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 Flatness-Based Control of Open-Channel Flow 
in an Irrigation Canal Using SCADA

   ith a population of more than 6 billion people, food 

production from agriculture must be raised to meet 

increasing demand. While irrigated agriculture pro-

vides 40% of the total food production, it represents 80% 

of the freshwater consumption worldwide. In summer and 

drought conditions, effi cient management of scarce wa-

ter resources becomes crucial. The majority of irrigation 

canals are managed manually, however, with large water 

losses leading to low water effi ciency. This article focuses 

on the development of algorithms that could contribute to 

more effi cient management of irrigation canals that convey 

water from a source, generally a dam or reservoir located 

 upstream, to water users. We also describe the implemen-

tation of an algorithm for real-time irrigation operations  

using a  supervision, control, and data acquisition  (SCADA) 

system with an automatic centralized controller. 

 Irrigation canals can be viewed and modeled as delay sys-

tems since it takes time for the water released at the upstream 

end to reach the user located downstream. We thus present an 

open-loop controller that can deliver water at a given location 

at a specified time. The development of this controller requires 

a method for inverting the equations that describe the dynam-

ics of the canal in order to parameterize the controlled input 

as a function of the desired output. The Saint-Venant equa-

tions [1] are widely used to describe water discharge in a 

canal. Since these equations are not easy to invert, we consider 

a simplified model, called the Hayami model. We then use 

differential flatness to invert the dynamics of the system and 

to design an open-loop controller. 

 MODELING OPEN CHANNEL FLOW 

 Saint-Venant Equations 
 The Saint-Venant equations for water 

discharge in a canal are named after 

Adhémar Jean-Claude Barré de Saint-

 Venant, who derived these equa-

tions in 1871 [1]. This model assumes 

one- dimensional flow, with uniform 

velocity over the cross section of the 

canal. The effect of boundary friction 

is accounted for through an empirical 

law such as the Manning-Strickler friction law [2]. The aver-

age canal bed slope is assumed to be small, and the pressure 

is assumed to be hydrostatic. Under these assumptions, the 

Saint- Venant equations are given by 
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 where A 1x, t 2  is the wetted cross-sectional area, Q 1x, t 2  
is the water discharge 1m3/s 2  through the cross section 

A 1x, t 2 , H 1x, t 2  is the water depth, Sf 
1x, t 2 5Q2n2/ 1A2R4/3 2  

is the dimensionless friction slope, R 1x, t 2 5A/P is the 

hydraulic radius 1m 2 , P 1x, t 2  is the wetted perimeter 1m 2 ,
n is the Manning coefficient (s-m21/3), Sb is the bed slope 

1m/m 2 , and g is the gravitational acceleration 1m/s2 2 . 
Equation (1) expresses conservation of mass, while (2) 

expresses conservation of momentum. 

 Equations (1), (2) are completed by boundary conditions 

at cross structures, such as gates or weirs, where the Saint-

Venant equations are not valid.  Figure 1  illustrates some 

parameters of the Saint-Venant equations and shows a gate 

cross structure. The cross structure at the downstream end 

of the canal can be modeled by a static relation between the 

water discharge Q 1L, t 2  and the water depth H 1L, t 2  at 

x5 L given by  

  Q 1L, t 2 5W 1H 1L, t 2 2 , (3) 
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 FIGURE 1  Irrigation canal. (a) shows the flow Q, water depth H, and wetted perimeter P.  

Lateral withdrawals are taken from offtakes. (b) shows a gate cross structure, which can 

be used to control the water discharge in the canal.
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 where W 1 # 2  is derived from hydrostatic laws. For a weir 

overflow structure, this relation is given by 

 Q 1L, t 2 5Cw"2gLw 1H 1L, t 2 2Hw 2 3/2,  

 where  g  is the gravitational acceleration, Lw is the weir 

length, Hw is the weir elevation, and Cw is the weir dis-

charge coefficient. 

 A Simplifi ed Linear Model 
 A simplified version of the Saint-Venant equations is ob-

tained by neglecting the inertia terms 'Q/'t1 ' 1Q2/A 2/'x 

in the momentum equation (2), which leads to the diffusive 

wave equation [3]. Linearizing the simplified Saint-Venant 

equations around a nominal water discharge Q0 and water 

depth H0 yields the Hayami equations 
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 where C05C0 1Q0 2  and D05D0 1Q0 2  are, respectively, the 

nominal wave celerity and diffusivity, which depend on 

Q0, and B0 is the average bed width. The quantities q 1x, t 2  
and h 1x, t 2  are the deviations from the nominal water dis-

charge and water depth, respectively.  Figure 2  illustrates 

the relevant notation. 

