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Abstract— This article proposes a new method combining
convex optimization and viability theory for estimating traffic
flow conditions on highway segments. Traffic flow is modeled
by a Hamilton-Jacobi equation. Using a Lax-Hopf formula, we
formulate the necessary and sufficient conditions for a mixed
boundary and internal conditions problem to be well posed.
The well-posedness conditions result in a system of linear
inequalities, which enables us to compute upper and lower
bounds on traffic flow parameters as the solution to a linear
program. We illustrate the capabilities of the method with
a data assimilation problem for the estimation of the travel
time function using Eulerian and Lagrangian measurements
generated from Next Generation Simulation (NGSIM) traffic
data.

I. INTRODUCTION

A. Motivation

The emergence of smartphones as sensors for the envi-

ronment has opened the door to several applications in the

field of large scale infrastructure monitoring, in particular

for transportation systems [23], [38]. Global Positioning
System (GPS) technology is progressively penetrating the

smartphone fleet in use, enabling the ubiquitous mobile

monitoring of transportation systems [23], [17].

Transportation networks can be monitored using a combi-

nation of Eulerian (fixed) or Lagrangian (mobile) sensors.

Lagrangian sensors are attractive for the transportation in-

frastructure because their deployment does not imply the

usual costs of a public monitoring infrastructure such as

loop detectors embedded in the pavement, which comes

with maintenance costs. It relies on the communication

infrastructure which is market driven and has penetrated the

United States at a much more rapid pace than the traffic

monitoring infrastructure. Large scale automotive systems

such as highways are traditionally monitored using Eulerian
(or fixed) sensors such as loop detectors [26], cameras, or

speed radars. In contrast, Lagrangian (or mobile) sensing can

be performed using GPS onboard vehicles interfaced with

any communication network (the cell phone infrastructure in

particular) or transponders [22], [39].

The fundamental challenge of integrating these different

types of sensing data is the proper use of a constitutive model

of the system, which in the case of the highway is a traffic

flow model. The process of integrating sensing data (Eulerian

or Lagrangian) into a flow model is called data assimilation
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or inverse modeling [25], [33]. Models commonly used

in traffic engineering include first-order macroscopic traffic

flow models [28], [35]. First-order traffic flow models are of

great interest for the traffic flow assimilation problem since

they only depend on a few parameters easily identifiable,

inherent to the features of the physical system. Second-

order models are potentially more accurate than first order

models when reproducing a given situation [6], [19], [40],

but are requiring the knowledge of more parameters, and

are thus less robust. First-order flow models describe the

evolution of a vehicle density function, which is related to

the degree of congestion of a highway. An alternate first

order formulation of traffic flow, known as the cumulative
number of vehicles, or Moskowitz function [31], [29] appears

in this context as a very appropriate framework to use in

order to incorporate Lagrangian data into a flow model.

The Moskowitz function has been vastly adopted in the

transportation engineering community as a good model for

following “tagged” vehicles, i.e. vehicles to which labels

have been added to follow them during their trips. This

function has been shown by Newell to satisfy a Hamilton-
Jacobi (HJ) partial differential equation (PDE) [32]. The

proper mathematical solution to this equation was defined

in [3], using viability [1], [2], and concepts key to control

theory such as capturability (capture basins). The concept of

component of the solution was introduced later in [10], to be

able to decompose the solutions into different pieces which

enable one to include Lagrangian sensing data, i.e. data

obtained inside the physical domain (not at the boundaries

as commonly done when dealing with PDEs). In the same

article, necessary and sufficient conditions for a mixed initial-
boundary-internal condition problem to be well posed were

also derived, leading to a mathematical framework capable

of integrating Lagrangian sensing information.

Contributions of the article. The first main contribution of

this article is the derivation of the necessary and sufficient

conditions on the boundary and internal conditions for a

given mixed boundary and internal conditions problem to be

properly formulated in the Barron-Jensen/Frankowska sense.

These conditions result in a set of linear inequalities on

some traffic parameters. These linear inequalities encode the

constraints on the degrees of liberty of the reconstruction

problem. The second contribution is the construction of a

Linear Program (LP) which enables us to compute bounds

on the accumulation of vehicles on the highway at the initial

time. These bounds can be used to compute the smallest and

largest travel time functions compatible with the boundary

and internal conditions. This procedure is common in data
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assimilation problems in which the initial state is unknown

in general. The third contribution is the implementation of

the linear programs using real traffic flow data obtained in

the framework of the NGSIM experiment. We also use the

results to evaluate the trade-off between accuracy and privacy

inherent to Lagrangian sensing.

II. MATHEMATICAL FRAMEWORK USED IN THIS ARTICLE

We define the set X as X := [ξ, χ] ⊂ R where ξ represents

the upstream boundary and χ represents the downstream

boundary of the physical (and computational) domain. The

state of a first order hyperbolic conservation law is described

by a density function [27], [19], which for the application of

interest represents an aggregated number of vehicles per unit

length. The density function is traditionally denoted ρ(t, x)
at time t and location x, and is the solution of the following

first order hyperbolic conservation law:

∂ρ(t, x)
∂t

+
∂ψ(ρ(t, x))

∂x
= 0 (1)

In the above equation, ψ(·) is a concave function defined

on [0, ω] known as the flux function or fundamental dia-
gram [36], [3], [10] where ω is called jam density. In the

context of traffic flow, the flux function satisfies ψ′(0) = ν�

and ψ′(ω) = −ν�, where ν� > 0 and ν� > 0.

