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Abstract. We develop a general framework for solving the hybrid sys-
tem reachability problem, and indicate how several published techniques
fit into this framework. The key unresolved need of any hybrid system
reachability algorithm is the computation of continuous reachable sets;
consequently, we present new results on techniques for calculating nu-
merical approximations of such sets evolving under general nonlinear
dynamics with inputs. Our tool is based on a local level set procedure
for boundary propagation in continuous state space, and has been im-
plemented using numerical schemes of varying orders of accuracy. We
demonstrate the numerical convergence of these schemes to the viscosity
solution of the Hamilton-Jacobi equation, which was shown in earlier
work to be the exact representation of the boundary of the reachable
set. We then describe and solve a new benchmark example in nonlinear
hybrid systems: an auto-lander for a commercial aircraft in which the
switching logic and continuous control laws are designed to maximize
the safe operating region across the hybrid state space.

1 Introduction

The focus of this paper is the development and numerical validation of a compu-
tational tool to perform as exact as possible reachability computation and con-
troller synthesis for nonlinear hybrid systems. As such, we draw on our previous
work in which we characterized the boundary of the reachable set of a hybrid
system as the zero level set of the viscosity solution of a particular Hamilton-
Jacobi equation [1], and in which we showed that it was feasible to compute this
zero level set using so-called “level set methods” [2]. The current paper reflects
our progress in the development of a general purpose tool for this reachable
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set computation—the core of which is a new variant of a “local level set” al-
gorithm that more efficiently computes a more accurate representation of the
reachable set boundary. In addition, we demonstrate the numerical convergence
of our computation by analyzing the results as the continuous state space grid
is made finer, a standard method of validation for scientific computing codes. In
this way, we show that high accuracy can be achieved at the cost of increased
computational time and space. We illustrate our tool on a single mode aircraft
conflict resolution example [2,3], as well as on a new benchmark example of a
six mode commercial aircraft auto-lander, which exhibits nondeterminism and
cycles in its discrete behavior.

Our motivation for this project stems from the belief that for many applica-
tions of hybrid systems, it is important to be able to accurately represent the
reachable set. We have dealt primarily in the safety verification of avionic sys-
tems, where accurate representation of the safe region of operation translates
into the ability to operate the system closer to the boundaries of that region, at
a higher performance level than previously allowed. For very high dimensional
state spaces, additional logic (such as projection operators) or new techniques
(such as convex overapproximations) will be needed; however, our results in this
paper show that it is feasible to do exacting computation for hybrid systems
with nonlinear continuous dynamics in three continuous state dimensions and
six discrete modes, and we believe it will be feasible to extend this up to five
continuous dimensions and large numbers of discrete modes.

2 Reachability for Hybrid Systems

Assuming that tools for discrete and continuous reachability are available—we
postpone to subsequent sections the problems of creating such tools—computing
reachable sets for hybrid systems requires keeping track of the interplay between
these discrete and continuous tools. In this section we summarize the general
framework for handling this interaction (following [1]), and we show how various
hybrid system reachability algorithms described in the literature fit into this
framework.

Fundamentally, reachability analysis in discrete, continuous or hybrid sys-
tems seeks to partition states into two categories: those that are reachable from
the initial conditions, and those that are not. We will label these two sets of
states G and E = Gc respectively.

Any inputs to the hybrid automata are assumed to lie in bounded sets and to
have the goal of locally maximizing or minimizing the reachable set: at each iter-
ation, the reachability algorithm chooses values for inputs ξG that maximize the
size of G and values for inputs ξE that minimize the size of G (and hence maxi-
mize the size of E). Any nondeterminism in the transition relation is also utilized
to consistently maximize or minimize G, depending on the goal of the reacha-
bility computation. For hybrid automata, the discrete inputs σ and continuous
inputs ν can be assigned to the two categories ξG = (σG, νG) and ξE = (σE, νE)
according to whether they seek to maximize or minimize G.
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Fig. 1. Iterative Reachability Algorithm: Showing detail of iteration for discrete mode
k at iteration i.

