
Guaranteed Overapproximations of Unsafe Sets

for Continuous and Hybrid Systems:
Solving the Hamilton-Jacobi Equation Using

Viability Techniques�

Alexandre M. Bayen1, Eva Crück2, and Claire J. Tomlin1

1 Hybrid Systems Laboratory, Stanford University, Stanford, CA
bayen@stanford.edu, tomlin@stanford.edu

2 Laboratoire de Recherches Balistiques et Aérodynamiques, Vernon, France
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Abstract. We show how reachable sets of constrained continuous and
simple hybrid systems may be computed using the minimum time-to-
reach function. We present an algorithm for computing a discrete ap-
proximation to the minimum time-to-reach function, which we prove to
be a converging underapproximation to the actual function. We use the
discrete minimum time-to-reach function for simple hybrid systems to
compute overapproximations of unsafe zones for aircraft in a sector of
the Oakland Air Traffic Control Center, leading to the automatic gener-
ation of conflict-free aircraft maneuvers.

1 Introduction

It is well known that verification of system safety may be achieved by computing
the reachable set of states, that is, the set of all states from which the system has
a trajectory which enters the set of unsafe states (or target). If the initial state of
the system is outside of this set, then the safety property is verified. The design
of methods to efficiently compute this set for continuous and hybrid systems
remains a tough problem, though progress has been made for hybrid systems with
linear or affine dynamics, or for which the set representation can be simplified
to, for example, polyhedra or ellipsoids [1, 11, 6]. In previous work of Mitchell,
Bayen, and Tomlin [16], we have performed this reachable set computation using
a convergent approximation of a level set function J(x, t), which is the solution of
a time varying Hamilton-Jacobi Equation (HJE), such that {x ∈ R

N : J(x, t) ≤
0} is the set of states from which the system has a trajectory which reaches the
target set {x ∈ R

N : J(x, 0) ≤ 0} in at most t time units.
In this paper, we consider the same reachability problem, using a different

function to encode the reachable set: we define the minimum time-to-reach func-
tion θKC (x) to be the minimum time for a trajectory of the system, starting at
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state x, to reach the target set C while staying in a set K. The set of states
from which the system has a trajectory which reaches the target set in at most t
is thus {x ∈ R

N : θKC (x) ≤ t}. The minimum time-to-reach function has several
interesting properties, which we will exploit here. First, the minimum time-to-
reach function is known to exist and to be the unique Crandall-Evans-Lions
viscosity solution ([12]) of a particular HJE (see Bardi [4]). Second, there exist
numerical algorithms ([17, 10]) based on viability techniques (see Aubin [2, 3])
which compute guaranteed underapproximations of the minimum time-to-reach
function, and therefore overapproximations of the reachable set, in the presence
of constraints. These algorithms are based on discrete time, discrete state ap-
proximations of the continuous dynamics. Third, this function provides direct
access to the “survival time” of the system within the reachable set, which is
information that may readily be used for control purposes.

In this paper, we first define the minimum time-to-reach function in the con-
text of both Hamilton-Jacobi equations and viability theory (set valued analysis).
We present the first complete instantiation of an algorithm proposed by Saint-
Pierre [18] in which we combine ideas from [8, 9] into a self-sufficient algorithm,
which computes an underapproximation of this function. This algorithm actu-
ally computes the discrete minimum time-to-reach function for a discrete time,
discrete state approximation of the continuous dynamics, whose trajectories we
show to be “close”, in a well-defined sense, to corresponding trajectories of the
continuous dynamics. This discrete minimum time-to-reach function converges
to the continuous minimum time-to-reach function as increments in the space
and time step converge to zero: we generate proofs (inspired from [8, 9]) of well
posedness and convergence. We provide a numerical validation of this algorithm
by assessing its rate of convergence to the continuous function through two text-
book examples (for which we know the continuous solution). In the second part
of this paper, we consider the problem of maneuver synthesis in Sector 33 of the
Oakland Air Traffic Control Center, which is one of the busiest sectors within
this Center. We present an algorithm for computing the minimum time-to-reach
function for hybrid and reset systems with one switch or reset. We then apply
this algorithm to the generation of control policies for heading change or flight
level change for sequences of aircraft.

