relies on an explicit formula-
tion of the gradient of the cost function, obtained via the adjoint of the
PDE operator. First, we show how to use the result of the optimization
to synthesize on/off control strategies. Then, we generalize the method
to optimal switching control of hybrid systems over PDEs: the system
is allowed to switch from one mode (or PDE) to another at times which
we synthesize to minimize a given cost. We derive an explicit expression
of the gradient of the cost with respect to the switching times. We im-
plement our techniques on a highway congestion control problem using
Performance Measurement System (PeMS) data for the California I210
for a 9 mile long strip with 26 on-ramps (controllable with red/green
metering lights) and off-ramps (uncontrollable).

1 Introduction

Physical systems governed by partial differential equations (PDEs) abound in
science and engineering: fluid mechanics, biology, control of processes, and in-
tegrated circuits are four examples. Within the realm of PDE driven systems,
we are interested in the class of systems governed by one dimensional networked
PDEs; this class includes highway networks [6], the air traffic control system [15],
and irrigation networks [14]. One common feature of these networked PDE sys-
tems is that the governing PDE for each portion of the network is linked to
neighboring PDEs through boundary conditions. However, the actuation avail-
able to control these systems depends on the problem: for irrigation channels, one
controls the boundary conditions (water inflow), using dams; in air traffic con-
trol, the control is the velocity field prescribed by air traffic controllers. For the
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present case, in which we are interested in controlling congestion on the high-
way, a standard actuation scheme consists of controlling boundary conditions
with metering lights which delay the entrance of cars onto the highway [16]. An
alternate control scheme [9] uses time varying speed limits which prevent the
creation of traffic jams in congested areas.

Numerous approaches which attempt to control highway systems rely on the
well-known Lighthill-Whitham-Richards (LWR) model [13,17], which describes
the evolution of the car density on the highway using a PDE. This PDE relates
the time derivative of the car density to the space derivative of the flux function,
where the flux function is an empirically determined function which relates the
number of cars traveling through a given section of the highway per unit of
time to the local car density. To our best knowledge, no approach has ever
tackled the problem of controlling the LWR PDE directly. Rather, most of the
research focuses on controlling the discretized LWR PDE [6,16] using classical
optimal control techniques for discrete time dynamical systems; the technique
is easier, but the underlying discrete time dynamical system sometimes exhibits
discrepancies from the original continuous model [13,17].

Recent mathematical results have enabled the characterization of the en-
tropy solution [8] as the correct weak solution of the LWR PDE for non-convex
flux functions [1]. Modern numerical analysis techniques have enabled accurate
computations of this solution [11]. Finally, recent development of adjoint-based
techniques have enabled the control of nonlinear first order PDEs [10,3].

A mathematical difficulty appears naturally in the treatment of the highway
control mentioned above: it is by its nature a hybrid problem. The metering
lights are a set of on/off systems, which one tries to regulate. Determining the
on/off sequences of actuators for distributed systems is a difficult task in general.
For the alternate control scheme, realistic time dependent speed limits require
the system to switch between modes in which the maximum allowable speed
is one of three possible values (typically 45mph, 55mph and 65mph). As will
be seen, in each of the modes (45, 55 or 65), the governing equation of the
system is a different PDE. Other approaches [16] have also characterized the
highway system as hybrid by nature and modeled different modes of the highway
(congested mode, free flow mode, etc.), each of them governed by a discrete
time dynamical system. These approaches make the problem easier to control.
However, we are interested in deriving control based on the continuous PDE
directly, before performing any discretization. This paper contains contributions
pertinent to several different aspects of the problem.

1. Concerning the model and the numerical simulations, this work is to the best
of our knowledge the first to attack the problem of accurate simulations of the
continuous LWR PDE. We demonstrate the efficiency of numerical schemes
against analytically constructed entropy solutions [1,8]. In particular, we
show excellent performance of the Jameson-Schmidt-Turkel (JST) [11] and
the Daganzo [6] schemes, which are both nonlinear. An important advantage
of the JST scheme is that it works for any flux function as well as for the
adjoint problem, which we will demonstrate here. We also show that linear
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numerical schemes such as Lax-Friedrichs, by contrast, exhibit extremely
poor performance, which raises questions about the use of these schemes.