The reachability computation follows an iterative, two stage algorithm shown
graphically in Figure 1. The outer iteration computes reachability over the dis-
crete switches, producing iterates Gi and Ei at iteration i = 1, 2, . . . . The inner
iteration runs a separate continuous reachability problem in each of the discrete
modes j = 1, 2, . . .K to compute the estimates Gj

i and Ej
i . We define the “switch”

sets

– ~Gj
i contains all states in mode j from which a discrete transition to a state

in Gi−1 (typically a state in another mode) can be forced to occur through
the application of a discrete input σG; these states will be defined by the
invariant of mode j and the guards of the transitions from mode j.

– ~Ej
i contains all states from which a discrete transition to a state in Ei−1 can

be forced to occur through the application of a discrete input σE; these states
are also defined by the invariant of mode j and the guards of transitions from
mode j.

Then the goal of the continuous reachability tool is to identify the “flow” sets

– G̃j
i (t) contains states from which for all νE there exists νG that will force the

resulting trajectory to flow into Gj
i−1 ∪ ~Gj

i within time t.
– Ẽj

i (t) contains states from which there exists νE that for all νG will force
the resulting trajectories to flow into ~Ej

i within time t or to stay outside of
Gj

i−1 ∪ ~Gj
i for at least time t.

Note that in some problems the order of the existential and universal quantifiers
in the definition above must be reversed. Given these sets,

Gj
i = lim

t→∞ G̃j
i (t), Gi =

K⋃
j=1

Gj
i , G = lim

i→∞
Gi,

Ej
i = lim

t→∞ Ẽj
i (t), Ei =

K⋃
j=1

Ej
i , E = lim

i→∞
Ei,
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where Gj
0 is the set of initial conditions of the reachability problem and Ej

0 =
(Gj

0)
c. Simple modifications of this algorithm suffice to solve finite time reacha-

bility problems.
The procedure described above, developed in [1,3], was motivated by the

work of [4,5] for reachability computation and controller synthesis on timed
automata, and that of [6] for controller synthesis on linear hybrid automata. In
that development the reachability problem’s objective was to determine E—the
largest controllable invariant subset of the state space—by computing the set
of states G which were reachable in backwards time from the set of predefined
unsafe states. In terms of the definitions above, control inputs from this problem
lie in ξE and disturbance inputs in ξG. For safety, any model nondeterminism
would be used to maximize the unsafe set G.

Other hybrid system reachability algorithms fall within this framework; the
differences lie in their discrete and continuous reachability solvers and the types
of initial conditions, inputs, invariants and guards that they admit. Most are
described as running forwards in time from a set of safe initial conditions, in
which case G is computed as the smallest controllable invariant set. For exam-
ple, in [7,8] reachability is run with ξG as the controlled inputs and ξE as the
disturbance inputs with the resulting safe set as G. The CheckMate tool [9] deals
with threshold event-driven hybrid systems—meaning that switches are both
enabled and forced only at hyperplanes in the continuous state space—so there
is no equivalent to σE and thus ~Ej

i = ∅. Because VeriSHIFT ’s algorithm [10]
is designed for bounded time, decidability can be proven for certain hybrid au-
tomata. If we are willing to forgo decidability then its extension to infinite time
is straightforward and produces a reachability procedure similar in expressive
capacity to CheckMate, albeit for different continuous representations.

3 Continuous Reachability with Level Sets

While practical algorithms for computing discrete reachability over many thou-
sands of states have been designed and implemented, determination of continu-
ous reachability for even low dimensional systems is still an open problem. The
continuous portion of a hybrid reachability problem requires methods of per-
forming four key operations on sets: unions, intersections, tests of equality, and
evolution according to the discrete mode’s continuous flow field. The choice of
representation for sets dictates the complexity and accuracy of these operations;
consequently, continuous reachability algorithms can be classified according to
how they represent sets.