Thus, the contributions of this paper are in the development and numerical
implementation of a fast algorithm for computing a discrete underapproxima-
tion of the continuous minimum time-to-reach function, in the adaptation of the
proofs of convergence of [8] to this special case, and in the extension of this
method to the computation of guaranteed overapproximations of reachable sets
for simple hybrid and reset systems (a recent previous extension has focussed
on impulse differential inclusions [3]). Additional contributions are in the appli-
cation of this algorithm to synthesizing safe maneuvers for aircraft in air traffic
control. We show that the algorithms presented here, while less accurate than
level set techniques, have advantages in the form of guaranteed set overapprox-
imation, and survival time information.
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2 Computing Reachable Sets of Continuous Systems

2.1 Reachability Using Minimum Time-to-Reach Functions

Let us consider the following control problem:{
ẋ(t) = f(x(t), u(t)), t > 0
x(0) = x

(1)

where u(·) ∈ U := {u : [0,+∞[→ U, measurable} and U is a compact metric
space, x ∈ X = R

N , and f is continuous in u and Lipschitz-continuous in x.
Following Aubin [2] we rewrite (1) in set valued form:{

ẋ(t) ∈ F (x(t)) := {f(x, u)}u∈U
x(0) = x

(2)

The set of solutions of (2) (equivalently of (1)) is denoted SF (x). Consider the
following problem. Let K ⊂ X be a constraint set and C be a closed set in K.
Find the set of initial conditions x for which there exists a trajectory starting at
x remaining in K and reaching C in finite time. In mathematical terms, we seek

WK
C = {x ∈ K : ∃x(·) ∈ SF (x), ∃t ≥ 0, x(t) ∈ C ∧ (∀s < t, x(s) ∈ K)} (3)

We define the minimum time-to-reach function as:

θKC (x) = inf
x(·)∈SF (x)

inf{t ∈ R
+ : x(t) ∈ C ∧ (∀s < t, x(s) ∈ K)} (4)

Note that θKC (x) = +∞ if all the trajectories originating at x leave K before
reaching the target, or stay in K forever without reaching C.

Fact 1 WK
C may be computed using the minimum time-to-reach function:

WK
C = Dom

(
θKC

)
:= {x ∈ K : θKC (x) < +∞} (5)

where Dom (·) denotes the domain of definition of the function θKC , or the set of
points at which it is defined (here that is the set of points at which it is finite).

2.2 Viscosity Solution of the Reachability Problem Using Viability

The minimum time-to-reach function θR
N

C defined by (4) for (1) or (2) is known
to be the viscosity solution of the following HJE (Bardi [4]):


H(x,DθR

N

C ) = 1 in Ω\C
θR

N

C = 0 in ∂C

θR
N

C (x) → +∞ as x → ∂Ω

(6)

where Ω ⊃ C is an open set. Note that the proofs of Bardi [4] hold when there
are no constraints, i.e. K = X = R

N here, and under local controllability as-
sumptions. For a more general Hamilton-Jacobi framework, see Frankowska [13].
The Hamiltonian of the system is given by: H(x, p) = maxu∈U{−p · f(x, u)}.
The function θKC can also be characterized with the help of the viability kernel
of an extended dynamics of our original system (see [10] for more details):
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Definition 1. For set-valued dynamics1 F : X ; X and a set K ⊂ X, we
define the viability kernel of K as:

ViabF (K) = {x ∈ K : ∃x(·) ∈ SF (x), ∀t ≥ 0 x(t) ∈ K} (7)

Intuitively, the viability kernel is the set of points for which there exists a solution
to (2) staying in K forever. The following can be found in [9]:

Proposition 1. Assume that in (2), F is uppersemicontinuous2 with compact
convex nonempty values and that K and C are closed. Then

Epi
(
θKC

)
= ViabΦ

(
K × R

+
)

(8)

where Epi
(
θKC

)
:= {(x, y) ∈ K × R

+ : y ≥ θKC (x)} denotes the epigraph of the
function θCK , i.e. the set of points above its graph, and where

Φ(x) =
{
F (x) × {−1} if x /∈ C
co{F (x) × {−1}, {0, 0}} if x ∈ C

(9)

In (9), co denotes the closure of the convex hull of the set between brackets (i.e.
the closure of the smallest convex set containing it). Proposition 1 states that the
set of points above the graph of the minimum time to reach function is the set of
initial states (x, y) ∈ K × R

+ such that the trajectories (x(·), y(·)) ∈ SΦ((x, y))
reach C × R

+ in finite time. Even if we do not make direct use of (7,8,9) in
the present paper, they have proved crucial in the development of the tech-
niques used here. Indeed, Proposition 1 links the minimum time-to-reach func-
tion to the viability kernel and therefore enables the use of the viability kernel
algorithm (Frankowska and Quincampoix [14]) whose numerical implementation
(Saint-Pierre [17]) provides a guaranteed overapproximation of Epi

(
θKC

)
. In sub-

sequent work, Cardaliaguet and al. [8] tailored the viability kernel algorithm to
the computation of the minimum time-to-reach function. In [18], Saint-Pierre
proposes a further simplification this algorithm. In the next section, we present
our numerical algorithm inspired by [18].