Instead of describing traffic flow in terms of a density

function [27], [36], a possible alternate formulation known

as the Moskowitz function uses a Hamilton-Jacobi equation

for an integral of the function ρ [12], [3], [10], [11].

Definition 2.1: [Moskowitz function] Let consecutive in-

teger labels be assigned to vehicles entering the highway

at location x = ξ. The Moskowitz function M(·, ·) is a

continuous function satisfying �M(t, x)� = n where n is the

label of the vehicle located in x at time t [15], [16]. Hence,

M(t, x) represents the label of the vehicle located at x at

time t, counted from the reference point (0, ξ) corresponding

to the vehicle numbered 0. The Moskowitz function is

traditionally denoted M(t, x) at time t and location x, and

solves the following equation:

∂M(t, x)
∂t

− ψ

(
−∂M(t, x)

∂x

)
= 0 (2)

The proper notion of weak solution used in the present

article is the Barron-Jensen/Frankowska solution [7], [18].

The key feature of this weak solution (also used in [10],

based on [3]) is the lower semicontinuity of the solution.

The formal link between this class of weak solutions and the

viscosity solution [14], [13] has been formally established by

Frankowska [18].

The formal link between the density function ρ(·, ·) and

the Moskowitz function M(·, ·) is given by:

M(t2, x2)−M(t1, x1) =
∫ x2

x1

−ρ(t1, x)dx+
∫ t2

t1

ψ(ρ(t, x2))dt

(3)

One of the fundamental contributions of the present article

as well as [10], [11] is the use of control theoretic methods

Fig. 1. Illustration of the domains of the possible value conditions
used to construct the solution of the Moskowitz HJ PDE.

(in the present case viability theory [1] and set-valued analy-

sis [4]) to construct the proper solutions to the problem (26)

of Definition 4.2. This solution is called viability episolution.

To construct it, we need to define a convex transform of the

flux function ψ(·) as follows:

Definition 2.2: [Convex transform] For a concave func-

tion ψ(·) defined as previously, the convex transform ϕ∗ is

given by:

ϕ∗(u) :=

⎧⎨
⎩

sup
p∈Dom(ψ)

[p · u + ψ(p)] if u ∈ [−ν�, ν�]

+∞ otherwise
(4)

The function ϕ∗(·) is convex as the pointwise supre-

mum of affine functions [9], and is defined on the interval

Dom(ϕ∗) := [−ν�, ν�]. Note that since ψ(·) is concave and

satisfies ψ′(0) = ν�, the function ϕ∗(·) satisfies ϕ∗(−ν�) :=
supp∈Dom(ψ)[−pν� + ψ(p)] = 0. Since ψ(0) = 0 and

0 ∈ [0, ω], we have by definition (4) that ϕ∗(·) ≥ 0. Since

ϕ∗(·) is convex, it is subdifferentiable [9] on [−ν�, ν�], and

its subderivative satisfies the Legendre inversion formula [3]:

u ∈ −∂+ψ(ρ) if and only if ρ ∈ ∂−ϕ∗(u)

One contribution of the articles [3], [10], [11] was to

propose a solution of equation (2) (i.e. problem (26)) using

a new mathematical framework for this problem based on

viability theory. For this, we define an auxiliary dynamical

system F associated to the HJ PDE (2) as follows, referred

to as characteristic system [3], [10]:

Definition 2.3: [Auxiliary dynamical system] We define

an auxiliary dynamical system F associated to the HJ

PDE (2):

F :=

⎧⎨
⎩

τ ′(t) = −1
x′(t) = u(t) where u(t) ∈ Dom(ϕ∗)
y′(t) = −ϕ∗(u(t))

(5)

This dynamical system is both Marchaud and Lips-

chitz [3]. The function u(·) is called auxiliary control of

the dynamical system F .

Definition 2.4: [Environment,Target] We define an envi-

ronment set K as K := R+ × X × R, which will describe

constraints of the problem. We also define a target C in
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epigraphical form by C := Epi(c), where c(·, ·) is a given

lower continuous function defined on X×R+. The set Epi(c)
is the epigraph of the function c, and corresponds to the

subset of triples (t, x, y) ⊂ R+×X×R such that y ≥ c(t, x).
Definition 2.5: [Viability episolution] Following [3], [10],

we define the viability episolution Mc(·, ·) associated to the

target C := Epi(c) by:

Mc(t, x) := inf {y | (t, x, y) ∈ CaptF (K, C)} (6)

where CaptF (K, C) represents the capture basin of C in

K by F defined in [1], [2], [3]: denoting SF (X0) the set of

solutions X(·) to the differential inclusion X ′(·) ∈ F (X(·))
satisfying X(0) = X0, the capture basin of C in K by F is

given by:

CaptF (K, C) := {X0 ∈ K |∃X(·) ∈ SF (X0) and ∃T ≥ 0
such that X(T ) ∈ C and ∀t ∈ [0, T ], X(t) ∈ K}

(7)

Capture basins are a common tool in control theory which

appear in different forms in articles related to capture prob-

lems, see for example [30], [5], [21], [34], [24].

The episolution Mc associated to any given lower semi-

continuous target function c is a solution to the Moskowitz

HJ PDE (2) in the Barron-Jensen/Frankowska sense [3], [10].