Polygonal representations have proven the most popular. The tool d/dt [7,
11] tracks the motion of convex polyhedra under linear flow, collecting the non-
convex union of this result into “orthogonal polyhedra” [12]. The developers
of CheckMate describe optimization based methods of tracking convex poly-
hedra under general flows, including specializations for the affine case [13,14].
Projectagons [15] is the term used to describe the idea of storing nonconvex
high dimensional polyhedra as the intersection of two dimensional projections,
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which are evolved under affine overapproximations of general flows using linear
programming. VeriSHIFT [10] uses ellipsoidal representation of reach sets for
linear flows with linear input; it implements techniques developed in [16].

3.1 The Hamilton-Jacobi Partial Differential Equation

For our representation scheme, we characterize the set being tracked implicitly
by defining a “level set function” J(x, t) throughout the continuous state space
which is negative inside the set, zero on its boundary, and positive outside, and
which encodes the initial data in J(x, 0). The intersection of two such sets is
simply the maximum of their level set functions at each point in state space,
and the union is the minimum; a variety of easily implemented equality tests are
possible. Evolution of a level set under a nonlinear flow field is governed by the
Hamilton-Jacobi (HJ) partial differential equation (PDE) (see, for example, [2])

−∂J(x, t)
∂t

= max
νmin

min
νmax

f(x, νmin, νmax)T ∇J(x, t), (1)

= H(x,∇J(x, t)). (2)

where νmin are those continuous inputs trying to minimize the size of the set
being tracked, and νmax are those inputs trying to maximize its size. The order
of the optimization must be chosen appropriately for the situation. The implicit
representation has a number of advantages when compared with the explicit
representations that other researchers are pursuing, including a conceptually
simple representation of very general sets and a size which is independent of
the complexity of the set (although it grows exponentially with dimension). In
addition, a set of sophisticated numerical techniques to accurately solve PDEs
may be drawn upon for computation. In the remainder of this section, we focus on
the representation (2), and assume that the modeler can compute the appropriate
optimization over inputs in (1) if given x and ∇J(x, t).

3.2 Solving the Hamilton-Jacobi PDE

The HJ PDE (2) is well known to have complex behavior. Even with smooth
initial data J(x, 0) and continuous Hamiltonian H(x,∇J), the solution J(x, t)
can develop discontinuous derivatives in finite time; consequently, classical in-
finite time solutions to the PDE are generally not possible. In the quest for a
unique weak solution Crandall and Lions introduced the concept of the viscosity
solution [17], which has since been shown to be the appropriate weak solution
for Hamilton-Jacobi-Bellman type control problems such as (1) (see, for exam-
ple, [18]). For most problems of interest, finding the analytic viscosity solution
is not possible, and so we seek a numerical solution.

Floating point arithmetic and the truncation required by finite series expan-
sions conspire to ensure that any numerical approximation of the solution of a
differential equation will contain errors. The algorithms presented in [7]–[16] seek
guaranteed overapproximations (and in some cases, underapproximations) of the
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system’s reachable sets. Numerical methods for solving PDEs, on the other hand,
have traditionally aimed for convergent approximations: those approximations
that will become exact as some parameter of the method—the grid spacing ∆x,
for example—goes to zero. While guaranteed overapproximation has its pros and
cons for use in reachability applications, we have decided to focus first on con-
vergent approximations of (2) in order to take advantage of existing schemes and
numerical analyses [19,20,21,22,23]. We can develop confidence in a convergent
approximation’s accuracy by successive refinement of ∆x.

If we are willing to pursue convergent numerical approximations of (2), a
reasonable question is whether it would be simpler and as reliable to solve for
the optimal trajectories starting from points on the boundary of the initial set,
and thereby approximate the boundary of the reachable set. This technique,
however, is equivalent to solving the PDE by the characteristic method, and
the characteristics of the Hamilton-Jacobi equation are known to collide and/or
separate [18], which would make for an incorrectly represented reachable set.1

Returning to methods of solving (2) numerically, the state space over which
we compute reachability is topologically simple, and so we approximate the
solution of (2) on a Cartesian grid of nodes. Three terms in the equation must
be approximated at each node, based on the values of the level set function at
that node and its neighbors: the gradient ∇J , the Hamiltonian H, and the time
derivative ∂J(x,t)

