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Lagrangian sensing for tracing hydrodynamic trajectories is an innovative approach for studying estuarial
environments. Actuated Lagrangian sensors are capable of avoiding obstacles and navigating when active and
retain a passive hydrodynamic profile that is suited for Lagrangian sensing when passive. A heterogeneous fleet
of actuated and passive drifting sensors is presented. Data assimilation using a high-performance computing
(HPC) cluster that runs the ensemble Kalman filter (EnKF) is an essential component of the estuarial state
estimation system. The performance of the mixed capability fleet and the data assimilation backend is evaluated
in the context of a landmark 96-unit river study in the Sacramento-San Joaquin Delta region of California. C© 2015
Wiley Periodicals, Inc.

1. INTRODUCTION

Understanding the movement of water through river and
estuarial environments is critical for many environmental
management problems. Examples include predicting the
outcome and impact of silt disturbed by dredging oper-
ations, maintaining the health of fish populations by un-
derstanding the factors that affect their migratory patterns,
and assessing the vulnerability of freshwater resources to
contaminant release or other unpredicted events.

On May 9, 2012, the Floating Sensor Network (FSN)
team deployed 28 motorized, active drifters and 68 pas-
sive drifters in the Sacramento River near its junction with
the Georgiana Slough, near the town of Walnut Grove,
California. Figure 1 shows the fleet of drifters. The opera-
tion demonstrated the communication, obstacle avoidance,
navigation, and data-gathering capabilities of the FSN fleet

and gathered flow data for use in demonstrations of an
online ensemble Kalman filter- (EnKF-) based assimilation
using a HPC cluster. A smaller-scale pilot experiment was
conducted earlier, on April 12, 2012 (28 days previously,
with roughly similar tidal conditions). This article describes
the experimental method, gives an overview of the server
and assimilation infrastructure, and presents the results of
fleet movement analysis and preliminary hydrodynamics
assimilation results.

1.1. Drifting Lagrangian Sensors

In situ sensing refers to sensing techniques in which a de-
vice is in direct contact with the environmental phenomena
it measures. (In contrast, remote sensing refers to techniques
such as analysis of satellite imagery, in which measurements
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Figure 1. Drifter fleet on the Walnut Grove Public Dock on May 9, 2012, prior to deployment. In the background, with yellow tops,
are actuated drifters, described in Section 2.1; in the foreground, with orange tops, are passive drifters, described in Section 2.2.
Photo credit: Jérôme Thai.

are taken from afar.) In situ sensing in fluid environments is
classified into Eulerian and Lagrangian techniques, using the
terminology for the different reference frames in hydrody-
namics. Eulerian sensors are fixed to the external reference
frame (e.g., the river bank) and take measurements from
the water as it passes. Lagrangian sensors float freely in the
fluid itself and gather measurements about the water as it
moves along a trajectory.

Although some Lagrangian sensors may measure
physical characteristics of the water in which they are im-
mersed (e.g., dissolved constituents, temperature), the dis-
tinguishing characteristic of a Lagrangian sensor is that it
moves freely in the water and measures its position over
time. A well-designed Lagrangian sensor should act like an
“ideal particle” in the water flow, and so the time series of
its position should allow direct estimation of the velocity of
the water in which it was immersed. This “trajectory” in-
formation is a useful observation of water movement in an
environment. In the hydrodynamics literature, such sen-
sor devices are called drifters. Drifter design has always
been constrained by the positioning and communications
technologies available. Modern oceanography began using
drifters based on underwater acoustic communication in
the 1950s (Swallow, 1955). Acoustic technology dominated
until 1978, when the Argos satellite service gave oceano-
graphic researchers a global location and data uplink sys-
tem (Clark, 1989). Power, cost, and size constraints meant
that Argos-based drifters (Davis, 1985; Bitterman & Hansen,
1986; Niiler, Davis, & White, 1987) were better suited to

oceanography than inland environments such as rivers and
estuaries.

Positioning techniques relying on acoustics or the Ar-
gos system accurate has given way to GPS positioning,
which is low cost and low power, driven by technological
advances in consumer products. Therefore, inland studies
with smaller, lower-cost units are made possible. Further-
more, short-range radio RF communication links are suit-
able technologies for inland studies because radio base sta-
tions can be set up with nearby infrastructure. GPS-carrying
river drifters have been the focus of development by the FSN
project at University of California, Berkeley (Tinka, Rafiee,
& Bayen, 2013), and other groups (Perez, Bonner, Kelly, &
Fuller, 2003; Austin & Atkinson, 2004). As well, studies in
regions with well-developed civilian infrastructure, such as
the continental United States, can take advantage of the
mobile phone network for communications.

1.2. The Need for Actuated Drifters

Passive drifters have proved very successful for oceano-
graphic applications, where fixed infrastructure can be
impractical to install. A logical extension of the oceano-
graphic research in Lagrangian sensing is to develop sen-
sors for nearshore environments such as rivers and bays.
Lagrangian sensors can be used in this context to better
monitor the flow of freshwater and the transport of con-
stituents therein. Specific examples include assessing vul-
nerabilities to contaminant spills or infrastructure failure in
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critical water-resource regions, planning reservoir release
and gate control policies to affect the intrusion of salt water,
and monitoring the effect of heavy agriculture use on fresh
water supplies.

For the river environment, however, fixed infrastruc-
ture is more viable to install, and drifters, without super-
vision, are likely to become stuck on obstacles, rendering
them useless for flow tracking. Therefore, this vision re-
quires long-term operation of the drifters, which in turn
requires some ability to avoid obstacles such as debris or
shallow regions. Thus, our design has added motors to the
floating units, giving them the ability to avoid these hazards.
The FSN project is the first to design motorized drifters that
are both low cost and manufacturable, leading to the pro-
duction of a fleet of 40 and a demonstration of their success
in a field experiment.

Actuation, of course, is directly at odds with the pri-
mary goal of a Lagrangian sensor, namely, to match ve-
locity with the surrounding water to measure its velocity
and capture its trajectory. When the actuated drifter uses
its propellers to move, its velocity differs significantly from
the water. Actuation should therefore be used sparingly
to increase the utility of the sensor; also, the estimation
methods that use the drifter’s sensed velocity must be flex-
ible enough to handle the actuated drifter’s trajectory. The
control scheme for actuation and the assimilation method
for actuated drifters are described in sections 4 and 3,
respectively.

Although the active drifters present a solution to the
obstacle and navigation challenge, their greater complex-
ity leads to higher cost and difficulty of operation. The
approach presented in the present article finds a practical
solution via designing a heterogeneous fleet of active and
passive drifters, combined with a careful experimental de-
sign to leverage the strengths of each over the experimental
domain.

1.3. Data Assimilation and the Ensemble Kalman
Filter

The main difficulty of using Lagrangian data is due to the
well-known fact that Lagrangian motion is often affected
by local flow perturbations, and Eulerian and Lagrangian
behaviors are not simply related to each other. One way of
looking at the data assimilation process is as a “translation”
of the observed data from a Lagrangian framework to an
Eulerian framework, as well as reconciling the observed
data with other known information about the system.