2.3 Approximation Algorithm

We present a proof of the convergence of the underapproximation algorithm for
the minimum time-to-reach function under state constraints, θKC , adapted from
[9, 18] for our design. The inclusion of state constraints will allow us to ignore the
problem of boundary conditions. It gives good insight into the approximation
procedure: the algorithm computes the exact minimum time-to-reach function
for a discrete time dynamics defined on a discrete state space. Hence, we begin
by showing how we can define a fully discrete dynamics whose trajectories are
good approximations of the trajectories of system (2) (in a sense that will be
defined).
1 In the sequel, we shall use the arrow ; for “set valued” maps.
2 A set valued map F : X ; X with compact values is uppersemicontinuous iff
∀x0 ∈ X, and ∀ε > 0, ∃η > 0 such that ∀x ∈ x0 + ηB, F (x) ⊂ F (x0) + εB.
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Numerical Approximation of Continuous Dynamics. We endow X with
the Euclidean norm ‖·‖, and we denote by B the unit ball under this norm.
For h > 0, we set Xh =

(
hN/

√
2
)N

, where N is the set of natural numbers.
Then ∀x ∈ X , ∃xh in the ball x+ hB. Hence, Xh is a discrete approximation of
the state space X . The following theorem defines approximations of SF (x) of the
system (2) by the set of trajectories SΓ (xh) of discrete dynamics Γ : Xh ; Xh.

Theorem 1 (Relationship between continuous and discrete trajecto-
ries). Assume that F : X ; X is upper semicontinuous with nonempty convex
compact values and is l-Lipschitz. Assume moreover that there exists M > 0
such that for all x ∈ K, supy∈F (x) ‖y‖ ≤ M . For a mesh h > 0 and a time
step ρ > 0, we define discrete dynamics on Xh:

xn+1
h ∈ Γρ,h(xnh) := [xnh + ρ ( F (xnh) + r(ρ, h)B )] ∩Xh, (10)

where r(ρ, h) = lh + Mlρ + 2hρ , and we define the set of trajectories of this
system as SΓρ,h

(xh). Then a trajectory x(·) of system (2) defines trajectories of
system (10) in the following way:

∀{xnh} ∈ {{ynh} : ∀n ∈ N, ynh ∈ (x(nρ) + hB )} , {xnh} ∈ SΓρ,h
(xh), (11)

and a trajectory {xnh} ∈ SΓρ,h
(xh) is close to a trajectory x(·) ∈ SF (xh) in the

following sense: ∀t ≥ 0

‖x(t) − x̂(t)‖ ≤
{(

( M + r(ρ, h) ) ρ + r(ρ,h)
l

)
(elt − 1) if l > 0

2 h
ρ t if l = 0

(12)

where x̂(t) = xnh + xn+1
h

−xn
h

ρ (t− nρ), for n ∈ N and t ∈ [nρ, (n+ 1)ρ], represents
a continuous trajectory interpolating points in {xnh}.
Proof: Please see Appendix. This theorem states that for all ρ and h, the
dynamics (10) is an overapproximation of dynamics (2) in the following sense:
all trajectories of system (2), when discretized with time step ρ and projected on
Xh, are trajectories of (10); and all the trajectories of (10), when interpolated as
in x̂(t) above, are approximations of trajectories of (2), with an upper bound on
the error given by an increasing function of η(ρ, h) (with η(ρ, h) = 2h/ρ if l = 0)
and of time. Therefore, the smaller the η(ρ, h), the better the approximation.
Moreover, η(ρ, h) tends to 0 if and only if ρ, h and h/ρ tend to 0. This will be
used in the approximation algorithm for the minimum time-to-reach function.

Approximation of the Minimum Time-to-Reach Function. We shall now
define a fully discrete target problem which approximates the target problem de-
fined for continuous time and state space, and shall prove relationships between
the discrete minimum time-to-reach function and the continuous one. We shall
use Θ to denote the discrete approximation of θKC , its sub/superscripts will de-
pend on context (and will always correspond to the sub/superscripts of θ).
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We begin by defining a discrete approximation, and the sense in which dis-
crete functions can converge to continuous functions.