III. COMPONENTWISE CONSTRUCTION OF THE

VIABILITY EPISOLUTION

A. Inf-morphism property

It is well known [1], [2], [3] that for a given environment

K, the capture basin of a finite union of targets is the union

of the capture basins of these targets:

CaptF

(
K,

⋃
i∈I

Ci

)
=

⋃
i∈I

CaptF (K, Ci) (8)

where I is a finite set. This property can be translated in

epigraphical form:

Proposition 3.1: [Inf-morphism property] [3] Let ci (i
belongs to a finite set I) be a family of functions whose

epigraphs are the targets Ci. Since the epigraph of the

minimum of the functions ci is the union of the epigraphs

of the functions ci, the target C :=
⋃

i∈I Ci is the epigraph

of the function c := infi∈I ci. Hence, equation (6) implies

the following property:

∀ t ≥ 0, x ∈ X, Mc(t, x) = inf
i∈I

Mci
(t, x) (9)

Using the inf-morphism property, we can construct the

episolution associated to the mixed initial, boundary and

internal conditions problem using the concept of components.

The components are encoding the influence of each of the

value conditions (initial, boundary and internal conditions)

on the solution.

B. Components of the Moskowitz function

Definition 3.2: [Components of the Moskowitz function]
The component Mci

associated to the target function ci is

defined by:

Mci
(t, x) := inf {y | (t, x, y) ∈ CaptF (K, Epi(ci))}

(10)

Example 3.3: [Initial, boundary and internal condition
components] We consider four functions1 M0(·, ·), γ(·, ·),
β(·, ·) and μ(·, ·), satisfying the following properties:

M0(t, x) :=
{

M0(0, x) (given) for t = 0 and x ∈ X
+∞ ∀t 
= 0 or ∀x /∈ X

(11)

γ(t, x) :=
{

γ(t, ξ) (given) for x = ξ and t ≥ 0
+∞ ∀x 
= ξ or ∀t < 0

(12)

β(t, x) :=
{

β(t, χ) (given) for x = χ and t ≥ 0
+∞ ∀x 
= ξ or ∀t < 0

(13)

μ(t, x) :=
{

M (given) if (t, x) ∈ Dom(μ) (given)

+∞ otherwise
(14)

In the remainder of this article, we assume that the

domain of the trajectory label function μ(·, ·) is of the

form Dom(μ) := Graph(x(·)). The function x(·) is the

trajectory function associated to μ(·, ·). The initial condition

component MM0 , left boundary condition component Mγ ,

right boundary condition component Mβ , and internal

condition component Mμ associated to the target functions

M0, γ. β and μ respectively, are defined by the following

formulas:

⎧⎪⎪⎨
⎪⎪⎩

MM0(t, x) := inf {y | (t, x, y) ∈ CaptF (K, Epi(M0))}
Mγ(t, x) := inf {y | (t, x, y) ∈ CaptF (K, Epi(γ))}
Mβ(t, x) := inf {y | (t, x, y) ∈ CaptF (K, Epi(β))}
Mμ(t, x) := inf {y | (t, x, y) ∈ CaptF (K, Epi(μ))}

(15)

The domains of the initial, boundary and internal conditions

are illustrated in Figure 1. The component Mc associated to a

given target function c can be computed using the following

generalized Lax-Hopf formula:

Theorem 3.4: [Generalized Lax Hopf formula] The com-

ponent Mc associated to a target C := Epi(c), for a given

lower semicontinuous function c, and defined by equation

(10) can be expressed as:

1The dependency of M0, γ and β on two arguments has been added for
notational consistency. Note that M0(t, x) is only defined when t = 0 and
x ∈ X , that γ(t, x) is only defined when t ≥ 0 and x = ξ, and thatβ(t, x)
is only defined when t ≥ 0 and x = χ.
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Mc(t, x) = inf
(u,T )∈Dom(ϕ∗)×R+

(c(t − T, x + Tu) + Tϕ∗(u)) (16)

Proof — The proof is available in [10]. �
Proposition 3.5: [Barron-Jensen/Frankowska

property] [3], [10] The viability episolution Mc(t, x)
associated to a given lower semicontinuous function c
is a Barron-Jensen/Frankowska (BJ/F) solution to the

Hamilton-Jacobi PDE (2).

Proof — See [10] for a proof of this property. �

C. Proper formulation conditions

Definition 3.6: [Proper formulation of a component] The

component Mci
associated to a target function ci is said to

be properly formulated if the following condition is satisfied:

∀(t, x) ∈ Dom(ci), Mci(t, x) = ci(t, x) (17)

Remark — It is well known [1] that for any environment K
and target C, we have C ⊂ CaptF (K, C), which implies the

following inequality:

∀(t, x) ∈ Dom(ci), Mci(t, x) ≤ ci(t, x) (18)

A component is thus properly formulated if and only if

the converse inequality is true. �

Example 3.7: The initial condition and internal condition

components defined by equation (15) are always properly

formulated. The left and right boundary condition compo-

nents are properly formulated if and only if the functions γ
and β satisfy:

∀t ∈ R+, ∀T ∈ [0, T ], γ (t − T, ξ) + Tϕ∗(0) ≥ γ (t, ξ)
∀t ∈ R+, ∀T ∈ [0, T ], β (t − T, χ) + Tϕ∗(0) ≥ β (t, ξ)

(19)

The proof of these properties is available in [10]. In the

remainder of this article, we assume that all the components

are properly formulated.