Our objective is to develop a sensing-modeling sys-
tem capable of predicting regional flows and transport
in the Sacramento-San Joaquin Delta in real time without
dependence on historical data. One major advantage of
drifting sensors is that they can be rapidly deployed and
retrieved in a wide variety of environments. To best take ad-
vantage of this flexibility, the data assimilation techniques

used with the drifters should not require extensive model
tuning or calibration (steps that typically involve gathering
large amounts of historical data and repeatedly running the
model until it performs well).

Data assimilation has been widely used in river
hydraulics, hydrology, atmospheric sciences, and oceanog-
raphy, in order to provide forecasts based on the solu-
tions of underlying partial differential equations by as-
similating measurement data into these models (Evensen,
2009; Kalnay, 2003; Nodet, 2006; Castaings et al., 2006;
Romanowicz, Young, & Beven, 2006; Vrugt & Robinson,
2007; Lehikoinen, Huttunen, Finsterle, Kowalsky, & Kaipio,
2010; Honnorat, Monnier, & Le Dimet, 2009; Wang, Chau,
Cheng, & Qiu, 2009).

In recent years, variants of the EnKF proposed by
Evensen (Evensen, 1994) are becoming the main data as-
similation techniques in atmospheric and oceanic sciences
(Van Leeuwen & Evensen, 1996; Houtekamer & Mitchell,
1998, 2001; Hamill & Snyder, 2000; Hamill, Whitaker, & Sny-
der, 2001; Keppenne & Rienecker, 2002).

The main difference between the existing ensemble-
based schemes lies in the generation of the analysis
ensemble and handling the model/measurement noise. In
our application, a systematic Bayesian approach proposed
in (Kaipio & Somersalo, 2005; Huttunen & Kaipio, 2007a,
2007b; Nissinen, Kolehmainen, & Kaipio, 2011; Tossavainen,
Percelay, Stacey, Kaipio, & Bayen, 2011a) is used to recover
from the modeling errors with additive Gaussian noise
processes.

The flow model we have chosen is the River, Estuary, and
Land Model (REALM) flow model developed by the Lawrence
Berkeley National Lab (LBNL) (Ateljevich et al., 2009). At each
time step, the server receives new real data from the floating
sensors, and the shallow water model generates a collection
of states representing the evolution of the processed inputs.
The EnKF server compares these real data to the gathered
estimated output in order to provide the best estimation of
the flow conditions in the field.

1.4. Contributions of this Article

This article presents a system-level description of a hetero-
geneous FSN, including actuated drifters, passive drifters,
and communication relays; the description of a field oper-
ation to demonstrate system functionality and to validate
core assumptions about drifter operations in estuarial envi-
ronments; an analysis of the utility of the actuation capabil-
ity of the active component of the fleet; the design and im-
plementation of a back-end data assimilation server cluster;
and an analysis of the assimilation system performance and
output using the data gathered in these experiments. This
experiment represents a significant step in the deployment
of autonomous floating robotics systems in unstructured
natural environments. To our knowledge, this experiment
is the first of its kind in the field of estuarial hydrodynamics
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Table I. Summary of Floating Sensor Network devices used in 2012 experiments.

Name Generation 3 (Oroza et al., 2013) Android (Beard et al., 2012)

Image
Dimensions 13.0 cm diameter, 47.0 cm tall, 24.0 cm span across

motor pods
13.0 cm diameter, 29.0 cm tall

Cost (parts) $ 2 500 $ 500
Assembly time 10 h 0.25 h
Battery Life 24 h (11.1 V, 10.4 A h Li-ion) 48 h (7.2 V, 16 A h Li-ion)
Computation Gumstix Overo: 720 MHz, 512 MB RAM, Linux 2.6 Motorola Defy: 800 MHz, 512 MB,

Android 2.3
Communications 802.15.4 GSM
Propulsion Twin parallel propellers None

and the first that an in-depth analysis of this experiment has
been presented.

This article is built on previous contributions related
to the FSN project. Previous work essential to the sys-
tem description is reproduced in summary here. This
work includes design studies of the individual drifter de-
vices (Oroza, Tinka, Wright, & Bayen, 2013; Beard, Weekly,
Oroza, Tinka, & Bayen, 2012), advances in data assimilation
techniques (Wu & Bayen, 2015), and the Hamilton-Jacobi-
Bellman-Isaacs partial differential equation- based naviga-
tion and obstacle avoidance control system for the actuated
drifters (Weekly, Tinka, Anderson, & Bayen, 2014; Mitchell,
Bayen, & Tomlin, 2005).

1.5. Overview of Article Structure

The rest of this article is organized as follows. Section 2
describes the field-deployed equipment used for this in-
vestigation: active sensor vehicles, passive sensor devices,
communication relays, and the communications infrastruc-
ture. Section 3 describes the data assimilation methods used
on the home servers to process the data gathered by the La-
grangian sensor devices into a state estimate of the river
region under investigation. Section 4 documents the active
sensor vehicle control for obstacle avoidance and naviga-
tion. Section 5 explains the field experiments performed in
the Sacramento-San Joaquin Delta region that form the ba-
sis for the assimilation and fleet operation validation that
are the core of this article. Section 6 evaluates the perfor-
mance of the actuated and passive sensor fleet during the
described experiment, with emphasis on the utility of the
actuated vehicles and the results of the data assimilation
process. Section 7 concludes with system-level evaluations

of the heterogeneous Lagrangian fleet concept as well as
open questions for further investigation.

2. FLOATING SENSOR NETWORK SYSTEM
DESCRIPTION

Table I provides a comparison of the two types of drifter
used in this study; more details on their design are pro-
vided in Sections 2.1 and 2.2. The communications architec-
ture, including installed communication relays necessary
to improve field reliability, is described in Section 2.3. An
essential part of the experimental system is the data assim-
ilation back end, which is described in Section 3.

2.1. Active Sensor

The design of the active drifters was constrained by a num-
ber of functional requirements concerning actuation, form
factor, and mission time. The design process is fully docu-
mented in (Oroza et al., 2013) and summarized here. Figure 2
shows an annotated front and side view of the active drifter.

The first consideration in designing the sensor was the
“form factor,” or overall size and shape of the sensor. This is
an important constraint because it determines vehicle’s ef-
fectiveness as a Lagrangian sensor. Previous studies have
indicated that Lagrangian sensors must maximize their
cross-sectional area to flow and should present a roughly
symmetric drag profile (Tinka et al., 2013). To ensure that
the vehicle is appropriate for Lagrangian sensing, its hull is
a vertically oriented cylinder. It is designed to be hydrostat-
ically stable (with a center of buoyancy (COB) located above
its center of mass (COM) and to have a mass-to-volume ra-
tio that keeps it low in the water (only the antennas extend
above the waterline).
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Figure 2. Front and side view of CAD drawing of active
drifter; components labeled.