 The linearized boundary condition at the downstream 

end x5 L is given by 

  q 1L, t 2 5 bh 1L, t 2 ,  (6) 

 where b5 'W/'H 1H0 2  is the linearization constant. The 

value of b depends on the hydraulic structure geometry, 

including its length, height, and discharge coefficient of 

the weir. The initial conditions are defined by the devia-

tions from their nominal values, which are assumed to be 

zero initially, that is, 

  q 1x, 0 2 5 0,  (7) 

  h 1x, 0 2 5 0. (8) 

 FLATNESS-BASED 

OPEN-LOOP CONTROL 

 Open-Loop Control of a Canal Pool 
 We develop a feedforward controller for water discharge in 

an open-channel hydraulic system. The system of  interest is 

a hydraulic canal with a cross structure at the downstream 

end as shown in  Figure 2 . We assume that the desired down-

stream water discharge qd 1t 2  is specified in advance based 

on scheduled user demands. The control problem consists 

of determining the upstream water discharge q 10, t 2  that 

has to be delivered to meet the desired downstream water 

discharge qd 1t 2 . This inverse problem is an open-loop con-

trol problem. Note that, by linearization, computing q 10, t 2
as a function of qd 1t 2  is equivalent to determining Q 10, t 2  as 

a function of Qd 1t 2 5Q01 qd 1t 2 .  
 The upstream water discharge q 10, t 2  is the solution of 

the open-loop control problem defined by the Hayami 

model equations (4), (5), initial conditions (7), (8), and 

boundary condition (6). Differential flatness, as described 

in “What Is Differential Flatness?” provides a way to 

solve this open-loop control problem [3], [4] in the form 

of a parameterization of the input u 1t 2 5 q 10, t 2  as a func-

tion of the desired output y 1t 2 5 qd 1t 2 . Specifically, it is 

proved in [3] and [4] that the controller can be expressed 

in closed form as 

  u 1t 2 5 eA2a2

b
2t2aLB aT1 1t 2 2kT2 1t 2 1 B0

b
T3 1t 2 b,  (9) 

 where T1, T2, and T3 are given by 
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We call (9) the Hayami controller. 

 The convergence of the infinite series (10)–(12) can be 

guaranteed when the desired output function  y(t)  and its 

derivatives are bounded in a specific sense. More specifi-

cally, the infinite series (9) converges when the desired 

output y 1t 2 5 qd 1t 2  is a Gevrey function of order  r  lower 

than 2 [3], [4]. A Gevrey function y 1t 2  is defined by the 

q (0,t )

q (x,t )h (x,t )

q1(t )

qd(t )

0 x L

 FIGURE 2  Longitudinal schematic profile of a hydraulic canal. A 

canal is a structure that directs water flow from an upstream lo-

cation to a downstream location. Water offtakes are assumed to 

be located at the downstream of the canal. The variables q 1x, t 2 , 
h 1x, t 2 , qd 1 t 2 , and q1 1 t 2  are the deviations from the nominal values 

of water discharge, water depth, desired downstream water dis-

charge, and lateral withdrawal, respectively.
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 following property. For all nonnegative  n , the nth deriva-

tive y1n2 1t 2  of a Gevrey function  y  (t)  of order  r  has bounded 

derivatives that satisfy 

  sup
t[ 30, T4

 0 y1n2 1t 2 0 , m
1n! 2 r

ln ,  

 where  m  and l are constant positive scalars independent 

of n. 

 ASSESSMENT OF THE PERFORMANCE 

OF THE METHOD IN SIMULATION 

 Before field implementation, it is necessary to test the method 

in simulation. We simulate the Hayami controller (9) on the 

nonlinear Saint-Venant model. 