D. Mixed initial, boundary and internal conditions problem

Definition 3.8: [Mixed initial, boundary and internal con-
ditions problem] We consider a initial condition function

M0 as defined in equation (11), a left boundary condition

function γ as defined in equation (12), a right boundary

condition function β as defined in equation (13), and multiple

trajectory functions xi(·), i ∈ I defined in the time intervals

[tmini
, tmaxi

] and associated to the vehicles labeled Mi. The

trajectory label functions μi are defined by:

μi(t, x) :=
{

Mi if (t, x) ∈ Graph(xi)
+∞ otherwise

(20)

The solution M to the associated mixed initial, boundary
and internal conditions problem is defined as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M is a BJ/F solution to equation (2)
M(0, x) = M0(x) ∀x ∈ X
M(t, ξ) = γ(t, ξ) ∀t ∈ R+

M(t, χ) = β(t, χ) ∀t ∈ R+

M(t, xi(t)) = Mi ∀i ∈ I, ∀t ∈ [tmini , tmaxi ]
(21)

Definition 3.9: [Target function] For the mixed initial,

boundary and internal conditions problem, we define the

target function c as:

c = min
(
M0, γ, β,min

i∈I
μi

)
(22)

Proposition 3.5 states that the episolution Mc associ-

ated to target c defined by equation (22) is a Barron-

Jensen/Frankowska solution to the Moskowitz HJ PDE.

Proposition 3.10: [Properties of the episolution associ-
ated to c] The episolution Mc associated to the target c
defined by equation (22) satisfies the following equalities:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mc(0, x) = min(M0(0, x),Mγ(0, x),Mβ(0, x),
min
i∈I

Mμi (0, x))

∀x ∈ X

Mc(t, ξ) = min(MM0 (t, ξ), γ(t, ξ),Mβ(t, ξ),
min
i∈I

Mμi (t, ξ))

∀t ∈ R+

Mc(t, χ) = min(MM0 (t, χ),Mγ(t, ξ), β(t, χ),
min
i∈I

Mμi (t, χ))

∀t ∈ R+

Mc(t, xi(t)) = min(MM0 (t, xi(t)),Mγ(t, xi(t))
Mβ(t, xi(t)),Mi, min

j∈I\{i}
Mμj (t, xi(t)))

∀i, ∀t ∈ [tmini
, tmaxi ]

(23)

Proof — The inf-morphism property implies that Mc =

min
(
MM0 ,Mγ ,Mβ , min

i∈I
Mμi

)
. Since the components

MM0 , Mγ , Mβ and Mμi
are properly formulated, we have

the following equalities:

⎧⎪⎪⎨
⎪⎪⎩

MM0(0, x) = M0(0, x) ∀x ∈ X
Mγ(t, ξ) = γ(t, ξ) ∀t ∈ R+

Mβ(t, χ) = β(t, χ) ∀t ∈ R+

Mμi(t, xi(t)) = Mi ∀t ∈ [tmini , tmaxi ]

(24)

This last property implies equation (23). �
Proposition 3.11: [Solution to the mixed initial, boundary

and internal conditions problem] The function M satisfying

equation (26) is the episolution associated to the target c :=
min (M0, γ, β, μi) if and only if the following conditions

are satisfied:
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(i) Mγ(0, x) ≥ M0(0, x) ∀x ∈ X
(ii) MM0(t, ξ) ≥ γ(t, ξ) ∀t ∈ R+

(iii) Mβ(0, x) ≥ M0(0, x) ∀x ∈ X
(iv) MM0(t, χ) ≥ β(t, χ) ∀t ∈ R+

(v) Mγ(t, χ) ≥ β(t, χ) ∀t ∈ R+

(vi) Mβ(t, ξ) ≥ γ(t, ξ) ∀t ∈ R+

(vii) MM0(t, xi(t)) ≥ Mi ∀i ∈ I,∀t ∈ [tmini , tmaxi ]
(viii) Mμi

(0, x) ≥ M0(0, x) ∀i ∈ I,∀x ∈ X
(ix) Mγ(t, xi(t)) ≥ Mi ∀i ∈ I,∀t ∈ [tmini

, tmaxi
]

(x) Mμi(t, ξ) ≥ γ(t, ξ) ∀i ∈ I,∀t ∈ R+

(xi) Mβ(t, xi(t)) ≥ Mi ∀i ∈ I,∀t ∈ [tmini
, tmaxi

]
(xii) Mμi

(t, χ) ≥ β(t, χ) ∀i ∈ I,∀t ∈ R+

(xiii) Mμj (t, xi(t)) ≥ Mi ∀i ∈ I,∀j ∈ I\{i}
∀t ∈ [tmini

, tmaxi
]

(25)

Proof — Equation (25) is a direct consequence of

equations (23) and (21). �

IV. TRAVEL TIME ESTIMATION USING MIXED BOUNDARY

AND INTERNAL CONDITIONS

A. Computation of the travel time function

In the remainder of the article, we assume that vehicles

are not overtaking each other. Since no overtaking occurs, the

vehicles keep their label with time, the trajectory of a given

vehicle M is included in the set
{
(t, x) s.t. M(t, x) = M

}
(this is a level-set [10] of the Moskowitz function2 M.

Figure 2 illustrates this property.

Fig. 2. Isolevel of the Moskowitz function. The projection of this level
set in the (t, x) plane is the trajectory of vehicle M.

We assume for simplicity in the remainder of the article

that β(·, ·) is injective. The travel time between the upstream

and downstream boundary (i.e. the travel time at time t is

defined as follows.

Definition 4.1: [Travel time] Let us set M as M :=
M(t, ξ) = γ(t, ξ) (M corresponds to the label of the

entering vehicle at t). We assume that there exists t such

that M = β(t, χ) (this amounts to saying that the vehicle M
exits the highway at a finite time t). Since β(·, ·) is injective,

t is uniquely defined (when it exists). The travel time τ(t)

2The case in which the interior of this set is not empty corresponds to a
locally empty highway, in which by default the speed is the free flow speed.

required to cross the highway section at time t is defined by

τ(t) = t−t (this corresponds to the duration of the trip of the

vehicle M between the boundaries ξ and χ). This property

is illustrated in Figure 2.