The functional requirements dictated by the form fac-
tor result in a large drag coefficient for the sensor, limiting
the efficiency of the actuation system. Therefore, the system
was designed to enable low-velocity, cross-stream move-
ment and rotation but not upstream movement. The system
consists of differential drive motors, located outboard of
the main hull, and uses the onboard compass and a PID
controller to stabilize the vehicle along a desired heading.
The motors and propellers were sized to enable 0.3 m/s
maximum forward velocity. The system is powered with an
11.1 V, 10.4 amp-hr lithium-ion (Li-ion) battery, enabling up
to 24 hours of mission life with a 10 percent actuation duty
cycle.

The upper housing is a repurposed water filter can-
ister housing, while the lower bay and motor pods are
constructed from CNC machined acetyl homopolymer (an
engineering material also known as Delrin). This high-
performance plastic maintains its dimensions when sub-
merged and/or exposed to large variations in temperature,
making the sensor suitable for a range of aquatic environ-
ments. Most of the actuation components, including the
propellers, motors, and motor control boards, are hobbyist
remote-control vehicle components. The DC motors are spe-
cialized low-speed, high-torque motors, which were chosen
for high efficiency at low angular velocity. Parallel propeller
shafts allow differential drive control for rotation and for-
ward thrust, which is simpler and more reliable than a rud-
der or other steering mechanism.

We considered constructing a conical ducted shroud
that mounts behind the removable engine pod to protect
the propellers and mitigate entanglement problems with
river vegetation or other material. In our experimental do-
main, however, we determined that river vegetation was
not an issue as long as the sensors stayed away from the
riverbanks. We decided that propeller protection was not
worthwhile for this set of experiments.

The lower plate is designed to accept a water-facing
sensor, which will be protected from impact by the six lower
legs. This plate is modular and can be easily swapped out,
allowing a variety of different sensors with varying seals
and interfaces. In other experiments, we have used acoustic
depth sensors, pressure transducers, salinity, and temper-
ature sensors. In the experiments described in this article,
the water-facing sensor was not used. The main sensing
modality was the GPS positioning system.

The upper electronics consists of several off-the-shelf
modules integrated with custom printed circuit boards
(PCBs). A GPS module provides position data. Commu-
nications with the field team and the home server is pro-
vided by a short-range 802.15.4 radio and a GSM module;
the communications scheme is explained in detail in Sec-
tion 2.3. Orientation is determined with an electronic com-
pass module. Low-level control of the motors and compass
is performed with an Atmel XMEGA microcontroller, while
mission control, data storage, and communications are han-
dled by a Gumstix Overo embedded computer. The main
computational load is the map-driven obstacle avoidance
and navigation function, which is described in Section 4.

These actuated drifters are capable of autonomous nav-
igation and movement; as such, they are mobile robots.
We choose to refer to them as “active drifters” as op-
posed to “autonomous surface water vehicles” to reflect
the functional priorities that motivated their design. The
vertical cylinder form factor makes them excellent La-
grangian drifters but severely limits their performance as
autonomous vehicles. In particular, their maximum speed
is smaller than the water currents in which they are de-
ployed. This is a particularly severe form of underactua-
tion; upstream points, in general, are out of reach. In Sec-
tion 4, we describe the control schemes for navigation and
obstacle avoidance that are appropriate for these vehicles’
capabilities.

Thus far, more than 40 active sensors have been pro-
duced and have been used in multiple experiments in the
Sacramento-San Joaquin Delta region. Most of the custom
components, including the PCBs and the acetyl homopoly-
mer lower housing components, are fabricated by third-
party companies; the final assembly process requires about
10 hr of Berkeley personnel time.

2.2. Passive Sensor

Although the autonomous navigation capabilities of the
actuated drifters are important, they impose significant
drawbacks: primarily high manufacturing and assembly
cost, high maintenance workload, and high operational
workload. A second sensor type, the passive drifter, was
designed to complement the active drifter. A low-cost,
easy-to-use sensor allows the fleet size to be scaled up eco-
nomically, although the lack of actuation means they must
be carefully deployed in river environments. The design and
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Figure 3. Passive drifter, with components annotated.

development of these devices is completely described
in (Beard et al., 2012); an overview is provided here. Figure 3
shows the passive drifter with major components labeled.

The passive drifter design goals were to provide posi-
tion tracking and communications capabilities similar to the
active drifters, while reducing manufacturing and assembly
cost, maintenance requirements, and operational workload,
and increasing reliability and mission time. Figure 3 shows
the passive drifter design, with annotations for the major
components, COM, and COB.

Removing the need for actuation made several of these
design goals possible. Motors consume far more power than
the electronics required for positioning and communication;
the operational time was easily extended to 48 hr using a
similar battery to the active drifter model. While the active
drifter has several static waterproof seals and two dynamic
seals (the propeller motor shafts), the passive drifter has
just one static waterproof seal; this increases reliability and
reduces the maintenance workload.

The major reduction in manufacturing and assembly
cost, as well as maintenance workload, came from a dras-
tic simplification of the internal electronics. Although the
active drifter integrated many individual functional mod-
ules (the GPS, the radio, the motor drivers, etc.) using sev-
eral custom PCBs, all of the functions of the passive drifter
could be accomplished with a mobile phone running spe-
cialized software. The mobile phone can gather positioning
information using its integrated GPS and communicate this
information to the home server using the GSM network.
The mobile phone also provides greater reliability than the
custom integrated components.

We selected the Motorola Defy smartphone for our pas-
sive drifters. In addition to meeting all of our functional
requirements and being relatively inexpensive, the Defy is
water resistant, which is convenient for field operations.
(The passive drifter hull was designed to be watertight, but
assembly and disassembly operations in the field always

have the potential for accidents.) At the time of manufac-
ture, the Motorola Defy was the most economical water-
resistant mobile phone that would support Android soft-
ware development and provide the required sensor and
communication modules.

Further reductions in costs were achieved by minimiz-
ing the number of machined parts; while the active drifter
contains over 10 custom-machined components, the passive
drifter has just two: the sealing base and the phone hol-
ster. A combination of battery requirements and the need to
capture subsurface currents lead the mobile-phone-based
drifter to retain its tall profile rather than shrink down to
the size of the phone itself. By reducing component count
and complexity, the final assembly time per passive drifter
was reduced to just 15 min.

When deployed appropriately, the operational work-
load for the passive drifters is much lower than the active
drifters. When the field team uses the active drifters, it must
use a laptop computer and a radio to control the devices
(e.g., to turn off the propellers for operator safety while the
drifters are in and around the boat). Because turning off
the propellers is safety critical, protocol requires radio con-
firmations of any commands sent to the drifters to ensure
they were received and interpreted correctly. Although the
passive drifter is not safety critical, it still needs some in-
put from the operators; knowing when the drifter is in the
boat or in the water makes data processing much easier. We
leveraged the accelerometer on the mobile phone to provide
a simple switching scheme; turning the drifter onto its side
signals that it is not in the water and should not gather data.
Although this is a very simple feature, it completely elim-
inates the need to open the drifter in the field or perform
complicated over-the-radio communications, which makes
it a much easier device to work with.