 Simulation of Irrigation Canals 
 The simulations are carried out using the software pack-

age Simulation of Irrigation Canals (SIC) [5], which imple-

ments a semi-implicit Preissmann scheme to solve the 

nonlinear Saint-Venant equations (1), (2) for open-channel, 

one-dimensional flow [5], [6]. Instead of defining a ficti-

tious canal, we use a realistic  geometry corresponding to 

a stretch of the Gignac canal (see the description  below) 

to evaluate the open-loop control in simulation. The con-

sidered stretch is 4940 m long, with an average bed slope 

Sb5 3.8 3 1024 m/m, an average bed width B05 2 m, and 

a Manning coefficient n5 0.024 s -m21/3. 

 Parameter Identifi cation 
 The simulations are performed on a realistic canal geometry, 

which is neither prismatic nor uniform. Consequently, it is 

not possible to express C0, D0, and b analytically in terms of 

the physical parameters such as the canal geometry and 

water discharge. For this reason, it is necessary to empirically 

estimate the parameters C0, D0, and b of the Hayami model 

that would best approximate the water discharge  governed 

by the Saint-Venant equations (1), (2). The  identification is 

done with an upstream water discharge in the form of a step 

 What Is Differential Flatness? 

 The theory of differential flatness consists of a parameter-

ization of the trajectories of a system by one of its outputs, 

called the  flat output  and its derivatives  [S1] . Let us consider 

a system x
#
5 f 1x, u2, where the state x  is in Rn and the con-

trol input u is in Rm. The system is said to be  flat  and admits 

the flat output z, where dim1z25 dim1u2 if the state x  can be 

parameterized by z  and its derivatives. More specifically, the 

state x  can be written as x5 h1z, z
#
, c, z1n22, and the equiva-

lent dynamics can be written as u5 g 1z, z
#
, c, z1n112 2 . 

 In the context of partial differential equations, the vector x  

can be thought of as infi nite dimensional. The notion of differen-

tial fl atness extends to this case, and, for a differentially fl at 

system of this type, the evolution of x  can be parameterized 

using an input u, which often is the value of x  at a given point. A 

system with a fl at output can then be parameterized as a func-

tion of this output. This parameterization enables the solution of 

open-loop control problems, if this fl at output is the one that 

needs to be controlled. The open-loop control input can then 

directly be expressed as a function of the fl at output. This param-

eterization also enables the solution of motion planning prob-

lems, where a system is steered from one state to another. 

Differential fl atness is used to investigate the related problem of 

motion planning for heavy chain systems  [S2] , as well as the 

Burgers equation  [S3] , the  telegraph equation  [S4] , the Stefan 

equation  [S5] , and the heat equation  [S6] . 

 Parameterization can be achieved in various ways depend-

ing on the type of the problem. The Laplace transform is widely 

used  [S2] – [S4]  to invert the system. The equations can be 

transformed back from the Laplace domain to the time domain, 

thus resulting in the fl atness parameterization. Alternative meth-

ods can be used to compute the parameterization in the time 

domain directly. For example, the Cauchy-Kovalevskaya form 

 [S6], [S7]  parameterizes the solution of a partial differential 

equation in X1z, t2, where z [ 30, 1 4 and t [ 30, `2, as a power 

series in space multiplied by time-varying coeffi cients, that is, 

X1z, t25 a
`

i50
ai 1t2zi

i!. Here, X1z, t2 is the state of the system and 

ai 1 t 2  is a time function. The usual approach is to substitute the 

Cauchy-Kovalevskaya form in the governing partial differential 

equation and boundary conditions to obtain a relation between 

ai 1t2 and the fl at output y 1t2 or its derivatives, for example, 

ai 1t 25 y 1i 21t 2, where y1i 21t2 is the ith derivative of y 1t2, which leads 

to the fi nal parameterization, in which ai 1t2 is written in terms of 

the desired output y 1t2. 
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input. The water discharges are monitored at the upstream 

and downstream positions. The identification is performed 

by finding the parameter values that minimize the least-

squares error between the downstream water discharge com-

puted by the Hayami model and the downstream water 

discharge simulated by SIC. The identification is performed 

using data generated by  simulating the Saint-Venant equa-

tions around a nominal water discharge Q0 5 0.400 m3/s. 

The identification leads to the parameters C0 50.84 m/s, 

D05 634 m2/s, and b5 0.61 m2/s. 

