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With the rapid growth of communications technologies, GPS, and the mobile internet, an
increasing amount of real-time location information is collected by private companies
and could be marketed for retail. This body of data offers transportation agencies potential
opportunities to improve operations, but it also presents unique challenges. This article
investigates the question of how much GPS data is needed to power a traffic information
system capable of providing accurate speed (and thus travel time) information. A hybrid
data framework is proposed to use real-time, GPS-based, point-speed data from mobile
sources to augment previous investments in existing fixed sensors. In addition, a system-
atic analysis of the performance trade-offs among a menu of data sources is described.

The results presented in this article were generated from the first procurement of
streaming probe data from the private sector conducted on behalf of the California
Department of Transportation and executed by UC Berkeley. Third-party data were
incorporated with loop detector data and travel times were estimated within the bounds
of driver variability. This achievement was repeated over multiple weeks and multiple
congested freeway sites.

Our findings indicate that penetration rates for GPS-based probe data are now suitable
for travel time estimation on selected corridors. Data fusion makes possible the effective
use of data from multiple sources or providers; when data from multiple sources are fused,
superior results are obtained. On a freeway that is already instrumented with loop detec-
tors, better travel time performance may be achieved by fusing a relatively small amount of
probe data than by doubling the number of loop detectors. Finally, the answer to how
much GPS data is needed must address issues of data quality in terms of sample rate
and penetration rate.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Motivation

Actionable information is the lifeblood of effective transportation management. Traffic data can be used to estimate cur-
rent traffic conditions so that travelers and agencies can make better decisions about how to use and manage the
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transportation network. As the challenges of traffic and congestion increase, particularly in urban areas and freight-heavy
intercity corridors, real-time traffic information becomes steadily more important.

Currently, transportation agencies capture traffic data primarily from fixed sensors, such as loop detectors, that are rela-
tively expensive to install and maintain. However with the recent growth of communications technologies, GPS, and the
mobile internet, an increasing amount of real-time location information is collected and distributed by private companies
and even marketed for retail to public agencies such as state departments of transportation (DOTs).

This body of data offers transportation agencies a potential opportunity to improve operations, but it also presents unique
challenges such as a scarcity of precedent for its procurement and use, and loss of direct quality control. Further, the data
collected from GPS devices is limited to position information (from which velocities can be computed), while typical system
control strategies, such as ramp metering, normally require density or occupancy data. Thus, while the results presented in
this article are very promising for traffic information, more work is needed to establish similar results for traffic management
and operations.

However, using GPS-based mobile probe data to complement existing detectors has real viability. This article demon-
strates a hybrid traffic data system that effectively combines both mobile and fixed sensor data in a way that outperforms
what is possible with only one type of data. This article shows that for freeways already instrumented with loop detectors,
better travel time estimation performance may be achieved by fusing a relatively small amount of probe data than by dou-
bling the number of loop detectors. These additional probe data may correspond to penetration rates on the order of only
0.2%. In addition, the question of how much GPS data are needed for travel time estimation cannot be answered without
thorough investigation of its composition in terms of sample rate and penetration rate. This article illustrates quantitatively
the relationship between travel time estimation performance and these measures of data quality.
1.2. Related work

Within the broad field of estimation numerous approaches have been developed, which include sequential estimation,
variational data assimilation, statistical filtering, etc. A complete discussion of this work is beyond the scope of this review.
For surveys of data fusion literature in a broader context of intelligent transportation systems, see Faouzi et al. (2011) and
Zhang et al. (2011).

This review focuses on studies that fuse two or more types of data such as flows or occupancies from loop detectors,
point-speeds from GPS sources, or travel times based on some type of re-identification technology, such as Bluetooth.
Previous work in the milieu of multisensor data fusion for the purpose of traffic speed estimation can be categorized into
four main groups depending on whether experimental or simulated data are used and whether or not the algorithmic
approach employs a physical model of traffic dynamics.

Simulated data and no physical model: In Geisler et al. (2012), microsimulation is used to generate mock GPS-based data
that are then map-matched to the road network. A classification algorithm is used to identify four levels of traffic: free,
dense, slow, and congested. In Bachmann et al. (2013), microsimulation is used to generate synthetic loop and Bluetooth-like
probe data that are then used to estimate average link speeds. Performance is evaluated for several statistical techniques that
do not explicitly model the physics (Bachmann et al., 2013).

Simulated data and physical model: Physical notions from traffic flow theory appear in the data fusion approach explored in
Van Lint and Hoogendoorn (2010) wherein the so-called extended generalized Treiber–Helbing filter is proposed. This
method takes as input simulated data in the form of point-speeds, fixed sensor data, and travel times. Estimates of link
speeds are generated; performance measures are calculated against a filtered version of the simulated ground truth.

Experimental data and no physical model: In Bachmann et al. (2012) a set of statistical techniques is employed to estimate
travel times on a 20.8 km stretch of freeway in Canada. These techniques make use of both data from loops along the freeway
as well as data from two Bluetooth devices installed at the most upstream and most downstream ends of the site (Bachmann
et al., 2012). One day of GPS-based floating car data are used as the validation set. Another study uses Dempster–Shafer infer-
ence to classify travel times into one of four categories using loop and toll collection data on a motorway in France (Faouzi
et al., 2009).

Experimental data and physical model: In a previous study on freeways (Mazare et al., 2012), tradeoffs between loop data
and GPS-based probe data are investigated for estimating travel times using a data fusion framework based on ensemble
Kalman filtering (Evensen, 2003) and a traffic model based on the Godunov scheme (Work et al., 2010). Employed are real
data from loops, as well as GPS point-speeds from Mobile Century – a controlled experiment in which drivers were hired to
circulate along a fixed route on I-880 in California (Herrera et al., 2010; Patire et al., 2010). Utilizing the Mobile Century data
set, probe data were generated at specific virtual trip lines (Virtual trip lines, or VTLs, are a privacy-aware spatial sampling
scheme (Hoh et al., 2008) that obviates the need for map-matching). Results in Mazare et al. (2012) are limited to the experi-
mental data over a portion of one day and one set of travel times for validation over a single route on a freeway.

As mentioned above, the main sources of data on freeways are typically fixed sensors. Data assimilation methods that
have been designed for, or demonstrated with, fixed sensor data to estimate traffic conditions on freeways may also have
potential application to fuse fixed and mobile probe data. Examples of these methods include extended Kalman filtering
in combination with a second-order traffic model (Wang and Papageorgiou, 2005), particle filtering in combination with a
second-order traffic model (Mihaylova et al., 2007), and the Fourier–Galerkin projection method with minimax estimation
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(Tchrakian and Zhuk, 2014). The present work explores the use of ensemble Kalman filtering with a first-order traffic model
as in Work et al. (2010).