Definition 2. We say that a discrete function Ψh : Xh → R is an underapprox-
imation of a function θ : X → R if

∀xh ∈ Xh, ∀x ∈ (xh + hB), Ψh(xh) ≤ θ(x),

and for a family (or a sequence) indexed by the set Ξ (containing elements called
ξ) denoted {Ψh,ξ}, we write lim(h,ξ)→(0+,ξ0) Ψh,ξ = θ if

∀x ∈ X, lim
(h,ξ)→(0+,ξ0)

sup
xh∈(x+hB)∩Xh

Ψh,ξ(xh) = θ(x).

If moreover {Ψh,ξ} is a underapproximation of θ for all h > 0 and all ξ ∈ Ξ, we
say that it defines a converging underapproximation scheme of θ.

Theorem 2 (Discrete function is converging underapproximation of
continuous). Let K ⊂ X be a closed set of constraints and C ⊂ X be a closed
target. Under the assumptions and notations of Theorem 1 and for ρ > 0 and
h > 0, we denote Cρ,h = (C + (Mρ+ h)B)∩Xh and Kh = (K + hB)∩Xh, and
we define the discrete minimum time-to-reach function:

ΘKh

Cρ,h
(xh) = inf

{xn
h
}∈SΓρ,h

(xh)
inf{n ∈ N : xnh ∈ Cρ,h ∧ ∀m < n, xmh ∈ Kh} (13)

Then
{
ΘKh

Cρ,h

}
defines a converging underapproximation scheme of θKC .

Corollary 1. The minimum time-to-reach function θKC can be underapproxi-
mated with use of a discrete function Θn, using the following algorithm:

Θ0(xh) =
{

0 if xh ∈ Kh,
+∞ else (14)

Θn+1(xh) =
{

1 + infyh∈Γ (xh)Θ
n(yh) if xh /∈ Cρ,h,

Θn(xh) else (15)

Indeed, ΘKh

Cρ,h
(xh) = limn→+∞Θn(xh).

Proof of Theorem 2: Please see Appendix. The algorithm above provides a
guaranteed underapproximation of the minimal time-to-reach function θKC . The
choice of the two parameters ρ and h is a matter of trial and error. However, when
one of them is fixed, an interesting hint for setting the other is to minimize either
r(ρ, h) or η(ρ, h) which appear in Theorem 1 and are indicators of the accuracy
of the approximation by Γρ,h.
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Fig. 1. Left: Numerical underapproximation of the value function of the double inte-
grator problem (16), obtained by the the scheme presented in this paper. Computation
realized on a 400 × 400 grid on [−5, 5] × [−5, 5], converged in 56 iterations, ρ = 0.09.
Right: Numerical underapproximation of the value function of the wall pursuit evasion
game (17). Computation realized on a 200 × 200 grid on [−5, 0]× [0, 5], converged in
36 iterations, ρ = 0.09. In both cases, three points out of four omitted in the plot for
clarity. The numerical underapproximation of (17) is more accurate than that of (16).
This is due to the zero Lipschitz constant of the dynamics of (17).

2.4 Numerical Validation

The previous section provides theoretical bounds for the error of the numerical
approximation. However, as in Mitchell and al. [16], we need to assess how fast
the method converges within these bounds.

Steering Problem (after Bryson [7]). The dynamical system for this
problem is: (ẋ, ẏ) = (y, u) where u ∈ [−1, 1], (x, y) ∈ R

2 . The viscosity solution
θR

2

(0,0) of (6) corresponding for this dynamics is given by:

{
θR

2

(0,0)(x, y) = −y +
√

2y2 − 4x if x+ 1
2y|y| ≤ 0

θR
2

(0,0)(x, y) = +y +
√

2y2 + 4x if x+ 1
2y|y| ≥ 0

(16)

The numerical results obtained from the underapproximation algorithm are com-
pared to the viscosity solution θR

2

(0,0) in Figure 1 (left). Clearly, the numerical
result is below the analytical. The error is due to the Lipschitz constant of this
example as related back to (12). We note here that Saint-Pierre [17] has devel-
oped powerful techniques to alleviate this problem.We did not implement them:
they are computationally expensive and our goal here is fast overapproximations.

Wall pursuit evasion game (after Isaacs [15]). We treat this problem as
a control problem by forcing the evader to run in one direction and reducing the
space to the one quadrant. In this context: (ẋ, ẏ) = (−w cos d, sign(y)−w sin d =
1 −w sin d) with (x, y) ∈ R

− × R
+ : The pursuer has speed w > 1 and can move

any direction d. Isaacs’ retrograde path equations method enables reducing this
problem to solving (l + wθ(x, y))2 = x2 + (y + θ(x, y))2, which provides the
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viscosity solution (17) of equation (6), shown in Figure 1 (right), as well as its
numerical underapproximation obtained with our algorithm.