 Desired Water Demand 
 The water demand curve is approximated from predicted 

consumption or by information from farmers about their 

consumption intentions. User consumption requirements 

at offtakes are usually modeled by a demand curve in 

the form of a step function. However, depending on the 

canal model used, this demand may require high values of 

upstream water  discharge. We define the demand curve to 

be a linear transformation of a Gevrey function of the form 

y 1t 2 5 q1fs 1t/T 2 , where q1 and T are constants, and fs 1t 2  is 

a Gevrey function of order 11 1/s called the dimension-

less bump function. The chosen Gevrey function allows a 

transition from zero water discharge for t # 0 to a water 

discharge equal to q1 for t $ T. The function fs 1t 2  is illus-

trated in  Figure 3  for various values of s.  

 Simulation Results 
 The Hayami control (9) is computed using the estimated 

 parameters C0, D0, and  b.  The downstream water discharge 

is defined by y 1t 2 5 q1fs 1t/T 2 , where q15 0.1 m3/s, s5 1.4, 

and T5 3 h.  Figure 4  shows the control u 1t 2  and the desired 

output y 1t 2 . 
 The upstream water discharge (9) is simulated with SIC 

to compute the corresponding downstream water dis-

charge.  Figure 5  shows the downstream water discharge 

and the desired downstream water discharge.   

 Although the open-loop control is based on the linear 

Hayami model, the relative error between the downstream 

water discharge and the desired downstream water discharge, 

defined by erel 1t 2 5 | 1q 1 l,t 2 2 y 1t 2 2/Q0|, is less than 0.3%. 

 IMPLEMENTATION ON THE 

GIGNAC CANAL IN SOUTHERN FRANCE 

 Experiments are performed on the Gignac Canal, located 

northwest of Montpellier, in southern France. The main 
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 FIGURE 4    Hayami control input signal. The control input u 1 t 2  5
q 10, t 2  is computed using the differential flatness method applied to 

the Hayami model for the desired downstream water discharge y 1 t 2 .

 FIGURE 5    Hayami-model-based control applied to the Saint-Ve-

nant model. The downstream water discharge is computed using 

SIC software. The downstream water discharge Qd 1 t 2  is the out-

put obtained by applying the Hayami control on the full nonlinear 

model (Saint-Venant model). Although the open-loop control is 

based on the Hayami model, the relative error between the down-

stream water discharge and the desired downstream water dis-

charge is less than 0.3%.
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canal is 50 km long, with a feeder canal, 8 km long, and 

two branches on the left and right banks of the Hérault 

river, which are 27 km and 15 km long, respectively. 

 Figure 6  shows a map of the feeder canal with its left and 

right branches. 

 As shown in  Figure 7(a) , the canal  separates at Partiteur 

station into two branches, the right branch and the left branch. 

The canal is equipped at each branch 

with an automatic regulation gate with 

position sensors as shown in  Figure 7(b) . 

Piezoresistive sensors are used to mea-

sure the water level by measuring the 

resistance in the sensor wires. An ultra-

sonic velocity sensor measures the aver-

age water velocity; see  Figure 7(c) . The 

velocity measurement, water-level mea-

surement, and the geometric properties 

of the canal at the gate determine the 

water discharge.   

 We are interested in controlling the 

water discharge into the right branch 

of the canal. The cross section of the 

right branch is trapezoidal with aver-

age bed slope Sb5 0.00035 m/m. The 

Gignac canal is equipped with a 

SCADA system, which enables the im-

plementation of controllers. Data from 

sensors and actuators of the four gates 

at Partiteur are collected by a control 

station at the left branch as shown in 

 Figure 8 . The information is communi-

cated by radio frequency signals every 

five minutes to a receiving antenna, 

 located in the main control center, a 

few kilometers away. The data are dis-

played and saved in a database, while 

commands to the actuators are sent 

back to the local controllers at the gates. 

We use the SCADA system to perform 

open-loop control in real time. In this 

experiment, we are interested in con-

trolling the gate at the right branch of 

the Partiteur station to achieve a de-

sired water discharge 5 km down-

stream at Avencq  station. The gate 

opening at Partiteur is computed to de-

liver the upstream water discharge; for 

details, see “How to Impose a Dis-

charge at a Gate?”  