Beyond the specific topic of data fusion, recent literature is rich with studies that make use of GPS-based data, especially
on arterials where the fixed sensing infrastructure has lagged behind that of freeways. For an exhaustive survey of the min-
ing of taxi GPS traces, see Castro et al. (2013) in which this literature is classified into studies of social dynamics, traffic
dynamics, and operational dynamics. Traffic-focused studies typically employ GPS-based data to estimate travel times or
queue lengths. Statistical methods to estimate travel times on arterials have been targeted to make efficient use of sparsely
sampled GPS-based data and assume no prior knowledge of signal timing plans. For example, techniques using Coupled
Hidden Markov Models have been studied in Herring et al. (2010). A statistical traffic flow model based on hydrodynamic
theory to implicitly model horizontal queues is demonstrated in Hofleitner and Bayen (2011). Studies that attempt to esti-
mate queue lengths on arterials typically require high penetration rates on the order of 20% or more and sometimes assume
knowledge of signal timing plans. For examples, see Feng et al. (2014) and Sun and Ban (2013).

At the intersection of crowdsourcing and the growing pervasiveness of GPS-enabled smartphones there has been an
explosion of mobile apps such as: (1) BostonStreetbump (StreetBump, 2015) to crowdsource pothole locations for road
maintenance in Boston; (2) Green Light Optimal Speed Advisory (Koukoumidis et al., 2011) to advise drivers the optimal
speed at which to approach a light to avoid having to brake; (3) RasteyRishtey (Sen, 2014) to assist with organizing ad
hoc meet-ups in developing countries; and, (4) WreckWatch (White et al., 2011) to automatically detect vehicular accidents
using accelerometer and contextual data.

A number of private companies collect and aggregate traffic-related data from sources (such as fleets, navigational
devices, and users of smartphone routing apps) that include GPS-based point speeds. These companies use proprietary sys-
tems and algorithms to estimate traffic conditions and to package this information for retail in the form of link speeds
updated at a rate of about one minute. One study compared link speeds from the company INRIX with loop data over a
two-month period to assess its quality. Kim and Coifman (2014) reports issues of latency and repeated reported speeds that
are crucial considerations for any future real-time traffic management applications that may depend on third-party data. As
distinct from Kim and Coifman (2014), the present work investigates a sample of non-aggregated, GPS-based, point speeds
representative of what may be available as source inputs used by these third-party suppliers of traffic data.

Issues of oversight and quality control for third-party data to be procured from the private sector are increasingly receiv-
ing greater attention. One notable study (Schneider IV et al., 2010) performed for the Ohio DOT generated travel time data
service evaluation procedures to be used in contract provisions. The effectiveness and accuracy of floating car studies was
compared with what is possible with the deployment of Bluetooth technology (Schneider IV et al., 2010). The I-95
Corridor Coalition employs a method in which average speeds for validation (typically determined by Bluetooth re-identi-
fication) are compared against speeds from probe data calculated over TMC (traffic messaging channels). An average absolute
speed error (AASE) as well as a speed error bias (SEB) is calculated for a set of speed bin categories (I-95 Corridor Coalition,
2010).

One theoretical study proposes an information measure to quantify the value of heterogeneous traffic measurements
(Deng et al., 2013). Cumulative flow count is used as the state variable, and scenarios are created that involve the insertion
of an additional fixed sensor, addition of vehicle re-identification at the upstream and downstream ends of the modeled free-
way, or insertion of GPS-based probe data. For each scenario the uncertainty reduction in the internal traffic state is calcu-
lated. Trajectory data from NGSIM (2013) are used to generate synthetic data to implement the experiments in this
framework. As with Deng et al. (2013), the present work also quantifies the value of heterogeneous traffic measurements,
but in the context of strictly experimental data on three different sites, over a period of six weeks.

A trade-off analysis between penetration rate and sampling rate of GPS-based probe data is provided by Bucknell and
Herrera (2014). Indifference curves are calculated to illustrate the marginal value of modifying the composition of the probe
data source with respect to velocity state estimation error. Once again, NGSIM trajectories are used to generate synthetic
probe data. A second evaluation is performed using trajectories from a microsimulation. As with Bucknell and Herrera
(2014) the present work also quantifies the impact of penetration rate and sampling rate. However, the present work
addresses these issues in the context of strictly experimental data and with respect to travel time estimation performance.

Unlike previous studies, the present work addresses practical challenges of using commercially available GPS-based
probe data. For example, commercially available, unaggregated GPS point-speed data of today do not use the VTL scheme,
but instead are time-sampled at rates between 0.5 and 60 times per minute. As a result, substantial processing is required
to project the latitude and longitude information from GPS point-speed data onto the road network. This study employs the
Path Inference Filter of Hunter et al. (2013) to process the raw probe data feeds that were procured as a part of the hybrid data
project described in Bayen et al. (2013b) and Bayen et al. (2013).

One limitation of many other studies is that GPS-based probe data is assumed to have homogeneous sample rates. In
practice, experimental data collected from multiple providers features heterogeneous characteristics, such as having a mix-
ture of high- and low-frequency probe data. Due to nonlinearities of traffic dynamics, it is not obvious how to extend idea-
lized theoretical results to the inherent heterogeneities of ‘‘Big Data.’’

The present work provides a theoretical framework for data fusion, an algorithmic foundation to evaluate the relative
usefulness of non-aggregated, GPS-based, point-speeds and fixed sensor deployments. A fusion engine is demonstrated that
can incorporate third-party data to estimate travel times within the bounds of driver variability, and this achievement is
repeated over multiple weeks and multiple congested freeway sites. In addition, the present work provides a quantitative
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evaluation of the additional predictive power that probe data can bring to a transportation information system that may
already use data from existing sensing infrastructure (such as loops) and thus informs near-term data procurement strate-
gies for transportation agencies.

1.3. Structure of the article

This article proceeds with a brief summary of the developed approach. Following is a description in greater detail of both
the methods and the framework necessary for its implementation. Next, travel time estimation results are presented on two
urban test sites using loop and probe data and one rural test site using only probe data. Finally, the article concludes with a
summary of findings and their implications for transportation agencies.
2. Developed approach

In this study, travel time was chosen as the metric of interest. Travel time is intuitive, and of high interest to the traveling
public and public agencies. Furthermore, it is a quantity that can be measured effectively and reliably using various technolo-
gies, in particular Bluetooth (Haghani et al., 2010; Martchouk et al., 2011).