θR
−×R

B(0,l)∩R−×R(x, y) =
1

w2 − 1

[
−(lw − |y|) +

√
(|y|w − l)2 + (w2 − 1)x2

]
(17)

3 Application to Safety Analysis of Air Traffic Control

3.1 Conflict Resolution in Heavily Loaded Air Traffic Centers

We are interested in performing fast computations of safety zones of aircraft for
Air Traffic Management systems. Guaranteed underapproximation of those sets
is crucial: certification of a conflict resolution protocol always requires a proof of
its safety. We will here show the application of our technique to aircraft conflict
resolution problems very frequently encountered in the Sector 33 airspace of the
Oakland ATC Center in Fremont, CA. The computational example presented
below is extracted from a larger modeling and control project which we are
working on in collaboration with NASA Ames and with Oakland ATC Center [5].
For the present study, only a subset of this model is used.

Sector 33 is one of the busiest high altitude sectors in the US. It is at the junc-
tion of jetways coming from and going to Los Angeles, San Francisco, Oakland,
San Jose, Las Vegas and is a collector of traffic from the east coast. At waypoint
COALDALE in this sector, aircraft coming from Las Vegas may frequently conflict
with aircraft going to the east coast at the same flight level (floor).

We consider the following subproblem (the notations refer to Figure 2). Let
the local flight plan of aircraft 1 be jetway 92 towards COALDALE and then jet-
way 58 towards San Francisco, while the flight plan of aircraft 2 is jetway 58
through COALDALE . If the aircraft are in danger of “losing separation”, meaning
coming closer than 5 nautical miles horizontally and 2000ft vertically to each
other, the controller will either reroute horizontally or climb one of the aircraft
(i.e. will provide only one discrete action). The goal here is to develop advisories
for air traffic controllers, so that aircraft do not lose separation.

Let x be the planar relative coordinate of the aircraft 1 w.r.t. aircraft 2, v92

the velocity vector of aircraft 1 along jetway 92, and v58 the velocity vector of
aircraft 2 along jetway 58. We allow uncertainty in speed (due to winds, gusts,
inaccuracy of sensors), with uncertainty bound of Mach M = 0.05.

ẋ = v58 − (v92 + 0.05 · c · B) Mode 1 (18)

where c is the speed of sound and B is the unit ball in R
2 . We can now apply

the results of the previous section. Let us consider aircraft 1 as the evader and
compute the safe set of its allowed positions (i.e. for which no loss of separation
can occur). The unsafe set is the set of points which can eventually enter a disk
target C around aircraft 2 of radius 5 nautical miles. Let us denote θmode 1 the
minimal time-to-reach function for target C (there are no state constraints here).
Then the safe set is R2 \ Dom

(
θmode 1

)
.
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Conflict resolution via heading change (hybrid model).
A possible controller choice is to make aircraft 1 “cut” between jetway 92

and jetway 58. This avoids the conflict and shortens the path of aircraft 1, and
is the preferred option of the controllers in general. This can be modeled as a
second mode of aircraft 1, now rotated by an angle ψ to the west:

ẋ = v58 −Rψ · (v92 + 0.05 · c · B) Mode 2 (19)

where Rψ is the standard rotation matrix of angle ψ. Let us denote θmode 2 the
minimal time function to reach C in this dynamics.

The controller’s policy is the following: if aircraft 1 is safe in mode 1, stay in
mode 1; else if it is safe in mode 2, switch to mode 2; if both modes are unsafe,
switching can be used to increase the time during which the distance between
the two aircraft is guaranteed to be greater than 5 nautical miles.

Denote by θhybrid the function representing the minimum guaranteed time
before loss of separation, and by F1 and F2 the set valued dynamics associated
to the two modes, and by SF1,F2(x, T ) the set of trajectories originating at x for
which switching from mode 1 to mode 2 occurs once. Then, at time T , we have:

∀x ∈ X, θhybrid(x) = sup
T>0

inf
x(·)∈SF1,F2(x,T )

inf{t > 0 : x(t) ∈ C} (20)

with safe set R2 \Dom
(
θhybrid

)
. By definition, Dom

(
θhybrid

)
= Dom

(
θmode 1

)∩
Dom

(
θmode 2

)
and ∀x ∈ R

2 , θhybrid(x) ≥ max{θmode1, θmode 2}. An algorithm
for underapproximating θhybrid is presented in the next section.