B. Mixed boundary and internal conditions problem

Because in highway state estimation problems, initial

condition are rarely known, we cannot prescribe M0(·, ·) in

practice. Using the inf-morphism property, we can circum-

vent this difficulty by omitting M0(·, ·) and computing the

BJ/F solution to the resulting mixed boundary and internal
conditions problem only.

Definition 4.2: [Mixed boundary and internal conditions
problem] We consider a left boundary condition function γ as

defined in equation (12), a right boundary condition function

β as defined in equation (13), and multiple functions μi, i ∈
I (where I is a finite set) as defined in equation (20).

The solution M to the associated mixed boundary and

internal conditions problem is defined as:

⎧⎪⎪⎨
⎪⎪⎩

M is a BJ/F solution to the HJ PDE (2)

M(t, ξ) = γ(t, ξ) ∀t ∈ R+ LBC

M(t, χ) = β(t, χ) ∀t ∈ R+ RBC

M(t, x) = μi(t, x) ∀(t, x) ∈ Dom(μi) IBCs
(26)

Definition 4.3: [Target function] For the mixed boundary

and internal conditions problem, we define the target function

c as:

c = min
(

γ, β,min
i∈I

μi

)
(27)

Proposition 3.5 states that the episolution Mc associ-

ated to target c defined by equation (27) is a Barron-

Jensen/Frankowska solution to the Moskowitz HJ PDE.

Proposition 4.4: [Properties of the episolution associated
to c] The episolution Mc associated to the target c defined

by equation (22) satisfies the following equalities:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mc(t, ξ) = min(γ(t, ξ),Mβ(t, ξ), min
i∈I

Mμi
(t, ξ))

∀t ∈ R+

Mc(t, χ) = min(Mγ(t, ξ), β(t, χ), min
i∈I

Mμi
(t, χ))

∀t ∈ R+

Mc(t, xi(t)) = min(Mγ(t, xi(t)),Mβ(t, xi(t)),Mi,
min

j∈I\{i}
Mμj

(t, xi(t)))

∀i, ∀t ∈ [tmini
, tmaxi

]
(28)

Proof — The inf-morphism property implies that Mc =

min
(
Mγ ,Mβ , min

i∈I
Mμi

)
. Since the components Mγ , Mβ

and Mμi
are properly formulated, we have the following

equalities:⎧⎨
⎩

Mγ(t, ξ) = γ(t, ξ) ∀t ∈ R+

Mβ(t, χ) = β(t, χ) ∀t ∈ R+

Mμi
(t, xi(t)) = Mi ∀t ∈ [tmini

, tmaxi
]

(29)
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This last property implies equation (28). �
Proposition 4.5: [Solution to the mixed boundary and

internal conditions problem] The episolution Mc associated

to the target c defined by equation (22) satisfies equation (26)

if and only if the following conditions are satisfied:

(i) Mγ(t, χ) ≥ β(t, χ) ∀t ∈ R+

(ii) Mβ(t, ξ) ≥ γ(t, ξ) ∀t ∈ R+

(iii) Mγ(t, xi(t)) ≥ Mi ∀i ∈ I,∀t ∈ [tmini
, tmaxi

]
(iv) Mμi(t, ξ) ≥ γ(t, ξ) ∀i ∈ I,∀t ∈ R+

(v) Mβ(t, xi(t)) ≥ Mi ∀i ∈ I,∀t ∈ [tmini
, tmaxi

]
(vi) Mμi

(t, χ) ≥ β(t, χ) ∀i ∈ I,∀t ∈ R+

(vii) Mμj (t, xi(t)) ≥ Mi ∀i ∈ I,∀j ∈ I\{i}
∀t ∈ [tmini

, tmaxi
]

(30)

Proof — Equation (30) is a direct consequence of

equations (12), (13) and (26). �

V. LINEAR PROGRAMMING METHODS FOR TRAVEL TIME

ESTIMATION USING FLOW AND TRAJECTORY DATA

A. Framework used for the reconstruction

In this section, we assume that the inflow and outflow

functions are obtained via Eulerian sensing (for instance

using loop detectors at ξ and χ). The inflow and outflow

functions qinflow and qoutflow represent the number of vehi-

cles respectively entering and exiting the highway per unit

time, and satisfy the following properties:

qinflow(t) :=
∂γ(t, ξ)

∂t
and qoutflow(t) :=

∂β(t, χ)
∂t

(31)

Proposition 5.1: The functions γ(·, ·) and β(·, ·) are given

by the following formulas:

γ(t, x) :=
{ ∫ t

0
qinflow(τ)dτ for x = ξ and t ≥ 0

+∞ ∀x 
= ξ or ∀t < 0

β(t, x) :=
{ ∫ t

0
qoutflow(τ)dτ + Δ for x = χ and t ≥ 0

+∞ ∀x 
= χ or ∀t < 0
(32)

where −Δ represents the total number of vehicles located

between ξ and χ at the initial time, which is unknown a

priori.

Proof — Equation (32) is a direct consequence of

equations (28) and (31). Note that the Moskowitz function

satisfies M(0, ξ) = 0. Note also that the parameter −Δ
corresponds to M(0, ξ)−M(0, χ), which represents the total

number of vehicles located between ξ and χ at time t = 0.