Fig. 1a illustrates the data flow for data fusion used in our approach. Raw data feeds providing loop or probe data require
substantial filtering to convert the data into a suitable form. Subsets of available data are fused and the output consists of a
reconstruction of traffic state in the form of spacetime velocity maps. By themselves, the velocity maps are informative, but
require further processing to make an appropriate comparison with independently obtained travel times.

Fig. 1b illustrates the additional data flow for calibration and for performance evaluation. An independent source of travel
times obtained from Bluetooth sensors also requires considerable filtering. Vehicle trajectories consistent with the velocity
maps are generated and used to estimate travel times along routes between the Bluetooth sensors. Means and standard
deviations are calculated over fixed intervals for both the travel times generated from the velocity maps and for the travel
times generated by the filtered Bluetooth measurements. These statistics are then compared for calibration and for perfor-
mance evaluation.

The method introduced in Fig. 1 is appropriate for both real-time and historical applications.

2.1. Data sources

As described in detail in Bayen et al. (2013b) and Bayen et al. (2013), real-time probe feeds were established for 90 days.
Each anonymized GPS point-speed datum included at a minimum the following fields: temporary ID, timestamp, latitude,
longitude, and velocity.

A real-time loop feed was established via PeMS (2013), providing timestamped values of occupancy and counts over fixed
time intervals (e.g., 30 s).

Bluetooth sensors were installed in two-week deployments along three sites of interest. Each raw datum consisted of
timestamp and unique MAC address. MAC addresses were hashed to alleviate privacy concerns. During daytime hours,
the Bluetooth flow fraction was about 5% of total flow measured by nearby loops along two sites of interest (Bayen et al.,
2013b).
(a) Data Fusion

(b) Calibration and performance evaluation

Fig. 1. Schematic diagram of developed method to illustrate the data flow between subsystems.



A.D. Patire et al. / Transportation Research Part C 58 (2015) 325–342 329
2.2. Filters

In this article, the term ‘‘filtering’’ is used to refer to any number of computational steps to prepare data obtained from a
‘‘raw’’ feed for use with the data fusion engine. These computational steps are roughly sorted into one of three categories.
The first category has to do with identifying and discarding invalid data. Data might be invalid because it is a duplicate, it
is missing required fields, its values are outside the range of physical possibility, etc. The second category has to do with fil-
tering noise or measurement error. In addition, data that might be valid might also correspond to a known failure mode of
the underlying detector or source; these data are filtered out. Finally, the third category has to do with aligning data with
existing infrastructure. One example of this third category is map-matching sparsely sampled probe data to a probable path
through the road network.

The loop data filter inherited from Mobile Millennium (Bayen et al., 2011) was used to calculate velocity from the provided
occupancies and counts as well as to remove irregular or clearly erroneous reports. This filter uses a heuristic method to
identify known failure modes of loops, and the loop feed.

The Path Inference Filter (PIF) is used to project GPS probe points onto a road network, and to distinguish points on the
freeway of interest from nearby points on an overpass or parallel road (Hunter et al., 2013). PIF takes in a series of latitude,
longitude, and time data associated with a particular device and reconstructs a list of possible trajectories, each with asso-
ciated probabilities. Only PIF mappings that contain more than 70% of the probability are accepted for downstream
processing.

Bluetooth data are filtered to handle multiple detections by the same detector and to remove devices with outlier travel
times. For example, it is common during congestion for any particular Bluetooth device to stay within the range of a
Bluetooth detector for multiple scans. This situation might result in a series of multiple timestamps for the same device
at both the beginning and at the end of a route between two detectors. For this study, travel time was calculated from
the average timestamp at the beginning of the route to the average timestamp and the end of the route. The interested reader
is referred to Bayen et al. (2013b) for a detailed description of the analysis justifying this choice.
2.3. Data downselection

A systematic downselection method for the data was employed to determine the performances achievable for combina-
tions of available data sources, and to determine how marginal increases in available data can improve the accuracy of travel
time estimation.

Loop data were downselected by assigning loops to sets of roughly equal size and progressively removing the least mar-
ginally informative loops. This pattern models a deployment strategy consistent with first installing detectors in locations
with greatest informational content.

The downselection strategy for probe data needed to reflect the fact that, during any time interval, the information con-
tent from having one data point from each of ten different vehicles is different from the information content from having ten
data points all from the same vehicle.

Two data quality measures facilitate discussion: Sampling rate is the average rate at which any device reports its position
and velocity. Any data set will have a distribution of devices with a range of sampling rates (typically between 0.5 and 60
reports per minute). Penetration rate is the flow fraction of vehicles (unique devices) reporting to the probe data set as com-
pared to the total flow of vehicles along a road.

Probe data is downselected in two different ways. Downselecting by bulk is performed to approximate the effect of fewer
datapoints in any discretized region of spacetime. This is done by limiting the total number of reports allowed into the subset
within any spacetime bin, regardless of the IDs of the devices associated with each report. Conversely, downselecting by
unique ID is performed to approximate the effect of changing the market penetration of the data source. This is done by limit-
ing the number of unique devices allowed into the subset per 30 s sample period, regardless of the sample rates of selected
devices.
2.4. Calibration

The calibration framework developed as part of this project and in collaboration with Linköping University uses an algo-
rithm based on the Complex Method (Box, 1965) to fine tune a predetermined parameter set. It is an iterative scheme that
uses heuristics to search the parameter space, and works well in practice. A complete description can be found in Allström
et al. (2014). For this application poor calibration is easily detectable; it results in incongruous occurrence and extent of traf-
fic congestion when compared with Bluetooth measurements (as described below).

The parameters tuned during the calibration procedure are the split ratios, which define the proportions of vehicles that
take each possible direction in a given junction; the fundamental diagram parameters, which define the relationship
between the traffic density and flow (or speed); the source capacities, which define the input flows from the on-ramps
and upstream origin; and the Kalman Filter noise parameters, which are required parameters for the filtering system used
in data assimilation (fusion). One limitation of the implementation (not the method) was that only time-invariant parame-
ters were used.
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2.5. Data fusion

The data fusion approach in the present work is to integrate measurements into a flow model using an Ensemble Kalman
Filter (EnKF) from Evensen (2009). This approach, commonly used in fields such as oceanography, is effective when measure-
ments are relatively sparse and physical dynamics can be well approximated but not linearized. Highlights are summarized
below, while more mathematical details are provided in Work et al. (2010).