The FSN project has built 70 passive drifters for inter-
nal and external usage. Early experiments have shown that
a vessel with a boat captain and two personnel equipped
with poled nets (see Figure 12) can deploy, monitor, and
retrieve 35–40 passive drifters. During typical experiments,
passive drifters are deployed upstream at distance inter-
vals, allowed to float, retrieved, and redeployed if they
approach obstacles, and eventually are all retrieved down-
stream. With two boats, 70 passive drifters, and careful plan-
ning, the FSN group was capable of uniformly spanning a
5.5 km stretch of river with passive drifters (Beard et al.,
2012).

In certain environments, a passive drifter requires more
support than an active drifter. A lack of actuation puts the
drifter at risk of washing up on shore; they are usually
operated close to personnel and in more obstacle-free wa-
ters. Deployment and retrieval must be carefully planned
to ensure operational requirements, such as distance trav-
eled, sampled area, sample variation, and time spent sam-
pling, are met, while such variables as danger/safety of
personnel are optimized. The field experiment described in
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Figure 4. Communication architecture, showing the flow of data from drifters in the field to the database server and computation
servers via the GSM service. GSM/GPRS backbone and base transceiver station (mobile phone tower) are provided by a contracted
GSM provider.

Section 5 was designed so that the passive drifters would
cover lower-risk regions of the experimental domain, while
active drifters covered the junction and obstacle-laden re-
gion. Combining the fleet in this way allows greater cover-
age at lower cost than could be achieved by either sensor
type on its own.

2.3. Communications Architecture

Figure 4 shows the communication links between various
elements of the system. Data collected by the active and pas-
sive drifters is communicated back to the database server
using the general packet radio service (GPRS) of GSM. The An-
droid smartphone on board each passive sensor provides
the necessary GPRS functionality. Our original design for
the active drifters included two communication modules:
a Motorola G24 OEM GSM module for direct communica-
tion with the server and a Digi XBee-PRO 802.15.4 module
for short-range communication with other drifters and the
field team. Reliability issues prevented us from using the
G24 GSM module, however, and so the active drifters com-
municated solely through the XBee module.

The XBee-PRO module conforms to the IEEE 802.15.4–
2006 draft standard for low-power mesh networking. Our
experience in outdoor environments shows that point-to-
point links of 100 m are reliable, and we have seen connec-
tivity at distances of 1 km. To bridge between the 802.15.4
short-range networking and the database servers, we built
10 specialized Android drifters carrying a XBee-PRO mod-
ule as well as an Android smartphone. These devices, called

“Relays,” were put in static locations around the experimen-
tal environment. They did not gather data themselves but
simply collected the data from the active drifters and trans-
mitted them to the database server via GSM.

Field teams carried laptop computers with GSM mod-
ules and XBee-PRO modules. The range of the teams’ XBee-
PRO modules is extended using a 2.4-GHz Yagi-style di-
rectional antenna aimed by the radio operator. The active
drifters, which have an internal omnidirectional 2.4-GHz
wire antenna, can be sent commands for diagnosis and trou-
bleshooting. Capabilities include enabling and disabling the
motors, running or terminating processes on the Gumstix,
and querying various values such as mission state or sen-
sor readings. These commands can be sent directly over the
XBee link or can be sent indirectly over GSM through the
database server and the Android relays. During the April
12, 2012, and May 9, 2012, experiments, no commands were
sent to the active drifters while they were under way; they
operated autonomously.

The database server acts as a central repository for gath-
ered data and assimilation results. In addition to the La-
grangian data collected by the drifters, relevant data from
USGS and the California Department of Water Resources
(DWR) sensor stations are collected and stored. The sen-
sor data are sent to the computational cluster, which can
be either a collection of Amazon Elastic Computing Cloud
(EC2) processors or the NSERC computational cluster. Re-
sults from the assimilation process are stored on the same
database server and queried by the visualization applica-
tion, which can be accessed on the Web by any browser.

Journal of Field Robotics DOI 10.1002/rob
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Figure 5. Overview of the Kalman filter and the ensemble Kalman filter. Each one cycles through a time update step and
a measurement update step. The principal difference between the two schemes is how the state estimate is represented as a
distribution and how this distribution is updated during the time update step. In the Kalman filter, the state estimate distribution
is represented by a mean vector and covariance matrix, which can be directly updated by the linear model. In the EnKF, the
distribution is represented by an ensemble of samples from the distribution, which are individually updated by the nonlinear
model. The mean and covariance are aggregated from the ensemble.

3. ASSIMILATION METHOD AND BACK-END
INFRASTRUCTURE

We are aiming to develop a water monitoring system for
rivers and estuaries in order to observe the current speed,
salinity, and depth of the water on a real-time map. These
maps can be used for tracking the water current and salin-
ity as well as other contaminants. These data are rele-
vant for maintaining the hydrodynamic system, such as the
Sacramento-San Joaquin Delta as well as in case of floods
or water contamination. To provide a real-time represen-
tation of the Delta hydrodynamic state, data assimilation
technique is applied at the back-end computational clus-
ter. These methods rely on reconstructing Eulerian velocity
information from consecutive measurements of drifter posi-
tions, which are then assimilated into Eulerian flow models
using the EnKF.

The EnKF (Evensen, 1994, 2003) is a sequential data
assimilation method related to the Kalman filter and ex-
tended Kalman filter. As a Monte Carlo approximation of
the classical Kalman filter, EnKF replaces the covariance
in the Kalman filter with the sample covariance computed
from an ensemble of realizations. The estimated state of a
system, and the covariance of that state estimate, is tracked
as an ensemble of individual states. Each member of the en-
semble is individually propagated through a forward model
of the underlying system and corrected with new measure-
ment data as it arrives. Because the EnKF does not need to
maintain the state covariance matrix, it can be implemented
efficiently for high-dimensional problems (Mandel, Cobb,
& Beezley, 2011). Figure 5 compares the estimation cycle of
the EnKF with the classical Kalman filter.

One of main challenges regarding the assimilation of
Lagrangian information into hydrodynamic models is to

quantify the connection between Lagrangian measurements
and Eulerian velocity. A simple and intuitive solution to this
challenge is to approximate the Eulerian field by dividing
the position displacement δr with the sampling period δt ,
and the Eulerian velocity is thus evaluated as δr/δt . The esti-
mated velocity will be subsequently assimilated into hydro-
dynamic models. Such a method is usually called pseudo-
Lagrangian data assimilation. The method works well when
the sampling period δt is much smaller than the Lagrangian
correlation time scale.

A summary of the EnKF algorithm follows.

(1) Initialization: Generate an ensemble of N states, {ξ (i)
0|0},

representing the initial estimate of the system. During
our initialization process, an ensemble of N states is
generated to characterize the uncertainty of the state.
For each of the ensemble members, the forward simu-
lation under perturbed boundary conditions has been
run for a certain period of time until a stable state is
reached. Such a state will be used as {ξ (i)

0|0}, representing
the i − th initial estimate of the system.