 Results Obtained Assuming 
Constant Lateral Withdrawals 
 We now estimate the canal parameters 

for the canal between Partiteur and 

Avencq. The nominal water  discharge 

is Q05 0.640 m3/s. The identification is done using real 

sensor data and leads to the estimates C05 1.35 m/s,

D05 893 m2/s, and b5 0.17 m2/s. We define a downstream 

water discharge by y 1t 2 5 q1fs 1t/T 2 , where q15 20.1 m3/s, 

s5 1.4, and T = 3.2 h. The upstream water discharge is 

 computed using (9).  Figure 9  shows the desired down-

stream water discharge and the upstream water discharge 

 FIGURE 6    Location of the Gignac canal in southern France. The canal takes water from 

the Hérault river to feed two branches that irrigate a total area of 3000 hectare, where 

vineyards are located.
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 FIGURE 7    Gignac canal. The main canal is 50 km long, with a feeder canal of 8 km, and 

two branches on both the left and right banks of the Hérault river. The left branch, which is 

27 km long, and the right branch, which is 15 km long, originate at the Partiteur station. (a) 

The left and right branches of Partiteur station are shown. (b) An automatic regulation gate 

at the right branch is used to control the water discharge. (c) The ultrasonic velocity sensor 

measures the average water velocity. (Photo courtesy of David Dorchies.)
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to be applied at the upstream with the measured dis-

charges at each location, respectively.  

 The actuator limitations include a deadband in the gate 

opening of 2.5 cm and unmodeled disturbances such as fric-

tion in the gate-opening mechanism. Although the down-

stream water discharge is tracked well until t < 3.4 h, a 

steady-state error of 0.03 m3/s is evident. This error does 

not seem to be due to the actuator limitations but rather to 

 simplifications in the model assumptions, not necessarily 

satisfied in practice. In particular, we assume constant lat-

eral withdrawals, whereas in reality the lateral withdrawals 

are driven by gravity. Such gravitational lateral withdraw-

als vary with the water level, as opposed to lateral with-

drawals by pumps, which can be assumed  to be constant. 

 Modeling the Effects of 
Gravitational Lateral Withdrawals 
 The gravitational lateral withdrawals in an offtake are a 

function of the water level in the canal just upstream of the 

offtake. Typically, the flow through an underflow offtake 

is proportional to the square root of the upstream water 

level. As a first approximation, we linearize this relation 

and assume that the offtakes are located at the down-

stream end of the canal. Then, instead of being constant, 

the lateral flow is proportional to the downstream water 

level. The downstream gravitational lateral withdrawals 

can be seen as a local feedback between the level and the 

water discharge. The dynamical model of the canal is then 

modified as 

  qlateral 1t 2 5 b1h 1L, t 2 ,  (13) 

 where b1 is the linearization constant of gravitational   

lateral withdrawals. We combine the output equation 

y 1t 2 5 qd 1t 2 5 bh 1L, t 2  with the conservation of water dis-

charge at x5 L, given by q 1L, T 2 5 qlateral 1t 2 1 qd 1t 2 5  

1b1 b1 2  h 1L, t 2 , to obtain 

 y 1t 2 5Gq 1L, t 2 ,  
 where G5 b/ 1b1 b1 2 . The effect of gravitational lateral 

withdrawals is thus expressed by a gain factor G, which 

is less than one. This gain factor G explains why the 

released upstream water discharge must be larger than 

the desired downstream water discharge to account for 

the gravitational lateral withdrawals. The control (9) does 

not account for the gain factor G, which leads to a steady-

state error in the downstream water discharge. Feedback 

control can provide a  solution for this steady-state error by 

including an integral control  component. However, since 

we are using open-loop control, we need to include the 

gain-factor effect in this controller to reduce the steady-

 state error. 

 The open-loop control is deduced by replacing b with 

beq5 b1 b1 in both (9) and the expression for k and  replacing 

y 1t 2  by q 1L, t 2 5G21y 1t 2 . The open-loop control for the 

gravitational lateral withdrawals case is 

  ugravitational 1t 2 5 1

G
eA2a

2

b2
t2aLBaT1 1t 2 2kT2 1t 2 1 B0

beq

T3 1t 2 b.

(14) 

 In the case of gravitational lateral withdrawals, the open-

loop control depends on the parameters G, C0, D0, and beq. 

These parameters are  estimated using the same method 

 outlined for the constant lateral  withdrawals. 