The objective of the proposed data fusion engine is twofold. The first objective is to make effective use of heterogeneous
data types, in this case both loop detectors and GPS-based probe data. The second objective is to infer traffic states even in
places where direct measurements are unavailable. The inputs to data fusion are velocity measurements from loops or
probes, and the outputs are velocity estimates everywhere along the freeway.

The physical model is taken as the common LWR partial differential equation from Lighthill and Whitham (1955) and
Richards (1956)
@qðx; tÞ
@t

þ @qðx; tÞ
@x

¼ 0 ð1Þ
where q and q represent the density and flow of vehicles along the freeway of interest. Partial derivatives are taken with
respect to time, t, and a single dimension of space, x, corresponding to a single-pipe model.

The fundamental diagram is expressed as a velocity function v ¼ VðqÞ. As in Work et al. (2010), the Smulders fundamen-
tal diagram is chosen:
v ¼ VðqÞ ¼
vmax 1� q

qmax

� �
ifq 6 qc

�wf 1� qmax
q

� �
otherwise

8><>: ð2Þ
where vmax; qmax; qc and wf are the maximum velocity, maximum density, critical density for transition from free-flow to
congestion, and the backward-propagating wave speed, respectively.

Recall that our goal is to estimate travel times by assimilating velocity data. For simplicity in implementation, and also for
conceptual clarity, the entire model is also converted to the velocity domain. This conversion is possible because the
Smulders fundamental diagram is invertible.

The Godunov scheme (Godunov, 1959) is employed to discretize Eq. (1). Rewriting the result with velocity as the state
variable yields the following one-step velocity cell transmission model (v-CTM) as derived in Work et al. (2010):
vnþ1
i ¼ V V�1 vn

i

� �
� DT

Dx
eG vn

i ; vn
iþ1

� �
� eG vn

i�1;vn
i

� �� �� �
ð3Þ
where vn
i is the velocity associated with Godunov cell i at timestep n; DT is the time step, and Dx is the spatial step. Once

again, Vð�Þ denotes the Smulders fundamental diagram from Eq. (2), and V�1ð�Þ denotes its inverse. To ensure numerical sta-
bility the time and spatial steps are constrained by the CFL condition (Courant et al., 1967) such that: vmax

DT
DX 6 1. In the case

of the Smulders fundamental diagram, the transformed Godunov velocity flux, eGð�; �Þ, is a function of two variables, the veloc-
ity state of the sending cell, v1, and the velocity state of the receiving cell, v2:
eGðv1; v2Þ ¼

v2qmax
1

1þv2
wf

� �
ifvc P v2 P v1

vcqmax 1� vc
vmax

� �
ifv2 P vc P v1

v1qmax 1� v1
vmax

� �
ifv2 P v1 P vc

min V�1 v1ð Þv1; V�1 v2ð Þv2

� �
ifv1 P v2

8>>>>>>>>><>>>>>>>>>:
ð4Þ
where vc is the critical velocity, the velocity at the critical density qc.
The junction model of Piccoli (Work et al., 2010) is employed to extend the velocity model to a road network represented

by a directed graph, thus allowing freeway onramps and offramps to be modeled. Details are explained in Work et al. (2010).
The state update algorithm, summarized as Mð�Þ, involves two main steps:

1. For all junctions, compute the maximum admissible inflows and outflows, and Piccoli junction flows using the procedure
of Work et al. (2010).

2. Compute the one-step velocity update as shown in Eq. (3).

For the purpose of estimation, uncertainty is explicitly added to the model
vn ¼Mðvn�1Þ þ gn ð5Þ
where gn represents ‘‘process’’ noise taken from a zero-mean, Gaussian distribution. Measurement data at each time step, yn,
are modeled as noisy versions of the true velocity state,
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yn ¼ Hnvn þ vn ð6Þ
where Hn is a linear observation matrix and vn represents measurement noise taken from a distribution with zero mean and
covariance matrix Rn.

The EnKF is a sequential technique shown schematically in Fig. 2. At each time step the physical model, Mð�Þ, is used to
calculate the next forecast state, vn

f . The state error covariance is represented by the ensemble covariance, Pn
ens;f . The differ-

ence between the forecast state, vn
f , and measurements from the field, yn (wherever they exist as specified by Hn), is called

the innovation. This innovation is scaled by the Kalman gain, Gn
ens, and used to calculate an improved state estimate, vn

a , the
analyzed state. The process is as follows:

1. Initialization: Draw K ensemble realizations v0
aðkÞ (with k 2 f1; � � � ;Kg) from a process with a mean speed �v0

a and covari-

ance P0
a .

2. Forecast: Update each of the K ensemble members and update the ensemble mean and covariance according to:
vn
f ðkÞ ¼Mðvn�1

a ðkÞÞ þ gnðkÞ ð7Þ

�vn
f ¼

1
K

XK

k¼1

vn
f ðkÞ ð8Þ

Pn
ens;f ¼

1
K � 1

XK

k¼1

vn
f ðkÞ � �vn

f

� �
vn

f ðkÞ � �vn
f

� �T
: ð9Þ

3. Analysis: Obtain measurements, compute the Kalman gain, and update the network forecast:
Gn
ens ¼ Pn

ens;f Hnð ÞT HnPn
ens;f Hnð ÞT þ Rn

� ��1
ð10Þ

vn
aðkÞ ¼ vn

f ðkÞ þ Gn
ens yn �Hnvn

f ðkÞ þ vnðkÞ
� �

: ð11Þ

4. Return to step 2.

One contribution of the present work was in applying the calibration procedures outlined in Section 2.4 to fine-tune the
measurement noise for each of the data sources employed. An expanded version of Eq. (6) can be written as
yn
l

yn
a

yn
b

264
375 ¼ Hn

l

Hn
a

Hn
b

264
375vn þ

vn
l

vn
a

vn
b

264
375 ð12Þ
with subscripts l; a, and b corresponding to the loop, probe A, and probe B data sources, respectively. Characteristics of probe
sets A and B are provided in Section 3.2. Each of vn

l ; vn
a , and vn

b represent measurement noise taken from distributions with
covariance matrices Rn

l ; Rn
a , and Rn

b , respectively. The specification of the right covariance to use depends greatly on which
mix of data sources are to be fused.