The parameter −Δ is the unknown of the problem, over

which the optimization is run, to perform the optimal travel

time estimation. �

Remark — The functions qinflow(·) and qoutflow(·) are pos-

itive when all vehicles flow towards the χ direction. We

will assume that this is the case for the remainder of the

article. Equation (32) thus implies that γ(ξ, ·) and β(χ, ·)
are increasing. �

Remark — Equation (32) implicitly assumes that no integra-

tion errors occur. In practice, real sensors readings qinflow(·)
and qoutflow(·) are affected by both systematic and random

errors. Equation (32) is thus accurate on short time horizons

(typically a few minutes) only. �

We also assume that we can use n pieces of trajectory

functions xi(·), i ∈ I for the estimation, where I is a

finite set. These trajectories represent vehicles which could

be locally (for short periods of time) tracked. Note that the

labels Mi of the vehicles are unknown, and are therefore

also treated as decision variables.

Proposition 5.2: [Lax-Hopf formulas associated to the
flow and trajectory constraints] The components Mγ , Mβ

and Mμi
can be computed for all (t, x) ∈ R+×X using the

following Lax-Hopf formulas:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mγ(t, x) =

inf
u∈Dom(ϕ∗) s. t. ξ−x

u
≥0

(
γ

(
t − ξ − x

u
, ξ

)
+

ξ − x

u
ϕ∗(u)

)

Mβ(t, x) =

inf
u∈Dom(ϕ∗) s. t. χ−x

u
≥0

(
β

(
t − χ − x

u
, χ

)
+

χ − x

u
ϕ∗(u)

)

Mμi (t, x) =

inf
T∈R+∩[t−tmaxi

,t−tmini
]

(
Mi + Tϕ∗

(
xi(t − T ) − x

T

))
(33)

Remark — As can be seen from equations (32) and (33),

the components Mγ , Mβ and Mμi
, as well as the functions

γ, β and μi are affine functions of the parameters Δ
and M1, . . . ,Mimax . We explicit this fact in the following

definition. �

Definition 5.3: [Functions associated to γ, β, μi, Mγ ,
Mβ and Mμi

] We define the following functions:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

fγ(t, x) = γ(t, x)
fβ(t, x) = β(t, x) − Δ
fμi(t, x) = μi(t, x) − Mi

gγ(t, x) = Mγ(t, x)
gβ(t, x) = Mβ(t, x) − Δ
gμi

(t, x) = Mμi
(t, x) − Mi

(34)

By construction, the functions fγ , fβ , fμi
, gγ , gβ and gμi

are independent of the parameters Δ and M1, . . . ,Mimax .

B. Linear programming formulation of the travel time esti-
mation problem

Definition 5.4: [Decision variables] We define the follow-

ing vector of variables X:

X :=
(
Δ,M1, . . . ,Mi, . . . ,Mimax

)T
(35)

The vector X contains imax + 1 variables.
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Proposition 5.5: [Constraints] Using equation (30), we

can write the following set of constraints for X:

(i) gγ(t, χ) ≥ fβ(t, χ) + Δ ∀t ∈ R+

(ii) gβ(t, ξ) + Δ ≥ fγ(t, ξ) ∀t ∈ R+

(iii) gγ(t, xi(t)) ≥ Mi ∀i ∈ I,∀t ∈ [tmini
, tmaxi ]

(iv) Mi + gμi (t, ξ) ≥ fγ(t, ξ) ∀i ∈ I,∀t ∈ R+

(v) gβ(t, xi(t)) + Δ ≥ Mi ∀i ∈ I,∀t ∈ [tmini
, tmaxi ]

(vi) Mi + gμi (t, χ) ≥ fβ(t, χ) + Δ ∀i ∈ I,∀t ∈ R+

(vii) Mj + gμj (t, xi(t)) ≥ Mi ∀i ∈ I,∀j ∈ I\{i}
∀t ∈ [tmini

, tmaxi ]
(36)

As will be seen later, the optimization will be run using

gγ , gβ , etc. directly. Equation (36) can be regarded as a

set of linear inequalities in the decision variables Δ and

M1, . . . ,Mimax . Indeed, we can write the above constraints

as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) inf
t∈R+

(
gγ(t, χ) − fβ(t, χ)

) ≥ Δ

(ii) Δ ≥ sup
t∈R+

(−gβ(t, ξ) + fγ(t, ξ)
)

(iii) inf
t∈[tmini

,tmaxi
]
(gγ(t, xi(t))) ≥ Mi ∀i ∈ I

(iv) Mi ≥ sup
t∈R+

(fγ(t, ξ) − gμi (t, ξ)) ∀i ∈ I

(v) inf
t∈[tmini

,tmaxi
]

(
gβ(t, xi(t))

) ≥ −Δ + Mi ∀i ∈ I

(vi) Mi − Δ ≥ sup
t∈R+

(
fβ(t, χ) − gμi (t, χ)

) ∀i ∈ I

(vii) Mj − Mi ≥ sup
t∈[tmini

,tmaxi
]

(−gμj (t, xi(t))
)

∀i ∈ I, ∀j ∈ I\{i}
(37)

Proposition 5.6: [Properties of the travel time function]
The travel time function τ(·) is an decreasing function of

the parameter Δ.
Proof — Let us set M as M := γ(t, ξ), and chose t

solution to M =
∫ t

0
qoutflow(τ)dτ + Δ. Since qoutflow(·) is

positive, the solution t to the previous equation is decreasing

when Δ increases. Hence, the travel time function τ(·) is a

decreasing function of Δ. �
Proposition 5.7: [Lower and upper bounds on the travel

time function] The upper (respectively lower) bound on the

travel time function can be found by solving the following

linear program:

Minimize (respectively Maximize): Δ
Subject to:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf
t∈R+

(
gγ(t, χ) − fβ(t, χ)

) ≥ Δ

Δ ≥ sup
t∈R+

(−gβ(t, ξ) + fγ(t, ξ)
)

inf
t∈[tmini

,tmax1 ]
(gγ(t, xi(t))) ≥ Mi ∀i ∈ I

Mi ≥ sup
t∈R+

(fγ(t, ξ) − gμi (t, ξ)) ∀i ∈ I

inf
t∈[tmini

,tmax1 ]

(
gβ(t, xi(t))

) ≥ −Δ + Mi ∀i ∈ I

Mi − Δ ≥ sup
t∈R+

(
fβ(t, χ) − gμi (t, χ)

) ∀i ∈ I

Mj − Mi ≥ sup
t∈[tmini

,tmaxi
]

(−gμj (t, xi(t))
) ∀i ∈ I, ∀j ∈ I\{i}

(38)

The solutions to problem (38) yield the minimal and maximal

possible values Δmin and Δmax of Δ (assuming that the

feasible set is not empty) compatible with the flow and tra-

jectory data. We then use definition 4.1 to compute the worst-

case and best-case travel time functions ttmax(·) and ttmin(·)
compatible with the flow and trajectory data. ttmax(·) and

ttmin(·) are functions of fγ , fβ , Δmin and fγ , fβ , Δmax

respectively. Note that in (38), the functions gγ , gβ , gμi
are

computed using the Lax-Hopf formula (16).

VI. APPLICATIONS TO TRAVEL TIME ESTIMATION

To solve problem (38), we used CVX, a Matlab package

for specifying and solving convex programs [20]. While the

previous section can handle infinite horizon problems, only

finite horizon problems can be implemented numerically. We

thus solve problem (38) on a finite time horizon, which can

be done by replacing R+ by [0, Tmax] (Tmax represents the

time horizon) in equation (38).

The example below uses Next Generation Simulation
(NGSIM) [22] data from a stretch of Interstate I80 in

Emeryville, CA as our main benchmark scenario for this

study. This data set contains video extracted trajectories of

all vehicles traversing a 0.4 mile long highway section during

a period of 45 minutes. Given the accuracy of the video,

this set of data can be considered as ground truth, i.e. it

provides the exact location of vehicles to an accuracy of a

few centimeters at a 10Hz rate. The corresponding data is

represented in Figure 3.

Fig. 3. NGSIM experimental data. Decimated representation of NGSIM
trajectories. We represent only 5% of the trajectories for the sake of clarity
of the figure.

We intentionally degrade the quality of the data to account

for the uncertainty linked with the actual Lagrangian sensors

(GPS), and use this data as follows:

• We create loop detector data from this NGSIM data,

following a standard procedure used in traffic engineering

(see [22] for details). This provides us with traffic data

similar to what the PeMS loop detector system would

record in real life. This yields the boundary condition

functions fγ(·, ·) and fβ(·, ·). The associated functions

gγ(·, ·) and gβ(·, ·) are computed using the Lax-Hopf

formulas (33).

• We extract some trajectories representative of what a GPS

tracking device would produce, if traveling onboard of the

selected vehicles. This provides us with the trajectories
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xi(·) for all i ∈ I . The associated functions fμi
(·, ·)

and gμi
(·, ·) are computed using equations (20) and (33)

respectively.

• We extract the density and flow values using the deriva-

tives of the Moskowitz function. These values are used to

compute the parameters of the flux function ψ (we model

the flux function using a triangular function [12]).

Note that the first set of data is a typical measurement ob-

tainable from Eulerian sensing (see [22] for a full description

of the procedure), while the second data set (the trajectories)

is a typical Lagrangian data set, obtainable from multiple

probe vehicles.

A. Estimation of the total number of vehicles −Δ at initial
time

We first consider the estimation of the parameter Δ using

the time horizon Tmax = 160s, using the boundary condition

functions fγ and fβ , as well as a single trajectory fμ of

a given vehicle (we use the vehicle labeled 140 for this

computation). We display the evolution of the highest and

lowest possible travel time functions as a function of the

duration of the trajectory used for the estimation in Figure 4.

The travel time functions are computed using definition 4.1.

As one can see in Figure 4, using a long trajectory improve

the quality of the estimation (but also increase the risk

of privacy intrusions). The same figure also shows that

the estimation is not improved when the duration of the

trajectory is too small.

Fig. 4. Estimation of the total number of vehicles at initial time
using boundary condition functions and a single trajectory. The exact
value of the total number of vehicles −Δ at the initial time is 108 (solid
line). The upper and lower bounds on Δ obtained by solving problem (38)
are represented by squares and circles respectively. The horizontal axis
represents the duration tmax − tmin of the trajectory function used for
the reconstruction (the parameter tmin is set to 100s).

B. Estimation of the travel time function using a single
trajectory

Travel time through the section of the highway of interest

is a function of time. In this section, we compute guaranteed

bounds on the travel time (as a function of time). The way

to interpret them is as follows: given Eulerian measurements

from loop detectors, and given the model of traffic, the

realized travel time through the section of highway is guar-

anteed to be between ttmin and ttmax throughout the time

period considered. We now compute the guaranteed upper

and lower possible values of the travel time for the time

horizon Tmax = 160s using the values obtained previously.

Figure 5 displays the realized travel time function as well as

the upper and lower possible envelopes if we consider only

the boundary condition functions fγ and fβ .