 FIGURE 8    SCADA (supervision, control, and data acquisition) sys-

tem. The SCADA system manages the canal by enabling the 

monitoring of the water discharge and by controlling the actua-

tors at the gates. (a) Data from sensors and actuators on the four 

gates at Partiteur are collected by a control station equipped with 

an antenna. The information is communicated by radio frequency 

signals every five minutes to (b), a receiving  antenna, located in 

(c), the main control center, a few kilometers away. The data are 

displayed and saved in a database, while commands to the actua-

tors are sent back to (d), (e) the local controllers at the gates. The 

SCADA performs open-loop control in real time. (Photo courtesy 

of Tarek  Rabbani.)
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 FIGURE 9    Implementation results of the Hayami controller on the 

Gignac canal. The Hayami open-loop control u(t) is applied to 

the right branch of Partiteur using the supervision, control, and 

data acquisition system. The measured output (downstream 

water discharge) follows the desired curve, except at the end of 

the experiment. This discrepancy cannot be explained solely by 

the actuator limitations, but rather is due to simplifications in the 

model assumptions.
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 Results Obtained Accounting 
for Gravitational Lateral Withdrawals 
 The Saint-Venant equations with the open-loop control 

input are simulated using SIC software to evaluate the 

impact of gravitational lateral withdrawals on the output. 

 Simulation Results 

 The simulations are carried out on a test canal of length 

L5 4940 m, average bed slope Sb5 3.8 3 1024, average bed 

width B05 2 m, Manning coefficient n5 0.024 s-m21/3, 

and gravitational lateral withdrawals distributed along 

its length. Identification is performed about a nomi-

nal water discharge Q05 0.400 m3/s. The   identification  

leads  to  the parameter estimates G5 0.90, C05 0.87 m/s, 

D05 692.34 m2/s, and beq5 0.62 m2/s for the gravi-

tational lateral withdrawals, and to C05 0.84 m/s, 

D05 1100.72 m2/s, and b5 0.75 m2/s for the constant 

lateral withdrawals. The downstream water discharge is 

defined by y 1t 2 5 q1fs 1t/T 2 , where q15 0.1 m3/s, s5 1.4, 

and T5 8 h.  Figure 10  shows the upstream water discharge 

u 1t 2  and ugravitational 1t 2  for constant and gravitational lateral 

withdrawals, respectively. 

 We notice that the open-loop control that accounts for 

gravitational lateral withdrawals has a steady-state above 

the desired output to compensate for the variable withdrawal 

of water. The upstream water discharge u 1t 2  is simulated 

How to Impose a Discharge at a Gate?

 O nce a desired open-loop water discharge rate is computed, 

it needs to be imposed at the upstream end of the canal. In 

open-channel flow, it is not easy to impose a water discharge rate 

at a gate. Indeed, once a gate is opened or closed, the upstream 

and downstream water levels at the gate change quickly and mod-

ify the water discharge rate, which is a function of the water levels 

on both sides of the gate. One possibility would be to use a local 

slave controller that operates the gate in order to deliver a given 

water discharge rate. But due to operational constraints, it is usu-

ally not possible to operate the gate at a high sampling rate. As 

an example, some large gates cannot be operated more than few 

times an hour because of motor constraints, which directly limits 

the operation of the local controller. 

 Several methods have been developed by hydraulic engi-

neers to perform this control input based on the gate equation 

(S1), which provides a good model for the fl ow through the 

gate  [S8] . The problem can be described as depicted in  Figure 

S1 . Two pools are interconnected with a hydraulic structure, a 

submerged orifi ce (also applicable for more complex struc-

tures). The gate opening is to be controlled to deliver a required 

fl ow from pool 1 to pool 2. 

 The hydraulic cross structure is modeled by a static relation 

between the water discharge Q  through the gate, the water 

levels Y1 and Y2, respectively, upstream and downstream of 

the gate, and the gate opening W  given by 

  Q5 Cd"2gLgW"Y12 Y2,   (S1)

 where Cd  is a discharge coeffi cient, Lg is the gate width, and

 g  is the gravitational acceleration. This nonlinear model can be 

linearized for small deviations q, y1, y2, w  from the reference 

water discharge Q, water levels Y1,Y2, and gate opening W, 

respectively. This linearization leads to the equation 

 q5 ku 1y12 y2 2 1 kww,  

 where the coeffi cients ku and kw  are obtained by differentiating 

(S1) with respect to Y12Y2 and W, respectively. 