∂t . We discuss each of these separately.
In each dimension at each grid point there exist both left and right approxi-

mations of the gradient ∇J , depending on which neighboring grid points’ values
are used in the finite difference calculation. We label the vector of left approxi-
mations ∇J−, the vector of right approximations ∇J+, and will see below that
∇J−, ∇J+ or some combination of the two will be used to compute the numer-
ical Hamiltonian Ĥ. The accuracy of a derivative approximation is measured
in terms of the order of its local truncation error; an order p method has er-
ror ‖∇J − ∇J±‖ = O(∆xp). At the current time, we have implemented the
basic first order accurate approximation for speed [21] and a weighted, essen-
tially non-oscillatory fifth order accurate approximation for high fidelity [20,22].
“Non-oscillatory” in this context indicates that near discontinuities in the level
set derivative, a scheme may revert to lower order accuracy so as to avoid intro-
ducing spurious numerical oscillations into the solution. Technically, therefore,
all schemes are globally first order accurate, but in practice the higher order
accuracy in the smooth parts of the solution produces better global results. This
property is sometimes called “high resolution” to distinguish it from true high
order accuracy.

We have chosen to use the well studied Lax-Friedrichs numerical Hamiltonian
approximation Ĥ [20,24]

Ĥ(x,∇J−,∇J+) = H(x, ∇J−+∇J+

2 ) − 1
2α

T (∇J+ − ∇J−), (3)

1 For example, it turns out that much of the helical bulge of the reach set computed
in Section 3.4 lies on a collection of optimal trajectories fanning out from a single
point on the boundary of the problem’s initial conditions.
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where H(x,∇J) is given by (2) and the term containing the vector coefficient α
is a high order numerical dissipation added to damp out spurious oscillations in
the solution. Upwinded numerical Hamiltonians were considered; but although
they do not require the artificial dissipation of Lax-Friedrichs, they cannot easily
deal with the ∇J dependent flow appearing in (2).

The time derivative of the PDE is handled by the method of lines: the value
of the level set function J at each node is treated as an ODE dJ

dt = Ĥ, with
Ĥ given by (3). General ODE solvers, such as Runge-Kutta (RK) schemes, can
then be applied. The explicit nature of these techniques, however, limits the size
of the timestep to some flow speed dependent multiple of the grid spacing—
typically a small fraction—called the Courant-Friedrichs-Lewy (CFL) number.
Standard RK iterations lead to very small CFL values and can introduce spurious
oscillations into a numerical Hamilton-Jacobi solution; therefore, we use total
variation diminishing (TVD) versions of Runge-Kutta (see, for example, [19,23]).
We have currently implemented TVD RK schemes which are first and second
order accurate in time. Due to CFL restrictions the timestep is usually much
smaller than the grid spacing, so it is possible to use lower order accuracy in
time than in space without noticeable loss of solution quality.

3.3 Localizing Computation

The Hamilton-Jacobi equation (2) describes the evolution of the level set func-
tion over all of space. But we are only interested in its zero level set; thus, we
can restrict our computational updates to nodes near the boundary between
positive and negative J(x, t)—an idea variously called “local level sets” [25] or
“narrowbanding” [21]. We have implemented a new variant of this method in
our code.

Because the boundary is of one dimension less than the state space, consider-
able savings are available for two and three dimensional problems. If the number
of nodes in each dimension is n (proportional to ∆x−1) and the dimension d, the
total number of nodes is O(nd); the CFL restriction on timestep means that total
computational cost is O(nd+1). With local level sets, we reduce computational
costs back down to O(nd).

3.4 Numerical Validation of Aircraft Collision Avoidance

The numerical schemes mentioned above for solving the Hamilton-Jacobi equa-
tion are complicated; therefore, it is not surprising that theoretical proofs of
convergence to the viscosity solution are available for only the very simplest low
order accuracy methods [24]. High resolution methods have instead been sub-
jected to “numerical validation”: comparison to known analytic solutions and
lower order accurate approximations of an extensive collection of examples for a
broad range of grid sizes [20], from which can be drawn encouraging conclusions
regarding their accuracy.