(2) Time update:

ξ
(i)
k|k−1 = F

(
ξ

(i)
k−1|k−1

)
+ w

(i)
k−1

θk|k−1 = 1
N

N∑
i=1

ξ
(i)
k|k−1

Ek|k−1 =
[
ξ

(1)
k|k−1 − θk|k−1 · · · ξ

(N)
k|k−1 − θk|k−1

]
,

where F is the forward system model, {w(i)
k−1} are

samples from the model noise process, θk|k−1 is the
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premeasurement estimate at time step k, and Ek|k−1 is
the matrix of deviations from the mean.

(3) Measurement update:

�k|k−1 = 1
N − 1

Ek|k−1E
T
k|k−1

Kk = �k|k−1H
T
k

(
Hk�k|k−1H

T
k + Rk

)−1

ξ
(i)
k|k = ξ

(i)
k|k−1 + Kk

(
yk − Hkξ

(i)
k|k−1 + ε

(i)
k

)
,

where �k|k−1 is the covariance of the premeasurement
estimate ensemble, Kk is the Kalman gain for time step
k, Hk is the observation operator (mapping each ele-
ment of the observation vector to the state estimate),
Rk is the covariance of the observation errors, yk is the
observation vector at time k, {ε(i)

k−1} are samples from
the observation noise process, and {ξ (i)

k|k} is the ensem-
ble representing the postmeasurement estimate at time
step k.

The drifters’ observed water velocities at each time step
form the observation vector, yk . The locations of the drifters
at that time are encoded in the observation operator, Hk . An
important advantage of this formulation is that elements
of the observation vector can be “disconnected” from the
measurement update step by setting the relevant row of the
Hk matrix to zero. This allows us to disregard individual
drifters when necessary, specifically, when they are apply-
ing actuation and their movement does not match the water
flow. When a drifter finishes moving and resumes unactu-
ated drifting movement, it is reconnected to the measure-
ment update via nonzero elements in the Hk matrix, and its
measurements once again have influence on the state up-
date. No additional steps to reinitialize or reset the assimi-
lation procedure are necessary; drifters can be connected or
disconnected from the measurement update step as needed
throughout the assimilation process.

In this implementation, the forward model of the sys-
tem is the REALM hydrodynamic model (Ateljevich et al.,
2009) of the Sacramento-San Joaquin Delta. Simulating the
forward evolution of each member of the ensemble rep-
resents a significant computational load. Fortunately, like
many Monte Carlo computations, this phase of the algo-
rithm is “embarrassingly parallel.” Each forward simulation
has no dependencies on the other members of the ensemble,
and so each forward simulation can be delegated to a node
of a computational cluster with very little data interchange
or communication.

The REALM model is established on a Cartesian grid
with embedded boundary discretization of the shallow-
water equations. Users of the REALM model have differ-
ent options for the grid size and spacing. We used a reg-
ular grid with fixed size, which turned out to work well.
An adaptive grid with varying step sizes could also have
been chosen and would possibly be more feasible if an even

larger hydrodynamic system were evaluated. Any hydrody-
namic model applied to real-world, unstructured environ-
ments must be able to handle irregular boundaries. REALM
can faithfully represent the shoreline via grid generation
from digital elevation models. Other structures, such as
gates, can be represented via implicit functions and con-
structive solid geometry. These techniques are known to
be robust and efficient when applied to PDE finite volume
models like REALM (Ligocki, Schwartz, Percelay, & Colella,
2008).

The main idea on the cluster side is to run multiple
instances of the shallow water flow model (i.e., REALM) in
parallel on a computer cluster. Each model instance com-
municates its output to the server, which executes data as-
similation using the EnKF algorithm every 3 min. We em-
ployed parallel computation and adaptive mesh refinement
for rapid computation.

A computer cluster used in HPC consists of a group of
computers linked to each one another in order to behave
as a single system. The computers are interconnected via a
high-speed network, and each one contains homogeneous
hardware and software. The main objective of HPC clusters
is to use the processing power of multiple nodes in parallel.
This parallelization requires communication between the
nodes while processing the tasks if the tasks are dependent.

The National Energy Research Scientific Computing Center
(NERSC), located at Lawrence Berkeley National Labora-
tory, maintains and operates Carver, a HPC cluster of 1,202
nodes, each consisting of 8 Intel Nehalem processors with
4 GB of memory (NERSC, 2012). An overview of the data
flow from the drifters in the field to the Carver computa-
tional nodes is given in Figure 6. The drifters make TCP con-
nections to a single FSN computer, which aggregates their
incoming sensor data and sends it to a Postgres database
within Carver. The database acts as a central repository for
gathered data and assimilation results. In addition to the La-
grangian data collected by the drifters, relevant data from
USGS and DWR sensor stations is collected and stored.

These computations are done using real-time data re-
trieved by the drifters in the water. The new real-time mea-
surements provided by the drifters are then assimilated with
the outputs of each flow model running on the client nodes.
Once the data assimilation is done, each model’s state is
updated and sent back to its corresponding client to start
a new cycle. The network communication is managed us-
ing a Java application. Figure 6 shows the data flow in the
system. As mentioned earlier, the individual forward sim-
ulations are executed on nodes of the Carver cluster. Two
simulations are executed on each of 250 nodes, for a total en-
semble size of 500. The rest of the algorithm is then executed
on a single “Server” node; every 3 min, the results of the in-
dividual simulations are aggregated and the “Measurement
Update” step is performed on the server node. At this load,
the system can operate at real-time speeds. Results from the
assimilation process are finally stored on the same database
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Figure 6. Data flow from drifters in the field to the Carver cluster at NERSC.

server and queried by the visualization application, which
can be accessed on the Web by any browser.

4. ACTIVE VEHICLE CONTROL

The Generation 3 drifters were designed to mobilize proac-
tively to avoid large static obstacles such as the shoreline
or docks. The obstacle avoidance technique uses a pair of
minimum-time-to-reach (MTTR) functions, numerically de-
fined on a grid over the experimental domain. For any
position in the domain, the first MTTR function gives the
minimum time for an unpowered drifter to reach an ob-
stacle, given a worst-case disturbance bounded by a max-
imum speed (chosen as 0.05 m/s). The disturbance repre-
sents known and unknown factors that could push the
drifter toward undesirable locations, which, for robustness,
must be assumed to always push the drifter undesirably. The
disturbance is not the river current, which is incorporated
into the dynamics of the drifter but can include deviations
from the estimated river current. The second MTTR func-
tion gives a minimum time for an active drifter, using its
maximum control authority (chosen as 0.2 m/s) in the opti-
mal direction, to reach the “safest” area of the river, typically
the center. The negative gradient of this function is also the
optimal control input to reach the safe area.

The MTTR functions for a static flow scenario are de-
rived from numerical solutions to Hamilton-Jacobi-Bellman-
Isaacs (HJBI) equations, calculated offline prior to the ex-
periment (Weekly et al., 2014). The results are saved into a
“policy file” and loaded onto the drifters (See Figure 7 for a

description of the binary file). The 3347 m × 3179 m domain
shown in Figure 8, is discretized into a 1674 × 1590 grid of
2 m × 2 m cells and generates a 13.3 MB-sized policy file.
Note that although the policy files are static by nature, logic
on the drifters allows switching between different policy
files based on time of day or on their numerical ID. This
allows us the method to account for tidal cycles over the
day and also to separate the fleet into groups by their IDs,
which enables the results shown in Figure 14.