 Various inversion methods can be applied either to the non-

linear or to the linear model to obtain a gate opening W  neces-

sary to deliver a desired water discharge through the gate, 

usually during a sampling period Ts. The static approximation 

method assumes constant water levels Y1 and Y2 during the 

gate operation period Ts. This approximation leads to an 

explicit solution of the gate opening  W  in the linear model 

assumption. The characteristic approximation method uses 

the properties for zero-slope rectangular frictionless channel 

to approximate the water levels. The linear version of the model 

also leads to an explicit expression for the gate opening. The 

dynamic approximation method uses the linearized Saint-Ve-

nant equations to predict the water levels. This method can be 

thought of as a global method because it considers the global 

dynamics of the canal to predict the gate opening necessary to 

deliver the desired fl ow. In  [S8] , the three methods are com-

pared by simulation and tested by experimentation on the 

Gignac canal. The dynamic approximation method is shown in 

[S8] to better predict the gate opening necessary to obtain the 

desired average water discharge. 

 REFERENCE 
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FIGURE S1 Gate separating two pools. The gate opening W con-

trols the water flow from pool 1 to pool 2. The water discharge can 

be computed from the water levels Y1,Y2, and the gate opening 

W [S8].
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with SIC to compute the corresponding downstream water 

discharge.  Figure 11  shows the SIC simulation results. 

 Experimental Results   

 Estimation of the canal parameters between Partiteur and 

Avencq is performed as described above for the Hayami 

model that accounts for gravitational lateral withdrawals. The 

nominal water discharge is Q05 0.480 m3/s. The identified 

parameters of the Hayami model are G5 0.70, C05 1.08 m/s, 

D05 444 m2/s, and b5 0.27 m2/s. The downstream water 

discharge is defined by y 1t 2 5 q1f 1t/T 2 , where q15 0.1 m3/s, 

s5 1.4, and T5 5 h. The upstream 

water discharge ugravitational 1t 2  is com-

puted using (14).  Figure 12  shows the 

desired downstream water discharge, 

the numerical control computed by (14), 

the experimental control achieved by 

the physical system, and the measured 

downstream water discharge. The rela-

tive error between the measured down-

stream water discharge and the desired 

downstream water discharge is less 

than 9%, despite the fact that the deliv-

ered upstream water discharge is per-

turbed due to actuator limitations.  

 CONCLUSIONS 

 This article applied a flatness-based 

controller to an open channel hydrau-

lic canal. The controller was tested 

by computer simulation using Saint-

 Venant equations as well as by real 

experimentation on the Gignac canal in southern France. 

The initial model that assumes  constant lateral withdrawals 

is improved to take into account gravitational lateral with-

drawals, which vary with the water level. Accounting for 

gravitational lateral withdrawals decreased the steady-state 

error from 6.2% (constant lateral withdrawals assumption) 

to 1% (gravitational lateral withdrawals assumption). The 

flatness-based open-loop controller is thus able to compute 

the upstream water discharge corresponding to a desired 

downstream water discharge, taking into account the gravi-

tational withdrawals along the canal reach. 
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 FIGURE 12    Implementation results of the Hayami controller on the Gignac canal. The 

Hayami controller assumes gravitational lateral withdrawals. The relative error between the 

 measured downstream water discharge and the desired downstream water discharge is 

less than 9%, despite the fact that the delivered upstream water discharge is perturbed due 

to actuator limitations.

 FIGURE 11    Comparison of the desired and simulated downstream 

water discharges. The downstream water discharge, Qd 1 t 2  and 

Qd, gravitational 1 t 2 , is computed by solving the Saint-Venant equations 

with upstream water discharges u 1 t 2  and u gravitational 1 t 2 , respec-

tively. Accounting for gravitational lateral withdrawals enables the 

controller to follow the desired output. This result is obtained on a 

realistic model of SIC, which is different from the simplified Haya-

mi model used for control design.
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 FIGURE 10    Hayami control taking into account the effect of gravi-

tational lateral withdrawals. The control input is computed with the 

Hayami model (with constant and gravitational  lateral withdraw-

als). As expected, to account for gravitational lateral withdrawals, 

the open-loop control u gravitational 1 t 2  needs to release more water 

than is required at the downstream end.
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