Conflict resolution via floor climbing (reset model).
The second possible choice of the controller is to climb aircraft 1. It takes

about 3 minutes to climb an aircraft from one floor to the next floor. If there
are no aircraft on the next floor and there is enough time to climb the aircraft,
then the problem is solved. Let us investigate the case in which there is another
aircraft on the next floor (aircraft 3).

Let aircraft 1 be on floor 350 (35,000 ft) on jetway 92 towards COALDALE ,
aircraft 2 be on floor 350 on jetway 58 towards COALDALE and aircraft 3 on floor
370 (37,000) on jetway 58 towards COALDALE (see Figure 3). Given the positions
of aircraft 2 and 3 on jetway 58 at their respective altitudes, we want to find the
set of locations at which both collision cannot be avoided, and collision can be
avoided by either climbing or staying at the same level. We assume that aircraft
2 and 3 are separated horizontally by a vector δ (regardless of their altitude)
and fly at the same speed (which is usually the case on high altitude jetways).
If it takes Tclimb seconds to climb from floor 350 to floor 370 and the horizontal
speed during climbing is unchanged, let r be the following reset function:

r(x) = x + δ + Tclimbv92 (21)

Then climbing aircraft 1 from floor 350 to floor 370 is equivalent to a reset. Let
us call x the relative position of aircraft 1 w.r.t. aircraft 2: if θ(x) < Tclimb, there
is not enough time to climb aircraft 1 without causing loss of separation with
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aircraft 2: the situation is unsafe. Otherwise, the aircraft can be climbed, and
the algorithm in the next section will take this reset into account. Intuitively,
the reset reinitializes the parameters by translating them by δ plus Tclimbv92,
which is the ground distance needed to climb. As in the hybrid case, we will
define θreset as the new minimal time-to-reach function which incorporates the
possible reset within the execution of the automaton, and we will compute the
set of points which are still unsafe when climbing is allowed, either because there
is not enough time to climb, or the aircraft climbs to an unsafe zone on the next
floor.

If we denote by SF1,r(x, T ) the set of trajectories originating at x for which
resetting occurs at time T , we have

∀x ∈ X, θreset(x) = sup
T>0

inf
x(·)∈SF1,r(x,T )

inf{t > 0 : x(t) ∈ C} (22)

and the safe set is R2 \Dom (θreset). An algorithm for underapproximating θreset

is presented in the next section.

3.2 Computing Safe Sets for Hybrid and Reset Systems
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Fig. 2. Result of the conflict avoidance protocol with hybrid switching enabled.
Computation realized on a 350 × 350 grid. Left: Reachability computation for the
next 7 minutes for both modes (superimposed). Isolines are in increments of one minute
in relative coordinates (which is why the distance between the isolines seems bigger
than the one minute achievable distance of one aircraft at Mach M = 0.85 in absolute
coordinates). If the intruder is in the intersection of the two unsafe sets, it cannot
avoid loss of separation with the set of two maneuvers. If it is in one of the unsafe sets,
switching avoids loss of separation. Otherwise, any of the two modes is safe. Right:
Same as left with switching enabled. Position of first and third intruder are safe relative
to these two dynamics. The second intruder cannot avoid loss of separation with only
these two maneuvers.

Guaranteed underapproximation of the survival time function for
the hybrid model. The algorithm presented below stems from Corollary 1
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and provides an underapproximation of θhybrid. It is based on the fact that,
given that the system starts in mode 1 and may switch to mode 2 at any time,
θhybrid(x) = θmode 2(x) if θmode 2(x) ≥ θmode 1(x) because mode 2 guarantees
safety longer than mode 1, otherwise θhybrid(x) ≥ θmode 1(x) since mode 1 is
safer now, and switching to mode 2 later may increase the time for which the
system is safe.