2. We construct an adjoint based method to solve an optimization program
formulation of the control problem, which is applicable to highway networks.
We have already applied this approach successfully to air traffic control [2],
here we show how to apply this method to on/off systems.

3. We generalize the notion of optimal control to hybrid systems for which
the modes are governed by PDEs. We show how to compute gradients with
respect to the switching times between the different PDEs.

4. We apply our results to actual highway data obtained from the Performance
Measurement System (PeMS) [12] database to I210 in Los Angeles. We suc-
cessfully control a highway portion containing 26 on- and off-ramps.

This paper is organized as follows. In Section 2, we derive the network model
and validate the computational tools we will use against an analytically derived
entropy solution of the LWR PDE. In Section 3, we set up the optimal con-
trol problem as an optimization program with PDE constraints, and derive an
explicit expression of the gradient through the adjoint problem (Formula 1).
We embed this result into a gradient descent algorithm to solve the optimiza-
tion problem. We explain how to use the result to synthesize on/off switching
sequences and apply it to the I210 example. In Section 4, we generalize these
results and compute a gradient with respect to the switching times (Formula 2).

2 Eulerian Highway Network Model

2.1 PDE Model

We consider a network of N connected highway segments, indexed by i. The
density of cars on link i is denoted ρi. We call Li the length of link i, and
xi ∈ [0, Li] the coordinate on this link. Several models exist for describing the
evolution of car density on the highway. We use the Lighthill-Whitham-Richards
(LWR) model in the present study. In this model, the density obeys the LWR
partial differential equation (PDE):

Ni(ρi)
�
=

∂ρi

∂t
+

∂qi(ρi)
∂xi

= 0 (1)

in which qi(·) represents a flux function relating the flux of cars (number of cars
through a given section of the highway during a time unit) to the car density at
that location. This equation expresses that the local rate of change of car density
is equal to the space derivative of the flux of cars, i.e. conservation of mass. qi(·)
is identified empirically from highway data. Several models have been proposed
for qi(·), such as the Greenshield model [1], trapezoidal or triangular models [6,
16]. As will be seen in the next section, the computational method that we use
can handle any qi(·).

The links can merge and can diverge, have on- and off-ramps. In the context
of the present work, we will be interested in a highway portion connecting two
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Fig. 1. Example of interest for this study: portion of highway I210 East between I5
and I605 in Pasadena, decomposed into 26 links. Each of the arrows denotes an on- or
off-ramp. The numbers refer to the link detectors [12], which measure the flow through
the on- or off-ramps. The total length of this strip is 9 miles. The loop detector labeled
761100 is at mile 26 (from a given reference point upstream); the loop detector labeled
718212 is at mile 35. The flow is going East (in increasing order of the links).

highways, with a total of N on- or off-ramps (see Figure 1). The governing
equations for this system are given by:






Ni(ρi) = ∂ρi

∂t + ∂qi(ρi)
∂xi

= 0 1 ≤ i ≤ N

ρi(xi, 0) = ρ◦
i (xi) 1 ≤ i ≤ N

qi(ρi(0, t)) = qi−1(ρi−1(Li−1, t)) + qon
i (t) ∀i ∈ ON

qi(ρi(0, t)) = (1 − βi−1(t))qi−1(ρi−1(Li−1, t)) ∀i ∈ OFF
(2)

In the previous equation, ρ◦
i (xi) denotes the density of cars at time 0. ON

denotes the set of links with merging on-ramps (in Figure 1, ON = {2, 4, 5, · · · });
OFF denotes the set of links with diverging off-ramps (OFF = {1, 3, 6, · · · }).
qon
i (t) denotes the inflow of cars into link i, βi(t) ∈ [0, 1] denotes the proportion of

cars leaving link i through an off-ramp. Every xi ranges in [0, Li], and t ∈ [0, T ].
The interpretation of the two last equations in (2) is as follows: the third equation
in (2) expresses the conservation of flow at an on-ramp location (the flow into
link i is the flow from link i − 1 plus the additional flow from the ramp); and
the last equation (2) expresses the same with off-ramps. In this last equation,
βi(t) represents the proportion of flow leaving link i. For the rest of this article,
we will use the first order approximation that βi(t) = βi does not depend on
time. In order for (2) to be consistent with Figure 1, we need to set q0(ρ0(L0, t)
equal to the inflow into the highway, and β0 to the portion of this flow leaving
the highway through link 761100. Note that this framework encapsulates more
general network topologies, as was successfully done in the context of Air Traffic
Control [2] (time dependent βi and a more general network).