Note that noise is explicitly added to the measurements in Eq. (11). At each time step n, and for each ensemble k, a zero-
mean noise vector vnðkÞ, constructed according to Eq. (12), is added to the measurement vector. In this way, each physical
measurement is represented as an ensemble with a mean corresponding to the actual measurement and a covariance equal
to the assumed measurement error covariance.

Data are assimilated through the analysis step as they would arrive in a real-time system (here, 30 s intervals for loop
data and one probe data feed, and 1 min intervals for the other probe data feed). Data fusion occurs in several steps. The first
Schematic representation of the data fusion engine. The model update, Mð�Þ, summarizes equations for the Godunov scheme and the junction model.
as input the state vector from the analysis step of the EnKF. It outputs the next state forecast to be assimilated with available measurements. Note
model is invoked for each member of the ensemble with k 2 f1; � � � ;Kg.
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step is by constructing yn according to Eq. (12) with velocity measurements as resulting from the probe data sources, yn
a and

yn
b , as well as those resulting from the loop data filter, yn

l . The next step occurs in the analysis step of Eq. (11). If no measure-
ment data at all is available at a certain forecast time step, n, then a small amount of zero-mean process noise is added to the
state estimate. If (partial) measurement data are available, then the estimate consists of a weighted average of the measure-
ment and the forecast of the model. Note that even in cells where no measurement data are available, the estimate depends
on the state of statistically correlated cells as determined by the correlation matrix, Pn

ens;f . In this application, the forecast step
may correspond to multiple iterations of the Godunov scheme. For all results in this article, time is discretized into 6 s inter-
vals and space is discretized into roughly 200 m sections.

2.6. Travel time calculations

The two sources for travel time data in this study are (1) forward spatial integration of the estimated velocity maps, and
(2) field data from Bluetooth vehicle re-identification, as shown in Fig. 1b. The following subsections explain how these
sources are then processed to calculate travel time statistics for performance evaluation.

2.6.1. Average travel times from Bluetooth re-identification
The piecewise-linear trajectories illustrated in Fig. 3 are intended to correspond to assumed trajectories of individual

vehicles (real, not simulated) based on Bluetooth re-identification as discussed in Section 2.2. The trajectories are drawn
as straight lines to convey the limited granularity of the field data. The different slopes correspond to the fact that different
vehicles realize different travel times.

The rectangular bins in Fig. 3 pertain to Bluetooth detectors deployed on the study site with edges in the spatial dimen-
sion corresponding to Bluetooth sensor locations, and indexed by j. The bins have a time duration of T ¼ 15 min, and are
indexed by i along the time axis. Note that the bins described here are completely independent from the Godunov scheme
discretization in Section 2.5.

The inter-Bluetooth regions are referred to as ‘‘routes.’’ Individual vehicle travel times as measured by Bluetooth detectors
are denoted as sjk, where k is the vehicle start time at the beginning of route j. In each spacetime region indexed by ði; jÞ,
average and standard deviations of travel time are calculated:
Fig. 3.
detecto
betwee
corresp
TBTði; jÞ ¼
1P

iT6k<ðiþ1ÞT 1

X
iT6k<ðiþ1ÞT

sjk ð13Þ

SBTði; jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1P
iT6k<ðiþ1ÞT 1

X
iT6k<ðiþ1ÞT

ðsjk � TBTði; jÞÞ2
s

ð14Þ
Since trajectories may not always begin and end in the same region, the beginning of the trajectory is used for aggregation
purposes.
Schematic representation of vehicle trajectories recovered from Bluetooth field data along a study site. Vehicles move from bottom to top. Bluetooth
rs are labeled on the y-axis and distributed unevenly along the road. Circles represent detections of a vehicle. Spatial segments (also called routes)
n successive Bluetooth devices are indexed by j. The time axis is divided into segments of duration T ¼ 15 min and indexed by i. The trajectories
onding to time bin i and route j ¼ 2 are colored red.
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2.6.2. Average travel times from estimated velocity maps
While the data fusion engine creates an estimate of velocity over time and space (the velocity map), the measured value

for comparison via the Bluetooth deployment is vehicle travel times. Therefore, it is necessary to generate comparable travel
times consistent with the velocity maps according to the process illustrated in Fig. 1b.

Synthetic trajectories are generated by placing a dummy vehicle at the beginning of each Bluetooth route every 30 s and
advancing them through space according to the velocity map at their current locations every 6 s. This process of forward
spatial integration results in a set of 30 trajectories (and thus 30 travel times, sjk) in each 15 min bin. The means
Tmodelði; jÞ and standard deviations Smodelði; jÞ for each bin are then computed according to Eqs. (13) and (14), above.

2.7. Performance metrics

For the purpose of quantifying the performance of the data fusion engine and the accuracy of estimates computed from
various data sources, several statistical metrics are described:

2.7.1. Mean Absolute Percentage Error (MAPE)
The Mean Absolute Percentage Error (MAPE) is a quantification of the difference between the estimated travel times and

the travel time directly measured by the Bluetooth sensor deployment. It is computed as follows:
MAPE ¼ 1
NM

XN

i¼1

XM

j¼1

jTmodelði; jÞ � TBTði; jÞj
TBTði; jÞ

ð15Þ
where Tmodel is the mean estimated travel time, TBT is the mean Bluetooth travel time, and i 2 f1; . . . ;Ng and j 2 f1; . . . ;Mg are
the time aggregation periods, and routes between Bluetooth detectors, respectively.

In congested traffic moving at 20 mph, and calculated over a 12 mile freeway segment, a 5 mph overestimation of speed
will result in a MAPE of 20%. The MAPE metric as defined above is very strict in that small over- or under-estimations along M
successive routes do not cancel out, they are added up instead.

It is also useful to compute a measure of the variability in traffic travel times as measured by Bluetooth detectors for com-
parison purposes. The statistical metric used is the BTMAPE:
BTMAPE ¼ 1
NM

XN

i¼1

XM

j¼1

SBTði; jÞ
TBTði; jÞ

ð16Þ
where TBTði; jÞ and SBTði; jÞ are the means and standard deviations from Eqs. (13) and (14). This metric is related to the tradi-
tional statistical measurement of coefficient of variation (used as a proxy for the noise floor).