Theorem 3 (Approximation of the hybrid minimum time-to-reach func-
tion). Let C ⊂ X be a closed target. We assume that F1 and F2 satisfy the
assumptions of Theorem 1. For ρ > 0, h > 0 and i ∈ {1, 2}, we define the
fully discrete dynamics Γ iρ,h and the discrete minimum time-to-reach functions
Θmode i
ρ,h as in Theorems 1 and 2. Let Sρ,h := {xh ∈ Xh : Θmode 1

ρ,h (xh) ≤
Θmode 2
ρ,h (xh)}. Then a converging underapproximation scheme for θhybrid is given

by Θhybrid
ρ,h (xh) = limn→+∞Θnρ,h(xh), where

Θ
0
ρ,h(xh) = sup{Θmode 1

ρ,h (xh), Θmode 2
ρ,h (xh)}

Θn+1
ρ,h (xh) =

{
1 + infyh∈Γ 1

ρ,h(xh) Θ
n
ρ,h(yh) if xh /∈ Sρ,h

Θnρ,h(xh) else
(23)

Reset Models of Aircraft Climb. In the case of the reset model, the
reasoning is similar to the hybrid case. Indeed, if a trajectory starts at x0 with
a reset at time T to x1, we know that it cannot reach the target before T +
Tclimb + θmode 1(x1). In order to avoid loss of separation during climbing, we set

θR(x) =
{
Tclimb + θmode 1(r(x)) if θmode 1(x) ≥ Tclimb

0 else (24)

Then θR(x) plays the same role as θmode 2 in the hybrid model.

Theorem 4 (Approximation of the reset minimum time to reach func-
tion). Let C ⊂ X be a closed target. We assume that F satisfies the assumptions
of Theorem 1 and that the reset function r : X → X is λ-Lipschitz continuous.
For ρ > 0, h > 0, we define Γρ,h and the discrete minimum time-to-reach func-
tion Θρ,h(xh) as in Theorem 1. We also define the discrete reset function

Rh(xh) := ( r(xh) + (1 + λ)hB ) ∩Xh

Then a converging underapproximation scheme for θR is given by

ΘRρ,h(xh) :=
{

infyh∈Rh(xh) Θ
mode 1
ρ,h (yh) + Tclimb

ρ if Θmode 1
ρ,h (xh) ≥ Tclimb

ρ ,

0 else

Furthermore, if Sh := {xh ∈ Xh : Θρ,h(xh) < ΘRρ,h(xh)}, then a converging
underapproximation for θreset is given by Θρ,h(xh) = limn→+∞Θn(xh), with

Θ0
ρ,h(xh) = sup{Θρ,h(xh), ΘRρ,h(xh)} (25)

Θn+1
ρ,h (xh) =

{
1 + infyh∈Γρ,h(xh) Θ

n
ρ,h(yh) if xh /∈ Sh,

Θnρ,h(xh) else (26)

Proofs of Theorems 3 and 4 are not included here, but are available from the
authors.
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Fig. 3. Results of the conflict avoidance maneuver with reset enabled. Computation
realized on a 350 × 350 grid with Tclimb = 3min. Aircraft 2 and aircraft 1 are on floor
350. Aircraft 3 is on floor 370 approximately 35 miles ahead of (behind) aircraft 2.
The different domains of the diagram have the following interpretation: if aircraft 1
is in Domain 1, there is no way conflict can be avoided by either climbing to 370 or
staying on 350. If it is in Domain 2, it should stay there, for climbing will generate a
conflict. In Domain 3, there is not enough time to climb, so conflict will occur on floor
350. In Domain 4, conflict can be avoided by climbing. Outside of these four domains,
any altitude is safe. Each isoline represents a 30 sec. increment in the time to reach
function w.r.t. the target (in relative dynamics).

4 Current Work

The version of our code used for the examples of this paper is designed in MAT-
LAB. It is clear that the use of refinements proposed in [10] for the general
viability kernel, such as local grid refinement and local Lipschitz constants, will
improve the rate of convergence of the underapproximation algorithm. Yet even
the simple code presented here provides guaranteed results, and its implemen-
tation for dimensions higher than 2, with reasonable computation time, should
present few difficulties. In addition, while we have only presented the theorems
for a single switch and reset here, we know the algorithm to be extendible to
general hybrid systems, and we are currently working on this algorithm and
proof.
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Appendix

Proof — [Theorem 1 - adapted from [10]]. In order to prove the first part, let x0 ∈ X
and x(·) ∈ SF (x0). We claim that x((n + 1)ρ) ∈ Gρ(x(nρ)) for all n ∈ N. Indeed,

x((n + 1)ρ) = x(nρ) +
R (n+1)ρ

nρ
ẋ(t)dt and since F is l-Lipschitz, and bounded by M ,

we have ∀n ∈ N, ∀t ∈ [nρ, (n+ 1)ρ], ẋ(t) ∈ F (x(t)) ⊂ F (x) +MltB. Furthermore,
Gρ is (1 + lρ)-Lipschitz. Hence,