2.2 Numerical Schemes

In this section, we briefly demonstrate the performance of the numerical scheme
which will be used for the rest of the article to solve various forms of the PDE
model (2). The LWR PDE is a first order hyperbolic PDE, which admits several
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Fig. 2. Subplots indexed by time: entropy solution of the LWR PDE (1) with Green-
shield flux function [1] and initial condition shown for t = 0. Comparisons of the results
provided by the different numerical schemes: analytical solution constructed with the
method of characteristics (solid, sharp), Daganzo (solid, lightly shaded), JST (−−),
visually almost not differentiable from the analytical solution, Lax Friedrichs scheme
(−·). As can be seen, there is a traffic jam initially between 11 and 20 (flow is going
to the right). It dissolves on the right, because of low density downstream. The low
density upstream piles up into the region of medium density, generating a compression
wave, which becomes a shock wave. The same happens with the medium density into
the region of high density. The two shock waves collapse into a single shock wave after
t = 13, as the traffic jam further dissolves (which is known as the “N-wave” because of
its shape). The upper left plot represents the characteristics [8] in the (xi, t) plane used
to obtain the analytical solution. The two little subplots below are magnified plots of
the characteristics around A and B.
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weak solutions [8]. These solutions can exhibit features which hinder numerical
computation, such as shocks. Among these solutions, [8] shows the existence
and uniqueness of a particular solution called the entropy solution, which was
identified in [1] as the correct solution to the highway problem. We use the
Jameson-Schmidt-Turkel (JST) scheme [11] to compute the entropy solution
numerically. We show convergence of this scheme for a benchmark problem by
comparing the numerical results to an analytically computed entropy solution
obtained with the method of characteristics [8], and we compute the error as a
function of the number of gridpoints.

Numerical validation example: We consider one link (i = 1). We use the Green-
shield model: qi(ρi) = viρi (1 − ρi/ρmax

i ), where the speed vi is a constant and
ρmax

i is called jam density (above which cars stop on the highway). In the exper-
iment, vi = 1 [unit of length / unit of time] and ρmax

i = 4 [cars / unit length].
These numbers are nondimensional, but for the applications presented later, we
will use highway data. The initial conditions ρi(xi, 0), which are prescribed (in-
finite domain), and solution ρi(xi, t), which we computed, are outlined below:






ρi(xi, 0) = 1 if xi ≤ 0
ρi(xi, 0) = 1 + xi if xi ∈ [0, 1]
ρi(xi, 0) = 2 if xi ∈ [1, 10]
ρi(xi, 0) = 2 + 2(xi − 10) if xi ∈ [10, 11]
ρi(xi, 0) = 4 if xi ∈ [11, 20]
ρi(xi, 0) = 1 xi ≥ 20






abACDE ρi(xi, t) = 1
bAc ρi(xi, t) = 1+xi−vit

1− vit
2

cACBd ρi(xi, t) = 2
dBe ρi(xi, t) = 2(1 + xi−10

1−vit
)

eBCDf ρi(xi, t) = 4
EDfF ρ(xi, t) = 2(1 − xi−20

vit
)

Ffg ρi(xi, t) = 1

where the polygons of the previous formula are shown in Figure 2; we computed
this solution analytically using Rankine-Hugoniot jump conditions and self sim-
ilar expansion waves [8]. This scenario represents the backwards propagation
of a traffic jam into a medium density portion of the highway and its dissolu-
tion. Figure 2 shows three different numerical schemes: Lax-Friedrichs (LxF),
Daganzo (Dag) and Jameson-Schmidt-Turkel (JST). The numerical validation
is summarized in the following array:

Ngridpoints L2 rel. error (LxF) L2 rel. error (JST) L2 rel. error (Dag)
40 0.2404 0.1088 0.0981
80 0.1804 0.0729 0.0641
160 0.1376 0.0474 0.0430
320 0.1049 0.0299 0.0291
640 0.0787 0.0187 0.0198

As can be seen, linear numerical schemes such as LxF perform relatively poorly
at low resolutions. The excellent performance of JST and Dag (less than 2%
relative error) enables us to use them for the rest of this article. We will use
the JST, because it not only applies to the problem of interest, but also to the
adjoint, which we construct later.
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2.3 Validation of the Model against PeMS Data

Even though the LWR PDE model is not new and is acknowledged as a valid
model of highway traffic [13,17,6,16], we want to demonstrate its accuracy and
thus the accuracy of our direct numerical solutions by simulating highway traffic
using real data from the PeMS website [12]. From the PeMS database, we can
get data sampled at a 5 minute rate for the I210 East in Los Angeles. We
simulate a 9 mile long section between I5 and I605, with 26 on- and off-ramps
(see Figure 1). The highway has 5 lanes and a carpool lane, which become 4
lanes and a carpool lane at Link 14. We can compute the flux functions qi(·)
empirically from the PeMS data. We have access to both flux and density at the
on- and off-ramps as well as on the highway, using algorithms available in [12].
At the on-ramps, we can use this data to compute the qon

i (t) directly. At the
off-ramps, we can evaluate the βi as the ratio of the exiting flow over the flow
on the highway. We perform a validation over four hours of traffic. The results
are shown in Figure 3 for 35 minutes, and are available in movie format at [19].
The simulation starts at 14:00, captures the increase in density until its peak
around 17:00. After 17:00, it stays at the peak and captures an almost steady
state car density, jammed upstream. The discrepancies between measurements
and simulations observed in Figure 3 have several causes we list: exact location of
the sensors on the highway, noise in the data, lack of data, sensor malfunctions,
and highway configuration. Despite these discrepancies, we are able to capture
the propagation of congestion on the highway, which is our goal; this comparison
thus demonstrates the validity of the model for our purposes.

3 Gradient Computation via the Adjoint Problem

We can now use the framework presented in the previous section to design a
control methodology for the network problem. For this section, the control vari-
ables are the qon

i (t), which we can adjust in order to prevent the density on the
highway from becoming too high. We first explain how to synthesize a set of
continuous qon

i (t), and then how to use it to regulate the metering lights on the
highway with an on/off control strategy.

3.1 PDE Constrained Optimization Formulation of Control
Problems

We want to optimize a cost function subject to the constraints inherent to the
problem and imposed by the available control. The framework presented below is
very general and allows any cost function. We will illustrate this by maximizing
the Vehicle Miles Traveled (VMT), as defined in [5], which represents the sum of
distances driven by cars on a highway section over a time interval. The VMT is
very easily expressed as a function of qi(ρi(·)), as can be seen in the cost function
of the following optimization program:
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Fig. 3. Simulation for 35 minutes of traffic for I210 East. The horizontal axis is the
distance (in miles, see Figure 1); the vertical axis is the density (in vehicles per mile).
The solid thin curve is the result of the simulation. It is obtained with the JST scheme.
The time step is on the order of 0.25 sec., i.e. we compute the (simulated) data every
0.25 sec.; it is displayed every 150 sec., and compared to the measured data. The
measured data is available every 5 minutes. It is displayed when measured (thick line),
and does not change until the next measurement (therefore the dash-dotted curves are
just copies of the previous thick curve). This data is extracted from a movie obtained
for four hours of traffic, available at [19].

max:
∑N

i=1

∫ Li

0

∫ T

0 qi(ρi(xi, t))dxidt
s.t.: (2)

0 ≤ qon
i (t) ≤ qmax,i(t)

(3)