2.7.2. Per Mile Absolute Time Error (PMATE)
The Per Mile Absolute Time Error (PMATE) is used to get an intuitive sense of the error as normalized by the length of the

road section:
PMATE ¼ 1
N

XN

i¼1

1PM
j¼1LðjÞ

XM

j¼1

jTmodelði; jÞ � TBTði; jÞj ð17Þ
where LðjÞ is the length of the road section indexed by j. Similarly to MAPE, a BTPMATE metric is computed and used as
another proxy for the noise floor:
BTPMATE ¼ 1
N

XN

i¼1

1PM
j¼1LðjÞ

XM

j¼1

SBT ð18Þ
2.7.3. Congestion Classification Error in Congestion (CCEC)
The Congestion Classification Error in Congestion is a statistical metric used to quantify the accuracy of the data fusion

engine in predicting congestion in a binomial sense. CCEC is computed as follows:
CCEC ¼ 1PNc
i¼1

PMc
j¼11TBT ði;jÞ

LðjÞ >P

XNc

i¼1

XMc

j¼1

1Tmodelði;jÞ
LðjÞ >P

� 1TBT ði;jÞ
LðjÞ >P

				 				1TBT ði;jÞ
LðjÞ >P

ð19Þ
where P is the threshold pace for congestion, and i 2 f1; . . . ;Mcg and j 2 f1; . . . ;Ncg index the time aggregation periods, and
routes between Bluetooth detectors, respectively, of the spacetime regions in congestion. Here, congestion is defined as any
spacetime region for which the average speed as measured by Bluetooth is less than 40 mph, corresponding to a threshold

pace P = 1.5 min/mile. The indicator function 1Tmodel ði;jÞ
LðjÞ >P

is equal to one whenever the condition Tmodelði;jÞ
LðjÞ > P is satisfied (the

model predicts congestion), and equal to zero otherwise (the model predicts freeflow).
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3. Results

Trial experiments were performed for three sites in California. Two urban sites were chosen: one along northbound I-880
and another along northbound I-15 as depicted in Fig. 4a and b, respectively. One rural site was selected along southbound
I-15 near Victorville as shown in Fig. 5. The two urban sites had active loop detectors, while the rural site did not (during
April of 2012, when data were collected). Summary results are provided here; detailed presentation is available in Bayen
et al. (2013b).

3.1. Validation data

Four weeks of validation data for the urban sites are shown in Fig. 6. Displayed are average velocities calculated from
average travel times along successive routes between Bluetooth detectors deployed along the highway. Numbered rectan-
gles demark congestion events in spacetime along the I-880 site in Fig. 6a and b, and along the I-15 site in Fig. 6c and d.

The goal in this study was to evaluate the accuracy of travel time estimates from heterogeneous sources of data (loops
and probes). During free flow conditions, estimation of travel time is trivial. Therefore, performance metrics were calculated
only during the congestion events identified by numbered rectangles in Fig. 6: before congestion, during the onset of con-
gestion, during queue clearance, and immediately after congestion. For each selected congestion event, both probe and loop
data sources exhibited typical operational performance, with no unusual outages, thus facilitating a fair comparison of their
relative predictive power.

3.2. Probe data characteristics

The probe data are divided into two subsets: Set A and Set B. Set A had a high sample rate and a low penetration rate
whereas set B had a relatively low sample rate and a relatively high penetration rate as shown in Table 1 for the I-880 site.
Distributions of sample rates are further illustrated in Fig. 7. Data from individual GPS devices in set A are typically sampled
at either 30 or 60 times per minute as shown in Fig. 7a. Most data from individual GPS devices in set B are sampled at less
than 2.5 times per minute as shown in Fig. 7b. This division of data facilitated a comparison between data quality and travel
time estimation performance.

Daily trends of probe flows and penetration rates along I-880 northbound are explored in Fig. 8. On weekdays, the flow
profile of set B probes appears to be shifted forward in time as compared to the flow profile of general traffic as measured by
loop detectors and illustrated in Fig. 8a. This pattern results in a penetration rate for set B that falls off quickly during the
evening rush as shown in Fig. 8c. On weekends, the flows and penetration rates of probes in set B are significantly lower than
those on weekdays, as shown in Fig. 8b and d. Although probes in set A have comparatively lower flows and penetration
rates, their values are more stable throughout the day.

3.3. Fusion comparison

The data fusion engine as described in Section 2.5 was used to reconstruct the traffic state over the I-880 study site and
two-week time period using filtered loop and probe data. As an example of the inputs, all loop and all probe data (both sets
(a) A 12-mile section on I-880 north bound between Fremont and Hay-
ward. Ten Bluetooth detectors divide the freeway into nine segments.
The 22 loop detectors are divided into four sets.

(b) A 9-mile section on I-15 northbound near Ontario, California. Eight
Bluetooth detectors divide the freeway into seven segments. The 9 loop
detectors are divided into three sets.

Fig. 4. Maps of two urban freeway study sites.



Fig. 5. Map of a rural, 19 mile section on I-15 southbound through Victorville. Ten Bluetooth detectors denoted by black horizontal bars divide the freeway
into nine segments. No loop detectors were active during the time of this study.
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A + B) available during the 24 h period of March 7, 2012 are illustrated in Fig. 9a and b. Areas colored black in Fig. 9 indicate
in space and in time the cells in the v-CTM model for which no direct state measurements are available.

Fig. 10 presents visual representations of the reconstructed state over the same 24 h period based on some or all of the
available data. Fig. 10a shows the state as reconstructed from the loop data of Fig. 9a only. Fig. 10b shows the state as recon-
structed from the probe data of Fig. 9b only. Fig. 10c shows the state as reconstructed from both loop data of Fig. 9a and
probe data of Fig. 9b. Although Fig. 10d shows the Bluetooth measurements as transformed to average velocities for easier
visual comparison, the raw data used in computing the statistical metrics defined in Section 2.7 are travel times, not
velocities.

Travel time estimation performance is calculated over three sites for combinations of input data; summary results are
presented in Table 2. Results for the I-880 site are calculated over the seventeen congestion regions of Fig. 6a and b.
Results for the I-15 site near Ontario are calculated over the thirteen congestion regions of Fig. 6c and d. Use of multiple data
sources produced dramatically more accurate estimations as measured by all three metrics, with the metric values dropping
below those of the noise floors when all three sources are used. Two notions of noise floor, BTMAPE and BTPMATE, are used
in this study to quantify the underlying variability in the validation data as calculated according to Eqs. (16) and (18),
respectively.