∀n ∈ N, ∀xn
h ∈ (x(nρ) + hB ) ∩ Xh, Gρ(x(nρ)) ⊂ Gρ(x

n
h) + (1 + lρ)hB

which completes the proof of the first part. We shall now prove the second part. Let
n ∈ N and t ∈ [nρ, (n+ 1)ρ]. The definition of x̂ yields

˙̂x(t) ∈ F (xn
h) + r(ρ, h)B (27)

x̂(t) ∈ xn
h + (‖F (xn

h)‖+ r(ρ, h))(t − nρ)B (28)

Now since F is l-Lipschitz, F (xn
h) ⊂ F (x̂(t)) + l ‖x̂(t)− xn

h‖B. Hence, (27) yields

˙̂x(t) ∈ F (x̂(t)) + (l(M + r(ρ, h))(t − nρ) + r(ρ, h))B (29)

Let us set η(ρ, h) = l(M + r(ρ, h))ρ + r(ρ, h). We have proved that ˙̂x(t) ∈ F (x̂(t)) +
η(ρ, h)B for all t. Thanks to a theorem of Filippov3, we know that there exists a
trajectory x(·) ∈ SF (xh) such that

∀t ≥ 0, ‖x(t)− x̂(t)‖ ≤ elt
�Z t

0

η(ρ, h)e−lsds

�
≤
(

η(ρ, h) (e
lt−1)

l
if l > 0

2 h
ρ

t if l = 0
(30)

which completes the proof. �

Proof — [Theorem 2 - adapted from [10]] In order to prove that ΘKh
Cρ,h

is an under-

approximation of θK
C , let xh ∈ Kh and let x0 ∈ xh + hB such that θK

C (x0) < +∞. We
denote x(·) an optimal trajectory in SF (x0) originating at x0. Then by the first part of
Theorem 1, we can find trajectories {xn

h} ∈ SΓρ,h(xh) such that x
n
h ∈ (x(nρ) + hB)∩Xh.

Now if θK
C (x) ∈ [nρ, (n + 1)ρ], then xn

h ∈ Cρ,h, and xm
h ∈ Kh for all m < n, which

yields θK
C (x) ≥ ρΘ

Kh
Cρ,h
(xh) for all ρ, h. Thus, lim suph,ρ, h

ρ
→0 ρΘ

Kh
Cρ,h
(xh) ≤ θK

C (x).

Now define two sequences hk → 0 and ρk → 0 such that hk
ρk

→ 0 and

T := lim
k→+∞

ρkΘ
Khk
Cρk,hk

(xhk
) = lim inf

ρ,h, h
ρ
→0

ρΘKh
Cρ,h
(xh).

We shall prove that T ≥ θK
C (x). To this purpose, set Ck := Cρk,hk

, Kk := Khk
, and

Γk := Γρk,hk
. We denote by {xk} optimal trajectories for the fully discrete target

problems with parameter k. Now let xk(·) ∈ SF (xhk
) denote the closest trajectories

3 A consequence of the Filippov Theorem (Aubin [2, p.170]) is that if a function
y : R → X is such that ẏ(t) ∈ F (y(t))+δ(t)B for all t, then ∀x0 ∈ X, ∃x(·) ∈ SF (x0)

such that ‖x(t)− y(t)‖ ≤ elt
�
‖x0 − y(0)‖+

R t

0
δ(s)e−lsds

�
for all t.
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as in Theorem 1. There exists a subsequence (again denoted) xk(·) which converges4
to some x(·) ∈ SF (x) uniformly on the compact subsets of R

N . By definition

∀k ∈ N, xk(ρkNKk
Ck
(xhk
)) ∈ Ck+(l (M + r(ρk, hk)) ρk + r(ρk, hk))

(e
l(ρkN

Kk
Ck

(xhk
)) − 1)

l

Since C is closed, we have x(T ) ∈ C. Moreover, the uniform convergence of xk(·)
to x(·) and the closedness of K ensures that x(t) ∈ K if t ≤ T . Thus,
lim suph,ρ, h

ρ
→0 ρΘKh

Cρ,h
(xh) ≤ θK

C (x) and lim suph,ρ, h
ρ
→0 ρΘKh

Cρ,h
(xh) ≥ θK

C (x), mean-

ing that lim suph,ρ, h
ρ
→0 ρΘKh

Cρ,h
(xh) = θK

C (x), which completes the proof. �

4 A consequence of Theorem 3.5.2 in [2, p.101] is that if a sequence of points yn

converges to y, then a sequence of trajectories yn(·) ∈ SF (y
n) admits a subsequence

which converges to some y(·) ∈ SF (y) uniformly on the compact subsets of R
+ .
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