Fig. 5. Estimation of the travel time function using boundary
conditions functions only. The horizontal axis represents the time t. The
exact value of the travel time function τ(·) is represented using a solid line.
The upper and lower bounds on τ(t) obtained by solving problem (38) and
using definition 4.1 are represented by circles and squares respectively.

The bounds provided by Eulerian sensors only are ex-

tremely wide. As can be seen in comparison with Figure 6,

adding Lagrangian information provides tighter bounds and

a better estimate of the travel time function.

Fig. 6. Estimation of the travel time function using boundary con-
ditions functions and a single trajectory. The horizontal axis represents
the time t. The exact value of the travel time function τ(·) is represented
using a solid line. The upper and lower bounds on τ(t) obtained by solving
problem (38) and using definition 4.1 are represented by circles and squares
respectively. We use the trajectory of vehicle 140 for the reconstruction, and
use tmax = 140s and tmin = 100s.

However, sensing vehicles during long intervals of time

may increase the risk of privacy intrusion: it enables the

tracking of a given vehicle during a large amount of time.

In order to prevent the tracking of mobile phone users, the

duration tmax − tmin must be as low as possible [37].

C. Influence of the penetration rate

In order to use segments of trajectory as short as possible

and yet obtain a good approximation of the travel time

function, we now investigate the estimation of the travel time

function using multiple trajectory functions.

Definition 6.1: [Penetration rate] The penetration rate R
is defined as the ratio of the total number of trajectories
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Imax and the total number of vehicles entering the highway

between times 0 and Tmax:

R :=
Imax

M(Tmax, ξ) − M(0, ξ)
(39)

We consider the same data set as previously, and set the

time horizon to Tmax = 160. We select Imax trajectory

functions of fixed duration tmax − tmin corresponding to

random vehicles present on the highway between times 0
and Tmax, and check the influence of the penetration rate
for different trajectory durations. We display in Figure 7

the evolution of Δmax − Δmin as a function of Imax and

the duration tmax − tmin. For this particular situation, we

have M(Tmax, ξ)−M(0, ξ) = 363, and the penetration rate,

which can be computed using equation (39) varies between

0.3% and 1.4%.

Fig. 7. Guaranteed range (unit: vehicles) for the estimation of the
parameter Δ using randomly chosen trajectories of given duration. The
horizontal axis represents the total duration tmax − tmin of each trajectory.
The vertical axis represents the number of trajectory functions used for the
reconstruction (from 1 to 5). The total error Δmax−Δmin on the parameter
Δ is computed by solving problem (38), and is indicated using a gray scale
(right). In order for the results to be statistically significant, we averaged
the total error on 30 different choices of trajectory functions for each value
of the duration and number of trajectory functions. The true value of Δ is
−Δ = 108 (vehicles).

As illustrated by Figure 7, the error on the reconstruction

depends on the number of trajectory functions used for the

reconstruction, but also on the duration of the trajectory func-

tion used for the reconstruction. As one can see in this figure,

there is a clear trade-off between privacy and accuracy. For

instance, using 5 trajectory functions of duration 34s yields a

greater error on Δ in average than using a single trajectory of

duration 40s! Tracking vehicles during a greater amount of

time dramatically reduces the error on the estimation, at the

expense of the user’s privacy. This trade-off can also be seen

in Figure 8, which displays the L2 error on the travel time

function τ(·) as a function of the duration and the number of

trajectories. This figure also shows that we have in average a

much lower error on the travel time function using a single

trajectory of duration 40s than using 5 trajectories of duration

30s.
The NGSIM data set is to our best knowledge among the

most accurate highway traffic data set publicly available in

the transportation engineering community. In future work,

computations will be realized using the same method for

data gathered from the Mobile Century experiment. This

Fig. 8. Root mean square error (unit: s) on the travel time function
using randomly chosen trajectories of given duration. The horizontal
axis represents the total duration tmax − tmin of each trajectory. The
vertical axis represents the number of trajectory functions used for the
reconstruction (from 1 to 5). The root mean square error (in s) on the travel
time τ(·) is computed by solving problem 38 and using definition 4.1, and is
indicated using a gray scale (right). In order for the results to be statistically
significant, we averaged the total error on 30 different choices of trajectory
functions for each value of the duration and number of trajectory functions.
The true travel time varies around 50s for the period of interest.

experiment is part of an ongoing project with Nokia and the

California Department of Transportation (Caltrans), to eval-

uate the use of GPS equipped cellular phones (Nokia N95)

onboard 100 vehicles used as probe sensors to monitor the

state of traffic in real time. The upcoming Mobile Millennium
experiment will be a larger deployment of 10000 vehicles

starting in November 2008. This added value potentially

provides state and federal agencies with a new source of in-

formation which we have already shown in experiments [22]

to work at extremely low penetration rates (between 1% and

5% of equipped vehicles). Given the rate of adoption of

GPS-enabled cell phones, we expect this technology and this

set of algorithms to have a great impact on highway traffic

monitoring within three years, also leading to new products

available to travelers, such as travel time info on cell phones.

VII. CONCLUSION

This article presented a new type of boundary and internal

conditions problem in which the initial condition is unknown.

This problem is characterized by compatibility conditions,

which encode the fact that the solution should satisfy at

the same time the model, as well as all the trajectory and

flow data. Using a set of variables describing the state of

traffic, we derived a linear program yielding guaranteed

bounds on the total accumulation of vehicles at initial time

compatible with the collected data. Using these bounds, we

computed guaranteed bounds on the travel time function

using flow data. This work was successfully implemented

on NGSIM data, and is in the process of being implemented

on Mobile Century data, as well as in the Mobile Millennium

system [8].
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