During the survey period along the rural site of southbound I-15 near Victorville, a significant congestion event occurred
on April 22, 2012. Results calculated over an 8 h period on that day are shown on the bottom rows of Table 2. During this
time, the combined probe data set contained 2.63 unique devices per 5 min per mile. Unfortunately, there were not enough
congestion periods to calibrate the parameters. Results are provided for the default Mobile Millennium (Bayen et al., 2011)
parameter values. Using only probe data, good agreement was achieved between measured and estimated travel times.

Further investigation of the effects of marginal probe data availability was conducted by using data sets A and B sepa-
rately to estimate travel times for the I-880 study site. Table 1 quantifies the differences in sampling characteristics between
the two sets for this site. Fig. 11 illustrates the reduction in error as additional data is made available to the data fusion
engine. In Fig. 11a, data is downselected by unique devices (as described in Section 2.3) and MAPE shows a relatively steady
decrease as data from additional unique devices are used. Since set B has a higher penetration rate, it achieves a lower mini-
mum MAPE. In Fig. 11b, however, data is downselected by bulk (as described in Section 2.3). This figure shows that even
though set A has several factors more data points available due to the higher average sampling rate, addition of more data
points produces diminishing returns in MAPE, since these marginally added data points are reports from the same devices.

This contrast in behavior of severe diminishing returns in Fig. 11b and moderate degradation in Fig. 11a can be explained
by the observation that two data points from the same vehicle closely spaced in time should be well correlated. As a result,
the marginal value (in terms of information) of the next data point from that same vehicle is reduced. The results of Fig. 11
suggest that the question of how much GPS data is needed for a particular application cannot be answered without thorough
investigation of its quality in terms of sample rate and penetration rate.

To summarize: On freeways, a high penetration rate of probes is to be preferred over a high average sample rate. When
data from multiple sources are fused, superior results are obtained. This analysis provides a framework for quantifying
the usefulness of probe data, as is further described next.



(a) I-880, March 3 to March 9, 2012. (b) I-880, March 10 to March 16, 2012.

(c) I-15, March 31 to April 6, 2012. (d) I-15, April 7 to April 13, 2012.

Fig. 6. Validation data set as calculated from Bluetooth travel times and presented as average velocities. Numbered rectangles demark congestion events.
Vehicles move from bottom to top; time moves from left to right. Color scale indicates miles per hour. Regions with no data are colored black. Brief
suspensions of data collection occurred nightly at 2 a.m. and appear as slender vertical lines. The thick black vertical line in (b) on March 11 is due to
daylight savings time.

Table 1
Attributes of probe data sets on I-880 during the selected congested periods of Fig. 6.

Attribute Set A Set B

Unique reports per 5 min per mile 1.0 1.6
Total reports per 5 min per mile 17.2 2.0
Average penetration rate by flow 0.1% 0.6%
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3.4. Performance trade-offs between loops and probes

Fig. 4a and b show the layout of the I-880 and I-15 sites, respectively. The on-site loop detectors (22 on I-880, 9 on I-15)
are assigned to subsets as described in Section 2.3. The subsets are used to include different percentages of the loop stations
in fusion calculations. In the case of I-880, for example, to include one quarter of the loop stations, only Set A was used. To
include half of the loop stations, Sets A and B were used, et cetera.

Table 3 presents MAPE on I-880 illustrating the impact of loop detector spacing and the benefit of small amounts of GPS-
based probe data in the proposed data fusion framework. As expected fewer loops correspond with greater error.

Table 3 quantifies how dramatically performance can improve with the addition of a small amount of GPS-based probe
data. Notice that almost identical MAPE performance is obtained with 1.83 loops per mile and no probe data (21%) as with
0.92 loops per mile and a small amount of probe data (22%). The MAPE reported in the fourth column of Table 3 corresponds
to a severe downselection of the total amount of available probe data in this study. For freeways already instrumented with
loop detectors, better travel time performance may be achieved by fusing a relatively small amount of probe data than by
doubling the number of loop detectors. This additional probe data may correspond to penetration rates on the order of only
0.2%.

Fig. 12a directly compares the predictive power of loop versus probe data as calculated at the I-880 site. Fig. 12b shows
analogous results for the I-15 site in Ontario. Contours are generated by interpolating a grid of metrics over 45 combinations



(a) Set A (b) Set B

Fig. 7. Histogram of sampling rates for (a) set A and (b) set B probe data. Study periods during 2012 are between March 3 and March 16 for I-880; between
March 31 and April 13 for I-15 Ontario; and between April 16 and April 30 for I-15 Victorville.

(a) Weekday flows (b) Weekend flows

(c) Weekday penetration rates (d) Weekend penetration rates

Fig. 8. Comparison of median vehicle flows and probe penetration rates on I-880 shown separately for weekdays and weekends during the two-week
period from Saturday, March 3 to Friday March 16 of 2012.
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of data sources. Each figure shows combinations of probe and loop data that can be used to achieve a given MAPE. Reading
the values reported on Fig. 12b, a MAPE of 0.20 (20%) is obtained with data from approximately 0.8 loop stations per mile
with no probe data, or data from 0.7 probe devices per five minutes per mile with no loop data. Between these two end-
points, a range of loop and probe data combinations along the contour could be used to achieve the 0.20 (20%) MAPE.

Upon close comparison of Fig. 12a and b some minor variations are seen along the x- and y- axes. For example, the inter-
polated surface along the y-axis in Fig. 12a under-reports the MAPE error for a dense deployment of loops greater than 1 loop
per mile. This artifact is explained by the dramatic MAPE improvement that occurs when small amounts of probe data are
fused with loop data as described above, and shown explicitly in Table 3.

For both sites, having data from one loop per mile in addition to data from two probe devices per five minutes per mile
yields MAPE performance of about 13%. Overall, the trends are very similar for both sites. This finding lends confidence in the
robustness of the data fusion method, in the repeatability of results, and in the quantification of the relative predictive power
of data from loops and probes.



(a) Filtered Loop Data Only (b) Filtered Probe Data Sets A and B Only

Fig. 9. Data inputs used to reconstruct traffic state over the I-880 study site for the 24 h period on March 7, 2012. Traffic flows from bottom to top; time
flows from left to right; traffic velocities are in miles per hour. Regions colored black indicate in space and in time the absence of data. Note the small data
outage for some loop detectors around 9 a.m. on this day.