In this section we present a similar validation of our implementation on the
single mode, three dimensional aircraft collision avoidance example (see [3,2] for
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Fig. 2. Reachable Set for Aircraft Collision Avoidance Example

details). The example features a control aircraft trying to avoid collision with
a disturbance aircraft, where both aircraft have fixed and equal altitude, speed
and turning radius—they may only choose which direction they will turn:

ẋr = −vu + vd cosψr + uyr, ẏr = vd sinψr − uxr, ψ̇r = d− u,

where vu = vd = 5 are the aircraft speeds, xr and yr are the relative planar
location of the aircraft and ψr is their relative heading. The inputs |u| ≤ 1
and |d| ≤ 1 are the control’s and disturbance’s respective turn rates. The initial
unsafe set J(x, 0) is the interior of the radius five cylinder centered on the ψr axis.
Choosing optimal inputs according to (1) with νG = νmax = d and νE = νmin = u,
we get the optimal Hamiltonian:

H(x, p) = −p1vu + p1vd cosψr + p2vd sinψr + |p1yr − p2xr − p3| − |p3|.

Using our new C++ implementation, grid sizes corresponding to 50, 70, 100,
140, and 200 nodes in each dimension were tried with a low order accurate
scheme (first order space and time, hereafter referred to as the “(1,1)” scheme)
and a high resolution scheme (fifth order space and second order time, hereafter
the “(5,2)” scheme). On the eight million node finest grid—only around 10%
of which is being actively updated on any one timestep by the local level set
algorithm—execution time for the (5,2) scheme was about eighteen hours on a
Sun UltraSparc II with lots of memory. Reducing the grid size in half results
in the expected eightfold savings in memory and time; hence, the coarsest grid
takes only fifteen minutes with the (5,2) scheme.
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Results are visualized2 by the zero level isosurface of the unsafe reachable set
G, shown in Figure 2. On the left is a head-on view of the (5,2) solution. On the
right is a zoomed overhead view of the point of the bulge computed by the (1,1)
scheme for several grid sizes. The fact that the solutions grow closer together as
the grid is refined provides visual evidence of convergence.

The solutions produced by the (5,2) scheme are visually identical for all
grids, and to show quantitative convergence as the grid is refined we require
a suitable error metric. Comparing the value of J(x, t) over the entire domain
is inappropriate, since our algorithms assume that we seek only an accurate
computation of its zero level set. Instead, we consider just the nodes neighboring
the zero level set—those nodes which have at least one adjacent node whose J
value is of opposite sign. We compare solutions on the four coarser grids to
the solution on the finest grid, using linear interpolation on the finest grid if
necessary. Figure 3 demonstrates that the scheme is converging to the finest grid’s
solution of (2) at approximately a linear rate in both average error and pointwise
maximum error. We cannot expect to show a higher order convergence rate
because of the linear interpolation used to evaluate the error and, as explained
in Section 3.2, the scheme is truly high order accurate only in smooth portions
of the solution.

Two conclusions can be drawn from Figures 2 and 3. First, low order schemes
are not at all competitive in terms of accuracy with the (5,2) scheme. Thus, while
our previously reported best results [2] took only an hour to run in Matlab,
because they used a (slightly different) first order scheme, our new (5,2) imple-
mentation can produce more accurate results in about fifteen minutes using only
the coarsest grid. Second, the pointwise maximum error of the (5,2) scheme is
always less than the grid spacing, so if a 50−1 = 2% error is tolerable for this
application, only this fastest, coarsest grid need ever be run.

2 Figure 2 and Figure 6 visualize some level set surfaces as triangular meshes; these
are not the meshes on which the Hamilton-Jacobi PDE was solved, but rather an
artifact of three dimensional Matlab visualization techniques.



