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WITH CELLULAR

FROM PDEs TO SIMULAT

Students
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Claudia Bongiovanni




WHAT IS A CELLULAR AUTOMATON?

Discretization, time and space wise, of a system

-—r \\"

At each time step,through a time-evolution rule the
next state of a cell is determined by:

Its present state

The states of its local neighbors



OBJECTIVE & MOTIVATION

Determine Cellular Automata for selected PDEs

COLE-HOPF
TRANSFORMATION

CAs have the benefit of:
- Using very simple mathematical rules
- Complex results can be easily simulated
- Change the perspective of the model to a local view



STEVEN WOLFRAM CAs

Wolfram researched cellular automata models for
several decades and has linked cellular automata
with differential equations (New Kind of Science
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%,g JOHN CONWAY’S GAME OF LIFE

"“ Dy :
G

Each cell has 8 neighboring g B
cells: . - —
| | || ml
4 orthogonally - e H
| |

4 diagonally

CONWAY’S GENETIC LAWS

= \ 4 -

Possible situations at the end of the «life history»:
The society reaches a steady-state
The society dies out

The society oscillates forever



THE 2D HEAT EQUATION:
NUMERICS

FINITE DIFFERENCE

t+1 t t t t
Ti;" —Ti; N <Ti—1,j —2T;; + Tiq .

Tij—q —2T;; +Tijq
At (Ax)?

(Ay)>

Ti 1j+Tija+M—DT;; +Tiq;+Tijq

t+1 _ 1 )J
Ti,j -

M

Stability condition:
M =4

Implementation in MATLAB




THE 2D HEAT EQUATION:

IMPLEMENTATION & SIMULATION

GOAL : Represent the PDE in terms of a game

HOW :

ATTEMPTS:

Middle Source

Multiple sources

Life/death rules 1

Life/death rules 2




Problem Set 1: CE291F — ME 236 - EE291
Professor Alexandre Bayen

Posted: January 21st, 2013

Problem 1. The goal of the first problem is to go through a brief ODE review. Solve the following
ODE problems in the indicated range of the independent variable x. Be brief, but sprinkle a few
words in with your maths to explain what you are doing.

Question 1. ¢ = 222 with the initial condition 4(0) = 1 for = > 0.

Question 2. y' = 3y with the initial condition y(0) =1 for = > 0.

Question 3. 4" — o’y = 0 with the boundary conditions 4(0) = 1 and 3/(1) = 0, where @ € R is a
real number.

Question 4. 4" + o%y = 0 with the boundary conditions »(0) = 0 and (1) = 0, and with the
normalization condition y'(0) = 1, for € [0,1], where o € R is a real number. Find the smallest

positive o for which a solution exists. = g ame - u l e S f r Om

Question 5. y” 4+ xy = = with the boundary conditions y(0) = 0 and ¢/(0) = 1, for x > 0. Give ues
the solution as a power series in = or in terms of known special functions if you know about them.

Problem 2. Derivation of the wave equation for
cables. The goal of this problem is to derive a par- y
tial differential equation from simple physical model-
ing principles, to gain familiarity with modeling. We y(z + dz, t) “alx + da, t)
consider a cable, with tension F' uniform in norm.
We call = the coordinate along the cable. We de- //
scribe the vertical displacement of the cable by a 7
function y(x,t) (see Figure 1). We call a(x,t) the e t) Lo
local angle of the cable with the horizontal axis, and |
we denote by ;o the lineic mass of the eable, i.e. the

x z +dx

mass of the cable per unit length. > HOPF

i) Write Newton’s law along the vertical coordinate

of the system (in the y direction) for an infinitesi- P}‘ligukref%: Ili“?mt;?ﬁ‘ of the fs’rces Onht‘he cable WMATI ON
~ v, a s te t 1 1 . .
mal chunk of the cable of length dx. Use the angle < .= o eneth dv. Lhe arrows denote the fension,
; e which is supposed to be uniform in norm along the
a(x,t) in order to compute the projection of the cable.

forces along the vertical axis.

dy(z.t)

ii) For small angles, use the approximation a(x,t) ~ sina(z,t) ~ tana(z,t) ~ =22~ Express
NeWtDn’S la‘v in terms B e e ...-ll- B T — |
. Problem 3. Cole-Hopf transformation. The goal of this problem is to apply some simple change

i) Take the limit dr - of variables rules and methods (derived in the notes) to gain some familiarity with techniques used
Problem 3. Cole-Hop 0O transform partial differential equations. Let us consider ¢(r,t), a function satisfying the one

of variables rules and v dJjensional heat equation: ¢; = v¢,,. Let us consider the function u(x,t) defined by u = —op19¢
to transform partial d: ' - ¢ Ox

dimensional heat equat PTOVE that the function u satisfies the viscous Burgers equation: ws + uiy = Vitgy.

Prove that the functiol



FROM HEAT TO BURGER’S EQUATION

WITH ULTRA-DISCRETIZATION

COLE-HOPF TRANS.
>
v = (logg)«
Vi

DIFFERENCE

n 1
u = (logf]-+1" - logfj

I — /o N\ I

lil'_II_IUEng(EAfs +ePle4...) = max(A, B, ),

It’s a most efficient way to discretize from 0/1 to 0/1



1D BURGER’S EQUATION AS A CA

Assuming initial U’s are all 0 or 1, we can easily show U’s at
any time also become 0 or 1

A 4

The Burger’s equation is a cellular automaton (CA) which
follows the time evolution rule:

Uj—1"U;j"Ujp." current state 000 001 010 011 100 101 110 111

Uj"+1 " new state for center cell 0




STEVEN WOLFRAM: RULE 184
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CONCLUSIONS & FURTHER WORK

Transforming continuous-valued PDEs to CAs is not an easy task

Through the UD method, it was easy to convert Burger’s
equation into a rule-based CA

Rule 184 has a correspondance to the real world

FURTHER WORK.:

1. Investigate different ICs and BCs 1in order to obtain
traffic-flow situations

2. Try to extend the 1D-Burgers’ equation to 2D
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