(a) Loop Detectors Only (b) Probe Data Only

(c) Loop and Probe Data (d) Bluetooth

Fig. 10. Reconstruction of traffic state over the I-880 study site for the 24 h period on March 7, 2012. Traffic flows from bottom to top; time flows from left
to right; traffic velocities are in miles per hour. The first three reconstructions are the output of the data fusion engine for three subsets of data: (a) loop
detectors only, (b) probe data only, and (c) both loop and probe data. The last reconstruction consists of the speeds calculated from the Bluetooth travel
times and is used as a validation set.
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4. Conclusions

4.1. Summary findings

Unaggregated GPS point-speed data are proven to expand the coverage and accuracy of traveler information. Data fusion
makes possible the effective use of data from multiple sources or providers, and when data from multiple sources are fused,
superior results are obtained. In the context of fusing probe data with loop detector data, probe data are useful even if sparse.
With fused data, average travel times can be estimated accurately and reliably.

On freeways, a high penetration rate of probes is to be preferred over a high average sample rate. In other words, better
performance is achieved by having less frequent data from a larger number of unique vehicles than by having more frequent



Table 2
Performance metrics for travel time estimation for a range of data sources.

Site Data MAPE or BTMAPE (%) PMATE or BTPMATE (s/mile) CCEC (%)

Probe Set A 21.15 28.24 46.66
Probe Set B 19.58 22.47 34.78

I-880 Sets A + B 15.22 18.77 27.82
Loops only 20.91 30.39 24.5
A + B + Loops 9.64 11.47 8.77
Noise floor 18.74 24.28 na

Probe Set A 20.13 22.46 29.31
Probe Set B 18.02 19.51 19.45

I-15 Ontario Sets A + B 14.84 15.73 13.59
Loops only 19.64 20.16 12.09
A + B + Loops 12.88 12.51 7.93
Noise floor 14.73 14.20 na

Probe Set A 26.0 36.68 7.6
I-15 Victorville Probe Set B 17.0 23.5 9.7

Sets A + B 13.6 18.5 5.5
Noise floor 12.39 14.88 na

na = not applicable.

Fig. 11. Comparison of the rates at which errors decrease as a function of the amount of available probe data. (a) Error plotted versus downselection by
unique devices. (b) Error plotted versus downselection by bulk.

Table 3
MAPE on I-880 illustrating the impact of loop detector spacing and the benefit of small amounts of GPS-based probe data.

Number of Loops Loops per mile MAPE with no
probe data (%)

MAPE with 0.125 unique
probe devices per 5 min per mile (%)

Incremental MAPE
improvement (%)

5 0.42 33 30 3
11 0.92 27 22 5
16 1.33 25 19 6
22 1.83 21 13 8
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data from a smaller number of unique vehicles. Moreover, prevailing penetration rates for probe data are now suitable for
travel time estimation on selected corridors.

Probe data can be substituted for loop data for travel time estimation. This means that where active loops are not
deployed, as in rural areas, operational performance metrics such as travel times can still be obtained by the fusion engine
of Fig. 2. Specific to the case of interest, no loops were active on the I-15 Victorville site at the time of this study. Therefore,
data fusion of two or more data types was not possible. Nonetheless, the methodology is still applicable and good agreement
was achieved between the travel times estimated by the fusion engine (based solely on probe data) and the independent
validation data set (Bluetooth measured travel times).

4.2. Estimation accuracy

Although not directly applicable to the v-CTM model presented in this article, the FHWA calibration criteria targets travel
times to be within 15% for 85% of cases in a (micro) model (Dowling et al., 2004). The proposed data fusion engine achieved
this level of accuracy on all three sites and is therefore appropriate for planning or for traveler information applications. In



(a) Isometrics on I-880.

(b) Isometrics on I-15 in Ontario.

Fig. 12. Contours of constant MAPE performance as a function of both number of loop detectors (y axis) and average number of unique probe vehicles per
mile per 5 min (x axis). The numbers on the contours represent MAPE as calculated in Eq. (15) and expressed as a fraction.
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addition, the proposed fusion engine achieves accuracy within the underlying variability of the validation data (as measured
by the noise floor calculations described in Section 2.7.

In congested traffic moving at 20 mph, and calculated over a 12 mile freeway segment, a 5 mph overestimation of speed
will result in a MAPE of 20%. The MAPE as defined in Eq. (15), and applied in this study, is very strict in that small over- or
under-estimations on successive routes along each of the study sites (nine routes on I-880, seven routes on I-15 Ontario, and
nine routes on I-15 Victorville) do not cancel out, they are added up instead.

Any real-time traffic management application along a corridor would involve a systems engineering process in which
functional requirements (beyond the scope of this article) would be identified following the review of a concept of
operations.
4.3. Implications for transportation agencies

The work presented here has several implications for transportation agencies. The possibility of data fusion may impact
strategies for the maintenance of existing fixed sensors or the deployment of new ones. Outsourcing the collection of data
would be a new way of business, requiring new operational procedures as well as new information systems to handle new
complexities.
4.3.1. Detector deployment strategy
Probe data and data fusion offer the opportunity for a new strategy for fixed detectors, reducing the need to deploy them

with a very high spatial resolution. Where detectors are currently sparse, mobile data sources could fill the information gap.
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On roadway segments where detector density is high, some stations could be allowed to fail and not be repaired or replaced
if mobile data sources were available. This could reduce agency costs and enable the maintenance workforce to focus on the
most critical detectors. Further, beyond filling gaps between fixed detectors, probe data could be used to expand coverage to
rural areas where no fixed infrastructure exists and speed data alone is sufficient.

4.3.2. Outsourced data collection
Purchasing probe data from the commercial sector would be something new for transportation agencies and means, in

effect, outsourcing the collection of traffic data. Any such undertaking comes with new risks (such as data quality risk, pri-
vacy protection, or business continuity risk) which would need to be carefully managed. A rigorous vetting and data acquisi-
tion process would require clear specifications and contractual agreements, and robust data assessment tools, processes, and
standards. The framework and methods presented here can be used to determine data quality before a commitment is made
to enter an extended contract for probe data procurement. In addition, this work suggests procedures for independent and
ongoing quality monitoring during the course of any probe data acquisition.

4.3.3. Redesigned information systems
A crucial consideration for traffic management agencies is that probe data is different from the detector data on which

they have built existing traffic management systems. Information systems such as PeMS handle streams of volume, occu-
pancy, and speed data collected at fixed locations (PeMS, 2013). By contrast, data captured from mobile sources may come,
as described here, as unaggregated data consisting of single speed observations at arbitrary latitude and longitude positions,
and unconnected to any road network. Making use of probe data would therefore require the redesign of information sys-
tems that would make it possible to implement the kind of data fusion framework and methods presented in this work and
take full advantage of hybrid data in traffic management systems.
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