The input data to the offline policy generation algo-
rithm (i.e., the algorithm that computes the HJBI solution)
are three files. First is the flow-field estimate, typically pro-
vided by REALM, which gives the river velocity on a grid
defined over the river areas in the experimental domain.
Second is a “center-line” map, a binary image drawn man-
ually and representing the safest area of the river, which
is typically the geographical center, unless we have prior
knowledge such as the topology of the river bed being
asymmetrical. Finally, an obstacle map is provided, which
is a binary image drawn manually over the geometry of the
river and defines the regions that the drifter should never
enter, such as landmasses and docks.

The obstacle avoidance technique also allows the
drifter to choose one or more possible paths to travel down
if there is a junction in the river. This is accomplished by ad-
justing the two binary images described above. First, we
manually annotate the ‘center-line map to only proceed
down the desired path, then we incorporate a virtual ob-
stacle into the obstacle map, blocking the undesirable path.
Therefore, the algorithm will determine a control strategy
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16-bit Version Number 8-bit Unused Field

8-bit record size (always 5 bytes) 8-bit UTM Zone

32-bit min x-coordinate of domain (UTM cm) 32-bit min y-coordinate of domain (UTM cm)

32-bit max x-coordinate of domain (UTM cm) 32-bit max y-coordinate of domain (UTM cm)

16-bit number of columns 16-bit number of rows

List of records in row-major order (5-bytes each)
�����������������������������������������������

�����������������������������������������������

8-bit Optimal
Bearing

(0.71×degrees)

16-bit Time to reach
safe areas (seconds)

16-bit Time to reach
obstacles (seconds)

Figure 7. Binary format of policy files. Top: Field description of policy file. Bottom: Description of the 5-byte fields corresponding
to cells of the discretized domain.

that avoids that area, the same as it would avoid the shore-
line. For the May 9, 2012, field experiment, which included a
junction in the experimental domain, we divided our active
drifters into two groups, and they were given separate con-
trol strategies. For the Georgiana Slough, we adjusted the
obstacle map to fill in the part of the Sacramento River west
of the junction. Likewise, for the Sacramento River group,
we filled in the Georgiana Slough areas of the obstacle map.

In Figure 8 are pictorial representations of the three
data inputs used for the May 9, 2012, field experiment in
Walnut Grove. The flow-field input is a grid of 2 m × 2 m
cells containing vector-valued velocities with a maximum
magnitude of 2.33 m/s. Figure 8a shows this data, subsam-
pled to a 60 m × 60 m cell size. The data that were avail-
able for the region only specified the velocities in a small
area around the split; therefore, we specified the rest of the
needed data as no-flow regions. Our hypothesis, verified in
simulation (Weekly et al., 2014), is that errors in the flow-
field file are irrelevant for straight areas of the river for the
purpose of obstacle avoidance. Figure 8b shows the two
binary images for the Georgiana Slough path: The green re-
gion illustrates the obstacle data, and the black line down
the center gives the target region toward which the drifter
should navigate when it is in danger. Figure 8c illustrates
the two binary images for the Sacramento River path.

5. EXPERIMENT DESCRIPTION

Experiments were conducted on April 12, 2012, and
May 9, 2012, at the junction of the Sacramento River and

Georgiana Slough near Walnut Grove, California. Figure 9
shows the spatial domain of the experiment. April 12 was a
pilot deployment for the major May 9 field operational test.
Figure 10 show the conditions as measured at a USGS field
station in the region, demonstrating that the tidal conditions
on the two days were similar (as is to be expected, because
they were 28 days apart). The wind was 15 km/h SSE (gen-
tle) on April 12 and 6 km/h S (light) on May 9. The water
surface velocity was approximately 0.46 m/s (1.5 ft/s) in the
outgoing (from northeast to southwest) direction. This is a
noninverted tidal condition. The original plan was to deploy
all the drifters from the Walnut Grove Public Dock (point A
in Figure 9) (also see Figure 11), allow them to propagate
through the junction, retrieve them at downstream points B
and C (see Figure 12), and then redeploy them at points D
and E while time permitted. Unfortunately, on May 9, there
was a significant underwater construction operation hap-
pening at the junction (box F), requiring a midexperiment
change of plans: drifters were initially released from point A
and picked up around area F, then redeployed at points D
and E, and then cycled from B–D and C–E. Table II shows
the deploy and release schedule for the two experimental
days.

The goal of the experiment was to determine the fea-
sibility and utility of the heterogeneous fleet of drifters in
an environment with obstacles and navigational challenges
and to evaluate the back-end data assimilation techniques
in the context of a real-time assimilation effort.

On April 12, we deployed 24 active drifters, and on
May 9, we deployed 28 active drifters. On each day, 22
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(a) Flow field (1:30 subsampling)

1 km

(b) Georgiana Slough obstacle map and center-line
map.

1 km

(c) Sacramento River obstacle map and center-line
map.

Figure 8. Input files to active control algorithm. Gray regions are actual geographical obstacles, whereas the hatched regions are
virtual obstacles. Obstacle maps are composed of the gray and hatched regions and center-line maps are composed of the black
center-line in each.

operated successfully. The remaining drifters (two on April
12, six on May 9) had internal electronics failures; when
they failed to communicate, they were removed from the
experiment. No manual intervention (aside from removing
the failed drifters at the beginning) was required during the
experiment; the operational drifters all successfully used ac-
tuation to avoid obstacles and select the appropriate channel
of the Sacramento River/Georgiana Slough junction.

On April 12, we deployed 55 passive drifters, and on
May 9, we deployed 68 passive drifters. All of the passive
drifters worked successfully on April 12; one of the 68 pas-
sive drifters on May 9 failed to upload data. We did not fil-
ter out these failed passive drifters during the experiment; it

was deployed and retrieved like all the others, and the data-
gathering failure was detected later. As described above, the
passive drifter deployment was designed to eliminate the
need for navigational moves and to reduce the risk of ob-
stacles. None of the passive drifters needed to be removed
from the experiment early.

6. PERFORMANCE EVALUATION

6.1. Fleet Control and Navigation

Figure 13 shows a detailed view of one active drifter moving
through the Sacramento River downstream of the junction
with the Georgiana Slough. Active propulsion segments
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Figure 9. Map of experimental region near Walnut Grove,
California. The Sacramento River flows from the upper right
corner (north-east) toward the left side (west). The Georgiana
Slough splits from the Sacramento River and flows to the bot-
tom edge (south). Points A–F on the map indicate the deploy-
ment, pickup, and recycling locations for the experiments, as
well as the construction zone that complicates the experiment
at the junction.

triggered by proximity to the shoreline can be seen in the
red track segments. As the drifter floats downstream (from
right to left on the map), it repeatedly approaches the south
bank of the Sacramento River, triggering propulsion for ob-
stacle avoidance. Note that, even though the drifter applied
propulsion to return to the center of the river as quickly as

Figure 11. Throwing an active drifter from the dock into the
Sacramento River. Photo credit: Roy Kaltschmidt.

possible, the continued influence of the flow field caused it
to move at a roughly 45◦ angle to the straight-line shortest
distance. Figure 14 shows the same data as Figure 13, for
the entire fleet, over each day of movement.