Validating a Hamilton-Jacobi Approximation to Reachable Sets 427

4 Aircraft Landing Example

Once a method of determining continuous reachability is available, the discrete
iteration of the algorithm described in Section 2 is relatively straightforward.
In fact, for discrete transition graphs with no cycles it is possible to order the
continuous reachability problems such that no discrete iteration is required (e.g.
the three mode example presented in [2]). In order to examine the complications
induced by discrete cycles—such as how to avoid zenoness, in what order to exe-
cute the continuous reachability problems, and how to determine which switches
are active—a new example has been developed, which exhibits those difficulties
and has real life applications: the landing of a civilian airliner.

Physical model: A simple point mass model for aircraft vertical navigation
is used, which accounts for lift L, drag D, thrust T , and gravity mg (see [3] and
references therein). State variables are aircraft height z, horizontal position x,
velocity V =

√
ẋ2 + ż2 and flight path angle γ = tan−1( ż

ẋ ). Inputs are thrust
T and angle of attack α, where aircraft pitch θ = γ + α (see the left side of
Figure 4). The equations of motion can be expressed as follows:

d

dt



V
γ
x
z


 =




1
m [T cosα−D(α, V ) −mg sin γ]
1

mV [T sinα+ L(α, V ) −mg cos γ]
V cos γ
V sin γ


 (4)

The functions L(α, V ) and D(α, V ) are modelled based on empirical data [26]
and Prandtl’s lifting line theory [27]:

L(α, V ) = 1
2ρSV

2CL(α), D(α, V ) = 1
2ρSV

2CD(α),

where ρ is the density of air, S is wing area, and CL(α) and CD(α) are the
dimensionless lift and drag coefficients.

In determining CL(α) we will follow standard auto-lander design and assume
that the aircraft switches between three fixed flap deflections δ = 0◦, δ = 25◦

and δ = 50◦ (with slats either extended or retracted), thus constituting a hybrid
system with different nonlinear dynamics in each mode. This model is represen-
tative of current aircraft technology; for example, in Airbus cockpits the pilot
uses a lever to select among four predefined flap deflection settings. We assume a
linear form for the lift coefficient CL(α) = hδ+4.2α, where parameters h0◦ = 0.2,
h25◦ = 0.8 and h50◦ = 1.2 are determined from experimental data for a DC9-
30 [26]. The value of α at which the vehicle stalls decreases with increasing flap
deflection: αmax

0◦ = 16◦, αmax
25◦ = 13◦, αmax

50◦ = 11◦; slat deflection adds 7◦ to the
αmax in each mode. The right side of Figure 4 gives a graphical summary of the
possible configurations. The drag coefficient is computed from the lift coefficient
as [27] CD(α) = 0.041 + 0.045C2

L(α) and includes flap deflection, slat extension
and gear deployment corrections. So for a DC9-30 landing at sea level and for
all α ∈ [−5◦, αmax

δ ], the lift and drag terms in (4) are given by

L(α, V ) = 68.6 (hδ + 4.2α)V 2 D(α, V ) = (2.81 + 3.09 (hδ + 4.2α)2)V 2 (5)



428 I. Mitchell, A.M. Bayen, and C.J. Tomlin

�

�

�

� � �

� γ
α θ

� � 	 
 � �  	 � � �

� � � 	 
 �

� � � �
� �

−5 0 5 10 15 20 25
−0.5

0

0.5

1

1.5

2

2.5

3

angle of attack α (deg) 

C
L

clean wing δ=0
flap deflection δ=25

flap deflection δ=50

Slats deflected 

(Dimensionless Lift Coefficient) 

Slats retracted 
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indicate the stall angle and the corresponding lift coefficient in each mode.

Flap deflection dynamics model: In reality, the decision to move from
one deflection setting to another can occur at any time, but approximately 10
seconds are required for a 25◦ degree change in flap deflection. A five state model
of this situation is shown on the left side of Figure 5, where the system is in state
R if the flaps are retracting and state D if the flaps are deflecting. The system
is zeno because instantaneous switches are allowed between any modes.