The constraints in the previous optimization program are (2), which are the
governing equations of the system, and 0 ≤ qon

i (t) ≤ qmax,i(t), which sets a
bound on the number of cars that can be let into the highway (qon

i (t) is the control
variable which we want to compute for this study, and from which we want to
extract the on/off sequence for the switching metering light at on-ramp i). Using
a standard log barrier technique [4] to avoid constraints in the control, we can
transform the problem into:
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min: J �
= − ∑N

i=1

∫ Li

0

∫ T

0 qi(ρi(xi, t))dxidt

− 1
M

∑

i∈ON

∫ T

0 log(qon
i (t)(qmax,i(t) − qon

i (t)))

s.t.: (2)

(4)

From [4], we know that if M is a positive real number, then problems (3) and (4)
will be equivalent in the limit M → +∞. This optimization program is non-
convex, nonlinear and has constraints in the form of PDEs, which makes it
impossible to use standard optimization tools [4]. We therefore will derive a
methodology to compute the gradient of the cost function, in order to perform
this optimization.

3.2 Derivation of the Adjoint of the LWR Problem

The computation of the gradient is done via the adjoint problem, which we com-
pute as follows. The method is adapted from [10,3] and extended to a network
problem involving multiple PDEs coupled by boundary conditions. In order to
compute the gradient, we perturb the variables (control qon

i and state ρi), and
compute the corresponding expression of the perturbed cost function. Each quan-
tity is written as ρi = ρi + ρ′

i, qon
i = q̄on

i + qon′
i , J = J̄ + J ′ etc, where the

overline denotes nominal and the prime perturbation. The result reads:

J ′ = −
N∑

i=1

∫ Li

0

∫ T

0
ci(ρ̄i)ρ′

idxidt − 1
M

∑

i∈ON

∫ T

0

(
qon

i
′(t)

qon
i (t)

− qon
i

′(t)
qmax,i(t) − qon

i (t)

)

dt

In the previous formula, ci denotes the first derivative of the flux function
dqi(ρi)/dρi, called the celerity. Written as such, this expression cannot be used
practically, since it depends on the state ρ′

i which cannot be controlled directly.
We compute the linearized differential operator N ′

i (·) associated with the LWR
operator Ni(·) from (2), and appropriate perturbed boundary and initial condi-
tions:





N ′
i (ρ̄i)ρ′

i := ∂ρ′
i

∂t + ∂
∂xi

(ci(ρi)ρ′
i) = 0 1 ≤ i ≤ N

ρ′
i(0, xi) = 0 1 ≤ i ≤ N

ci(ρ̄i(0, t))ρ′
i(0, t) = ci−1(ρ̄i−1(Li−1, t))ρ′

i−1(Li−1, t) + qon
i

′(t) ∀i ∈ ON
ci(ρ̄i(0, t))ρ′

i(0, t) = (1 − βi−1(t))ci−1(ρ̄i−1(Li−1, t))ρ′
i−1(Li−1, t) ∀i ∈ OFF

where dependencies in xi and t are omitted when trivial. As usual [10,3], the
linearized operator depends on the nominal flow ρi. We denote by 〈·|·〉i the inner
product, defined for any two functions ρ∗

i and ρ′
i by:

〈ρ∗
i |ρi〉i :=

∫ T

0

∫ Li

0
ρ∗

i (xi, t)ρi(xi, t)dxidt (5)

We denote by ρ∗
i the adjoint variable of ρ′

i, and by N ∗
i (ρi) the adjoint operator

of N ′
i (ρi), defined algebraically by the adjoint identity:

〈ρ∗
i |N ′

i ρ
′
i〉i

�
= 〈N ∗

i ρ∗
i |ρ′

i〉i + bi (6)
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where bi denotes the boundary conditions. The adjoint operator and the bound-
ary conditions can be computed explicitly:

{
Ni

∗ = −∂(.)
∂t − ci(ρ̄i)

∂(.)
∂xi

bi =
∫ Li

0 ρ∗
i ρ

′
i|T0 dxi +

∫ T

0 ρ∗
i ci(ρi)ρ′

i|Li

0 dt
(7)

Note that the adjoint depends on ρi. Let ρ∗
i be the solution of the following PDE:

Ni
∗(ρ∗

i ) = ci(ρ̄i(xi, t)) (8)

Then, using the adjoint identity, we can plug Ni
∗(ρ∗

i ) into J ′; using the boundary
conditions of (7), we can eliminate all perturbed states from J ′ provided:






ρ∗
i (xi, T ) = 0 1 ≤ i ≤ N

ρ∗
i (Li, t) = 0 i = N

ρ∗
i−1(Li−1, t) = ρ∗

i (0, t) i ∈ ON
ρ∗

i−1(Li−1, t) = (1 − βi−1)ρ∗
i (0, t) i ∈ OFF

(9)

which provides the following formula:

Formula 1 (Reduced gradient formulation): The perturbation of the cost
function can be expressed as the inner product of the gradient and the control
variable as follows

J ′ =
∑

i∈ON

〈

−ρ∗
i (0, ·) − 1

M

(
1

q̄on
i (·) − 1

qmax,i(·) − q̄on
i (·)

)∣
∣
∣
∣ qon

i
′(·)

〉

[0,T ]
(10)

where 〈·|·〉[0,T ] denotes the inner product w.r.t. t only.

We can now use Formula 1 to embed the gradient computation into an algorithm
to solve the control problem through the optimization program (4):

Algorithm 1 (adjoint based gradient optimization): The follow-
ing algorithm converges to a minimum of the optimization program (4):

0 Start with a guess qon
i ≤ qmax,i;

1 Compute the ρ̄i with JST from the known ρ◦
i for all i, for a small M ;

2 Compute the solution ρ̄∗
i of (8)-(9) using ρ̄i computed in 1, for all i;

3 Compute the optimal update {qon′
i }i∈{1,··· ,N} using (10) from Formula 1;

4 Use steepest descent with backtracking to update qon
i for all i;

5 Compute ρ̄i with updated qon
i . Unless converged, go back to 2;

6 Unless log term is negligible, increase M and go back to 2.

The solution of this algorithm converges [4] to a solution of the initial optimiza-
tion problem (3) in the limit M → ∞. The backtracking procedure is sometimes
referred to by the name of the more general Armijo condition [7,4].

The entropy solution of the LWR equation is known to be discontinuous (as
was shown in the validation example). The gradient derivation however is only
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Fig. 4. Congestion control results for the highway portion shown in Figure 1. The
horizontal axis is the distance (in miles, see Figure 1); the vertical axis is the density
(in vehicles per mile). The critical density, above which qi is the horizontal line with
one step (its value decreases when the highway becomes 4 lanes between mile 29 and
30). The uncontrolled density is the solid line enclosing the shaded area. The density
controlled with continuous control is the dark solid line below the critical density; the
density controlled with metering control is the bright solid below the critical density,
with small wiggles. The full simulation is available as a movie at [19].

valid for infinitesimal ρ′, which we know is not true in presence of shocks. In
our simulations, we add a logarithmic barrier to the density, in order to avoid
exceeding the critical density. Given the triangular expression of our fit of qi,
we can prove very easily that this will prevent the appearance of shocks. We
will also show that this method works in practice in presence of shocks, even
though a more careful analysis of the first order perturbation is necessary to
mathematically validate this approach.

3.3 Application to On/Off Switching for Metering Traffic

From the previous section, we now can compute the continuous qon
i in order

to prevent congestion of the network. We call the corresponding control input
continuous control. Because these continuous functions must be implemented as
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on/off metering lights, we can construct a set of tn from these continuous func-
tions defined by

∫ tn+1

tn
qon
i (t)dt = qmax,iTgreen. Here, Tgreen is the duration of the

green light metering, which, after satisfying a minimum practical requirement,
we choose arbitrarily (in practice five seconds); t0 is the time at which we want
to start the metering, tn+1 can be solved recursively from tn, knowing qon

i . We
set the light to red in [tn, tn+1 − Tgreen] and to green in [tn+1 − Tgreen, tn+1]. By
construction, tn ≤ tn+1 − Tgreen. We call metering control the resulting control.
It is clear that the same amount of flow is released into the network over a time
interval of [tn, tn+1] as with the continuous control, but the corresponding solu-
tion is suboptimal, since it does not release all the flow according to qon