Figure 15 shows the fraction of the fleet involved in dif-
ferent kinds of moves over the course of the mission. Every
propulsion action was classified as a “navigation” or “obsta-
cle avoidance” move. Navigation moves were those actions

18:00 00:00 06:00 12:00 18:00 00:00 06:00
−2000

0

2000

4000

6000

8000

10000

12000

14000

Fl
ow

(ft
3 /
s)

18:00 00:00 06:00 12:00 18:00 00:00 06:00
3.5

4

4.5

5

5.5

6

6.5

7

S
ta
ge
(ft
)

April 12
May 9

Figure 10. Water conditions at the GES field station on the experimental days. The flow (left) and stage (right) show the tidal
effect on the movement and height of water in the experimental region. On May 9, flow reversed briefly around 6 a.m., but during
the experimental periods, the water was always flowing in the normal direction.
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Figure 12. Two boat crews retrieving Android drifters near the Sacramento River/Georgiana Slough junction. Photo credit: Roy
Kaltschmidt.

taken by the drifter to determine which lane of the river
to follow, whereas obstacle avoidance moves were actions
taken by the drifter to avoid colliding with the shoreline.
Notice that both May 9 and April 12 have similar patterns
of use over time, as the fleet moves from the initial deploy-
ment location at the Walnut Grove dock, to the lane split
region downstream of the bridge, then to the junction of
the Sacramento River and Georgiana Slough. In aggregate,
on the April 12 operation, 5.7% of fleet time was spent on
obstacle moves, while 4.9% of fleet time was spent on nav-
igation moves. During the May 9 operation, 4.4% of fleet
time was spent on obstacle moves, while 6.3% of fleet time
was spent on navigation moves.

In Figure 16, the position of the fleet within the river
channel is quantified by taking the mean of the MTTR val-
ues for the drifters’ positions over time. The active drifters
and passive drifters are aggregated separately to illustrate
the difference in their movement through the channel. As
described in Section 4, two different sets of MTTR feed-
back maps were used; active drifters were assigned either
to the Georgiana Slough or to the Sacramento River branch
of the junction through the assignment of policy file. Find-
ing the MTTR values for the passive drifters was done in
postprocessing; of the two possible policy files, the “best
case” file was applied at each time step to each passive
drifter.

The solid lines in Figure 16 show the average minimum-
time-to-obstacle of the two drifter ensembles. This is taken
as a proxy for how close the drifters come to the shoreline
and other obstacles such as marinas and docks. When the ac-
tive drifters perform navigational moves to select a channel,

Table II. Timeline of the experimental procedures.

April 12 May 9

0800 Arrive Walnut Grove;
begin setup

Arrive Walnut Grove;
begin setup

0830
0900
0930
1000 Start releasing all

drifters
1030 Finish releasing all

drifters
1100 Drifting downstream Start releasing all

drifters
1130 All drifters retrieved Finish releasing all

drifters
1200 Second active

deployment
All retrieved; re-release

passives at D/E
1230 All drifters retrieved Cycling continues
1300 Start cycling passives Cycling continues
1330 Cycling continues Cycling continues
1400 Cycling continues Cycling continues
1430 Retrieve all drifters Retrieve all drifters
1500 All boats depart All boats depart
1530 Leave Walnut Grove Leave Walnut Grove

they actually get closer to the shore than they would have
if they had remained passive; this can be seen in the early
stage of each experiment, where the time-to-shore value
of the active fleet (the solid red line) drops more rapidly
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Figure 14. Overview of active drifter fleet movement in experimental region on both experimental days (22 active drifters on each
day). Propelled movement is highlighted in red.

than the passive fleet (the solid blue line). Notice that the
aggregate time-to-shore value for the passive fleet is be-
low 300 s for a substantial portion of the experiment; this
indicates that significant portions of the fleet were close
enough to the shore that, if they had been active drifters,
their propulsion would have been triggered for an obstacle-
avoidance move. The time-to-shore value for the active fleet
stays mostly above 300 s, for the same reason: Any active

drifter that comes closer to the shore uses its propulsion to
move away.

The dotted lines in Figure 16 show the average
minimum-time-to-center of the two drifter ensembles. Un-
like the minimum-time-to-obstacle time series, there is not
a consistent, substantive difference in the aggregate values
for the two ensembles. This may be due to the fact that
the minimum possible value for the MTTR function is zero;
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Figure 15. Fraction of fleet (22 active drifters) involved in different types of propulsion during the mission.
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Figure 16. Mean MTTR values for active and passive component of fleet. Red lines are active drifters, and blue lines are passive
drifters. Solid lines are shore MTTR values, and dotted lines are center MTTR values.

the low variance in the minimum-time-to-center time series
may be caused by a “saturation at zero” effect.

Specific disadvantages or drawbacks to the system as
implemented in this experiment were

1. The low reliability of the active drifter’s GSM system
drove us to install communication relays over the en-
vironment to ensure connectivity. This would not be a
feasible solution for larger domains.

2. Despite the small size of the drifters, it would have been
unwise to let them drift through the active underwater
construction site at the junction of the Georgiana Slough

and the Sacramento River. We were less concerned with
the possibility of causing harm to the construction opera-
tion; our primary concern was the difficulty and danger
of retrieving a drifter were it to get caught in the con-
struction equipment. We are very grateful to the DWR
personnel, who accommodated our experiment with a
brief shutdown of operations while we moved through
their area.

In Section 7, we discuss how future work will address
these shortcomings.
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Figure 17. Quiver plots of assimilation results for flow fields during May 9 experiment. Each arrow represents the estimated water
velocity at that location; each of the four facets represents a snapshot in time of the estimated flow.

6.2. Assimilation Results

Assimilation experiments were conducted for 2 hr, using
the flow data collected during the May 9, 2012, experiment.
The EnKF was implemented with a different number of en-
semble members and inflation factors. (Inflation factors are
methods for adaptively adjusting the EnKF model’s stan-
dard deviation prescription in order to avoid model diver-
gence.) We tested the system under different data config-
uration and model setups. It should be noted that there
were no USGS Eulerian measurements available that can

be used as boundary conditions in the experimental do-
main. Therefore, we use the data reconciliation method de-
veloped in (Wu, Litrico, & Bayen, 2009) to get an estimation
of discharges, and pose it to be the first guess of the data
assimilation process in this section.

Figure 17 shows the flow field at each node from the
model grid points. The grid size was selected as 20 by 20
m. It is determined for this specific experiment, based on
our computational capacities. The arrow size represents
the magnitude of the flow velocity, and the flow field is
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demonstrated at 12:30, 1:00, 1:00, and 2:00 p.m. on May 9th,
2012, respectively. At the moment when drifter data were
valid, the assimilated flow field was presented with drifter
data incorporated; if the drifter data were unavailable, the
model forward simulation was applied to ensure the conti-
nuity of the results.