Current implementation: For our preliminary implementation, we have
chosen to ignore the continuous dynamics associated with discrete mode switch-
ing, allowing the flaps and slats to move instantly to their commanded positions.
However, if such instantaneous controlled switches were always enabled then the
system would be zeno; therefore, we introduce transition modes 0t, 25t and 50t,
which use the envelopes and flight dynamics of the regular modes 0u, 25d and
50d (the discrete automaton is shown on the right side of Figure 5). A regular
mode may make a controlled switch to a transition mode, so flight dynamics can
be changed instantly. Transition modes have only a timed switch at t = tdelay, so
controlled switches will be separated by at least tdelay time units and the system
is nonzeno. For the executions shown below, tdelay = 0.5 seconds.

Landing: Extensive descriptions of the final stage of landing, when aircraft
height is below 50 feet, exist (see, for example, [26,28]). Restrictions on the flight
path angle, aircraft velocity and touchdown (TD) speed are used to determine
the initial safe set E0:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

z ≤ 0 landing or has landed

V > V stall
δ faster than stall speed

V < V max slower than limit speed

V sin γ ≥ ż0 limited TD speed

γ ≤ 0 monotonic descent

∪

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z > 0 aircraft in the air

V > V stall
δ faster than stall speed

V < V max slower than limit speed

γ > −3◦ limited descent flight path

γ ≤ 0 monotonic descent

(6)

We again draw on numerical values for a DC9-30 [26]: stall speeds V stall
0u = 78

m/s, V stall
25d = 61 m/s, V stall

50d = 58 m/s, maximal touchdown speed ż0 = 0.9144
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50d25d0u

D

R
25d

0u

50d 50t

25t

0t

Fig. 5. Discrete transition graph of slat and flap settings. The left graph shows the
model with flap deflection dynamics and the right graph shows the currently imple-
mented model. Solid lines are controlled switches (σE in this version of the reachability
problem) and dashed lines are uncontrolled switches (σG).

m/s, and maximal velocity V max = 83 m/s. For passenger comfort, the aircraft’s
input range is restricted to T ∈ [0 kN, 160 kN] and α ∈ [0◦, 10◦].

The interior of the surface shown in the first row of Figure 6 represents E0
for each mode. The second row of the figure shows the safe envelope E when
there is no mode switching. Portions of E0 are excluded from E for two reasons.
States near z = 0 correspond to low altitudes and are too close to the ground at
steep flight path angles to allow control inputs time to prevent the plane from
crashing. States close to the stall velocity correspond to low speeds where there
is insufficient lift and the flight path angle becomes steeper than that allowed
by the flight envelope. This latter condition holds throughout the very narrow
range of speeds allowed in mode 0u, with the result that only post-touchdown
states (z ≤ 0) are controllable in this mode. The third row shows how E can be
increased if switches are permitted (for example, mode 0u becomes completely
controllable). Mode 50d is the best to be in for landing and there is no difference
in E with or without switching enabled. The fourth row shows slices of the set
in the third row, taken at z = 3 meters. The light grey regions are unsafe G and
the dark grey are safe E. The figure shows that modes 0u and 25d are safe only
because there exists a discrete switch to a safe state in another mode.

We have presented and numerically validated a tool for determining accurate
approximations of reachable sets for hybrid systems with nonlinear continuous
dynamics and adversarial continuous and discrete inputs. By developing conver-
gent approximations of such complex systems, we will be better able to synthesize
aggressive but safe controllers. As an example, the six mode auto-lander shows
that for envelope protection purposes the safest control decisions are to switch
directly to full flap deflection, but to maintain airspeed until touchdown. With
the summary data from the reachability analysis, such decisions can be made
based on local state information; without it the auto-lander may not detect that
low speeds—while still within the flight envelope—lead inevitably to unsafe flight
path angles.
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Fig. 6. Maximally controllable safe envelopes for the multimode landing example. From
left to right the columns represent modes 0u, 25d and 50d.
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Our current work includes further validation of our numeric algorithm, ex-
tending our implementation to four continuous dimensions in order to capture
the full landing example dynamics, projections to capture higher dimensional dy-
namics, schemes for overapproximating the solution of the HJ PDE, automation
of the discrete algorithm, and parallel implementations.
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