i . Figure 4
shows the results of the simulations obtained for the highway system shown in
Figure 1, for 10 minutes of traffic. The goal of this simulation is to demonstrate
the capability of maintaining the density below the critical density. For this, we
take real on-ramp flows (from PeMS data), and multiply them by 10. As can
be seen, in absence of control, the density (solid lines above the critical density)
almost immediately exceeds the critical density (thick horizontal line) at the on-
ramps. Within less than one minute, this density spreads out and progressively
jams the rest of the highway (the jam density for this portion of the highway is
on the order of 1000 cars / mile). The result of the continuous control can be seen
to always remain below the critical density. The metering control only exceeds
the critical density for very small amounts of time at locations dispersed over
the highway strip. The effect of the continuous control is to increase the VMT by
42% with respect to traffic without metering; in presence of sampling (metering
control), the VMT is increased by 41%. If the inflows were only multiplied by 2
or 3, we might be able to get similar results by running longer experiments (it
takes a significant amount of time for the highway to become saturated), and
the benefit of the metering control only appears once the highway is jammed.

4 Hybrid PDE Switching

In the previous section, we derived adjoint-based control for a continuous prob-
lem, and implemented it as a discrete approximation in order to use metering
lights; in this section, we consider a true hybrid problem, which is based on reg-
ulation of car speed limits [9]. In this context, each link i can be in one of finitely
many modes, indexed by j, and can switch between these modes. The goal of
this section is to derive a counterpart to Formula 1 for the case in which the
control variables are switching times instead of boundary conditions. Mode j is
represented by an LWR PDE which incorporates the speed limit in that mode
for link i. Consider an infinitely long road, with density ρ. Let T > 0 be given,
and consider 0 = τ0 < τ1 < · · · < τM < τM+1 = T , where the τj , j ∈ {1, · · · , M}
are not known a priori. Assume that the car density on the highway is governed
by the following PDE:

Nτ (ρ)
�
=

∂ρ

∂t
+

M∑

j=0

χ[τj ,τj+1](t)
∂qj(ρ)

∂x
− ε

∂2ρ

∂x2 = 0 (11)
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In the previous formula, χ[τj ,τj+1](t) = 1 for t ∈ [τj , τj+1], and 0 otherwise; the
qj(·) are functions indexed by j, representing the flux function of the road in
different modes (i.e. with different speed limits). Finally, ε is a small diffusion
coefficient, which enables us to eliminate shocks, while preserving the large scale
shape of the solution. As a result, we expect the solution of (11) to be smooth.1

The interpretation of (11) is as follows: for t ∈ [τj , τj+1], ρ is governed by the
LWR PDE corresponding to qj(·) (flux function incorporating maximum allow-
able speed for mode j) augmented by a small diffusion operator to smooth the
solution. Note that the order of the switching problem is known a priori.

This problem falls into the class of hybrid systems, where each mode is mod-
eled by a different PDE governing the state. The application of adjoint-based
optimization to this problem is, to our best knowledge, new. A counterpart for
the conventional hybrid system case in which each mode is governed by an ODE
is the problem of optimal control of switching times, for which recent results are
presented in [18,7]. In the context of discrete linear hybrid dynamical systems for
the same highway problem, observability and controllability results are available
in [16].

The control problem consists in maximizing the following cost function:∑M
j=0

∫

R

∫ τj+1

τj
p(x)q(ρ(x, t))dxdt, where the control variables are the τj , j ∈

{1, · · · , M}, and p(x) is a penalty function, which is arbitrary (for example
we might penalize more heavily locations in which we would like fewer cars). In
mathematical terms,

min: J �
= − ∑M

j=1

∫

R

∫ τj+1

τj
p(x)qj(ρ(x, t))dxdt

s.t.: (11), with ρ(x, 0) = ρ◦(x) given
0 = τ0 < τ1 < · · · < τM < τM+1 = T

(12)

We apply the same technique as before: we compute the first variation of J ,
obtained by perturbation of the τj : call ρ the solution of Nτ (ρ) = 0, and ρ the

solution of Nτ (ρ) = 0 (nominal flow). Let ρ′ �
= ρ − ρ. Defining

N ′
τ (ρ)ρ′ �

=
∂ρ′

∂t
+

M∑

j=0

χ[τj ,τj+1](t)
∂cj(ρ)ρ′

∂x
− ε

∂2ρ′

∂x2

it can be shown that ρ′ satisfies the following relation:

N ′
τ (ρ)ρ′ = −

M∑

j=0

(
σ[τj ,τj ](t) + σ[τj+1,τj+1](t)

) ∂qj(ρ)
∂x

(13)

1 Analytical solutions computed for benchmark examples with three links and one
switch, available at [19] have shown that numerous undesirable phenomena occur
at boundaries of the links and switching surfaces (shocks and expansion waves are
generated). In order to cast this problem in a mathematically sound framework, it is
necessary to add this diffusion operator to the PDE, which “smooths” the solution
and avoids problems of differentiability of the solution.
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where σ[τj ,τj ] = χ[τj ,τj ] if τj < τ j and σ[τj ,τj ] = −χ[τj ,τj ] otherwise. The first
variation of J can be computed in terms of the nominal, perturbed, and pertur-
bation variables: calling τ ′

j
�
= τj − τ j , we have

J ′ =
M∑

j=1

τ ′
j

∫

R

p(x)[qj(ρ) − qj−1(ρ)]dx −
M∑

j=1

∫

R

∫ τj+1

τj

p(x)cj(ρ)ρ′dxdt

Following the steps of the previous section, we can define the adjoint of N ′
τ (ρ)

by the identity

〈ρ∗|N ′
τ (ρ)ρ′〉 �

= 〈N ∗
τ (ρ)ρ∗|ρ′〉 + b

A double integration by parts provides the following explicit form of the adjoint:

N ∗
τ (ρ)ρ∗ = −∂ρ∗

∂t
−

M∑

j=1

χ[τj ,τj+1]qj(ρ)
∂ρ∗

∂x
− ε

∂2ρ∗

∂x2

Using the continuity of ρ′ and ρ∗ at t = τ j , the fact that ρ′(x, 0) = 0, the “good
choice” ρ∗(x, T ) = 0, and the assumption that limx→±∞ ρ(x, t) = 0, as well as its
derivatives, we get b = 0. Now making the “good choice” N ∗

τ (ρ)ρ∗ = −p(x)cj(ρ),
we can substitute 〈N ∗

τ (ρ)ρ∗|ρ′〉 into J ′. After using the adjoint identity, we
obtain:

J ′ =
M∑

j=1

τ ′
j

∫

R

p(x)[qj(ρ) − qj−1(ρ)]dx + 〈ρ∗|N ′
τ (ρ)ρ′〉

which we can evaluate using (13). The result provides us with the following
expression of the first variation of J .

Formula 2 (Gradient with respect to switching): The perturbation of
the cost function can be expressed as the inner product of the gradient and
the control variables as follows

J ′ =
M∑

j=1

τ ′
j

∫

R

{

p(x)[qj(ρ) − qj−1(ρ)] + ρ∗(x, τ j)
{

∂qj(ρ)
∂x

− ∂qj−1(ρ)
∂x

}}

t=τj

dx

Formula 2 is a first step towards computing the gradient with respect to switching
for the network problem of Section 2. For this, one major difficulty inherent to the
network needs to be overcome: the discontinuities of the solutions generated by
boundary conditions and perturbation of the inflows (which do not appear in the
infinite road problem). This is to our best knowledge a known open problem in
fluid mechanics, whose solution will enable the computation of the first variation
of the cost function.
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5 Conclusion

We have shown how to synthesize hybrid controllers for systems governed by
PDEs, via an adjoint-based computation of the gradient, which we have em-
bedded in an optimization algorithm. We have shown how to make use of very
efficient numerical schemes to compute these gradients accurately, and have per-
formed simulations on a highway congestion problem with PeMS data. We also
are interested in computing the Hessian of the optimization problem via the
adjoint, in order to avoid the use of steepest descent, for obvious efficiency rea-
sons. We are still in the process of determining when this is possible. We are
also interested in higher order models of highway traffic (using second order
PDEs). Finally, we will apply these techniques to other networks of PDEs, such
as irrigation channels [14], in order to demonstrate the generality of the method.
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