Special attention has been paid to handling modeling
errors that arise from the use of a simplified evolution model
for the river flow and thus for the dynamics of the La-
grangian drifters. The modeling error in this study is mod-
eled as a random variable with a Gaussian distribution.
As the computation of the modeling error statistics is an
intensive task, it should be performed prior to the actual
estimation process.

The sensitivity of the assimilation system was stud-
ied by running the system with various inflation factors
and ensemble sizes. The assimilation results are further
compared with the forward model running from MIKE3.
MIKE3 (Mike, 2008) is a commercial simulation package
developed by the DHI Group. It features powerful three-
dimensional (3D) modeling tools for free surface flows and
associated sediment or water quality processes.

These sensitivity runs suggest that inflation plays
an important role in the performance of the assimila-
tion system. The inflation factor was first introduced in
(Anderson & Anderson, 1999) to counteract the uncertain-
ties that could not be specified in the filter covariance dur-
ing the data assimilation process. The ensemble of forward
model estimation is replaced by using the formula as below:

ξi = ρ(ξi − ξ̄ ) + ξ̄

The value of ρ can be determined either by trial-and-error
or estimated adaptively as a parameter in the EnKF analysis
process. In our experiment, we found that inflation indeed
plays an important role in the data assimilation, once the
model error is well estimated. Optimal inflation factor in
our experiment was identified in the range of 1.1 to 1.2.
The value varies, depending on different flow conditions.
Increasing inflation from 1.1 to 1.2 improves the accuracy of
the estimates, as inflation affects the spread of the ensemble
and accounts for uncertainties that could not be specified
in the filter covariance (Hoteit, Pham, & Blum, 2002). How-
ever, increasing the inflation factor to 1.3 caused some of
the ensemble members to diverge during their forward in-
tegration with the model.

One of the most critical characteristics of EnKF is the
finite size of the ensemble. The choice of the ensemble size
must be large enough to account for the mean and spread
of the prior distribution and allow an accurate represen-
tation of the covariance between the observation and the
prior state. Generally, a larger ensemble size would lead
to a smaller root mean square (RMS) error between model
predictions and in situ observations, at the cost of increased
computational load. There is, however, no rule of thumb of
determining the ensemble size, as it can be affected by many

different factors, such as model noise, measurement noise,
and experiment settings. In our experiment, we found an
ensemble size of 500 successfully provided a stable assim-
ilation process and reasonable flow estimation. For simple
cases, one might find 100-200 ensemble members adequate
to provide good assimilation results.

7. CONCLUSIONS

The experiments conducted in Walnut Grove on April 12,
2012, and May 9, 2012, were the first ones to successfully
use a fleet of 96 drifting Lagrangian sensors for estuarial
hydrodynamic state estimation. A crucial component of this
experiment was the ability of our robotic sensors to autono-
musly correct their trajectory for navigational or obstacle
avoidance purposes; without this autonomy, sensor fleets
will not be able to scale above the number of human opera-
tors.

These experiments allowed us to demonstrate the fol-
lowing:

1. Small Lagrangian floating sensors are an effective way
of gathering water flow information for an EnKF-driven
assimilation process.

2. Actuated Lagrangian drifters can accomplish naviga-
tional tasks in unstructured environments and avoid nat-
ural obstacles such as shorelines; for the propulsion ca-
pabilities of the active drifter, a duty cycle of 10% is a
reasonable first estimate for provisioning movement.

3. The trajectories of an actuated fleet will be significantly
different than that of a passive fleet, in particular with
respect to proximity to the shoreline and other obstacles.
In supervised environments, the passive drifters are a
good fit.

Future experiments will expand the utility of the FSN
system by expanding the spatial and temporal domain of
experiments and working toward real-time processing and
assimilation of the incoming data. Solving the communica-
tion challenges and real-time assimilation objective is within
our capability. Resolving the issue of interaction with other
marine activities is an open problem; for the near future, we
will have to mitigate this problem through careful experi-
mental design.

The policy maps for actuation were computed offline,
based on plausible estimates of the water currents. An im-
proved system could generate these policy maps in real
time, using the state estimates of the water currents pro-
duced by the assimilation process, and updating these maps
on the drifters themselves via wireless communication as
the experiment progressed. A future demonstration of this
capability would be an important step toward the vision of
a flexible fleet that could be deployed in unfamiliar envi-
ronments without extensive preparation.
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The assimilation results demonstrate the ability to pro-
duce a coherent, quantitatively sound estimate of the hy-
drodynamic state from Lagrangian data, in situations in
which the experimental data are noisy and the model is
imperfect. Our implementation of the EnKF system on
the Carver cluster was made possible by the paralleliz-
able nature of EnKF computations. However, several is-
sues need to be addressed to ensure the stability of the
data assimilation process, including uncertainties of the ob-
servations, differences between the forecast model and the
real-world model, and the imperfect forward observation
operator.

It is critical for a successful implementation of the
EnKF to account for model error in an appropriate man-
ner (Daley, 1992; Dee, 1995). Neglecting model error in
the EnKF would lead to ensemble members spread too
small (Houtekamer, Mitchell, & Deng, 2009; Isaksen, Fisher,
& Berner, 2007). Extending the work in (Tossavainen, Perce-
lay, Stacey, Kaipio, & Bayen, 2011b), will explore the ap-
proach for characterizing the model error in the river flow
in channel networks on the basis of the Bayesian approxi-
mation error theory. The versatility of the theory enables us
to model the error caused by numerous uncertainty sources
simultaneously.

With a good estimation of model error, we can assume a
suited physical model available in assimilation. In practice,
however, an ensemble of vectors not globally orthogonal-
ized has its tendency to collapse toward a small subspace.
As a result, even for a perfect model, the background error
covariance tends to be underestimated. These effects tend to
underestimate the forecast error and, therefore, give too lit-
tle weight to the observations, which can subsequently lead
to the divergence of the filter (Anderson, 2003). To avoid
this problem, multiplicative inflations and additive random
perturbations (Constantinescu, Sandu, Chai, & Carmichael,
2007; Li, Kalnay, Miyoshi, & Danforth, 2009) may be
appropriate tools to separate and enlarge the ensemble
perturbations.

Further development of the Lagrangian sensor con-
cept for estuarial studies would benefit from validation of
the assimilation results through comparison with ground
truth data. Hydrodynamic ground truth in field exper-
iments is very difficult data to collect; indeed, this is
the main motivation for the development of this sensor
concept. Experiments for testing Lagrangian assimilation
against ground truth might only be feasible in controlled
environments.

Actuated mobile sensing will be a valuable tool for
environmental studies in estuarial regions. Our work has
established that a system of GPS-located, lightly actuated
drifting sensors feeding an EnKF-based assimilation back
end is a viable sensing technology. Miniaturization, cost
reduction, and more complete recovery contingencies have
the potential to make these sensing techniques a standard
part of a hydrology researcher’s toolbox.
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