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Abstract— Traffic State Estimation (TSE) refers to the esti-
mation of the state (i.e., density, speed, or other parameters)
of vehicular traffic on roads based on partial observation data
(e.g., road-side detectors and on-vehicle GPS devices). It can
be used as a component in applications such as traffic control
systems as a means to identify and alleviate congestion. In ex-
isting studies, the Kalman Filter and its extensions, notably the
Ensemble Kalman Filter (EnKF), are commonly employed for
TSE. Recently, the MF has been newly adapted to this domain
as a filtering algorithm for TSE. In this article, we compare
the performance of the EnKF and the MF on discretized PDE
models of traffic flow traffic. Specifically, for the EnKF study,
the estimation is performed using stationary and mobile sensor
information based on actual traffic data, by employing EnKF
in conjunction with a Godunov discretization of the Lighthill–
Whitham–Richards (LWR) model. For the minimax study, the
discontinuous Galerkin formulation of the LWR model is used
in conjunction with the implicitly-linearized MF to obtain
state estimates using the same data. The advantages and
disadvantages of each of the filters are empirically quantified.
Insights for practical application and future research directions
are presented.

I. INTRODUCTION

Traffic State Estimation (TSE) refers to the estimation
of density, speed, or other parameters of vehicular traffic
on roads based on partial observation data (e.g., road-side
detectors and on-vehicle GPS devices). It can be used as
a component in applications such as traffic control systems
as a means to identify and alleviate congestion [1]. Since
observing the state everywhere is not practically feasible,
TSE is usually performed based on partial observation data,
such as measurements of road-side detectors, i.e., stationary
data, and using in-vehicle Global Positioning System (GPS)
devices, i.e., mobile data.

Vehicular traffic dynamics can be modeled macroscop-
ically using Partial Differential Equations (PDEs). The
most basicc macroscopic model is the Lighthill–Whitham–
Richards (LWR) model [2], [3], which consists of a scalar
conservation law. Although the LWR model is relatively
simple, it can reproduce some of essential phenomena in
traffic, such as congestion. In addition, its compactness leads
to efficient and accurate numerical schemes to approximate
its solution, such as the Godunov scheme [4], [5].
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In existing TSE studies, the Kalman filter and its ex-
tensions are commonly employed, for example, [1], [5]. In
these works, the system model consists of discretized PDEs
describing the traffic flow. In particular, Ensemble Kalman
Filter (EnKF) [6] combined with the LWR model discretized
by the Godunov scheme has received attention due to its
ability to handle nonlinearity in traffic [5].

Recently, the use of a Minimax Filter (MF) was proposed
for the TSE problem [7]. For this, the traffic flow model was
solved using the Fourier–Galerkin spectral method. While
the numerical convergence results based on the experiments
looked promising, the Fourier–Galerkin method required the
use of periodic boundary conditions, restricting its appli-
cability in practice. In a subsequent work [8], this issue
was addressed by developing a macroscopic traffic data-
assimilation algorithm which employed a different Galerkin
method in place of Fourier–Galerkin, namely, the discontin-
uous Galerkin method; and this allowed the incorporation of
more general boundary conditions. The convergence of this
filter has been studied in [9] and in [10] assuming that the
model is bilinear as it is the case for LWR model subject to
periodic boundary conditions.

The aim of the present article is to compare performance of
the MF and the EnKF for TSE on experimental data, and to
obtain insights on practical application and future theoretical
research from it. To do so, we compare the performance of
EnKF and the MF on discretized PDEs modeling traffic. In
order to compare them in a context relevant for practical
applications, stationary and mobile sensor information based
on actual traffic data are employed. We note that so far, the
MF has not been applied to actual traffic data in any existing
studies.

The rest of the article is organized as follows. Sections
II and III describe the TSE methods using the implicitly-
linearized MF [8] and EnKF [5], respectively, based on the
LWR model. Section IV describes specification of the data
employed for our verification. Section V describes empirical
comparison results. Section VI concludes this article.

II. MINIMAX FILTER FOR LWR MODEL

In this section, we describe the TSE approach based on
the Discontinuous Galerkin (DG) weak formulation of the
LWR model and MF.

A. Traffic flow model

The LWR model is given by the PDE,

∂tρ(x, t) + ∂xf(ρ(x, t)) = 0, (1)
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with initial data
ρ0(x) = ρ(x, 0), (2)

and boundary conditions,

ρ(0−, t) = g(t), ρ(L+, t) = h(t). (3)

The scalar valued function, ρ : R × R+ → R is the traffic
density. The flux function is given by f : R → R, and the
independent variables, x ∈ R and t ∈ R+ denote space
(along roadway) and time respectively. We use the quadratic
flux function

f(ρ) = ρvmax Q (1− ρ/ρmax Q) , (4)

where ρmax Q and vmax Q are the maximum density and
maximum attainable speed respectively, and, ρ ∈ [0, ρmax Q].

B. Discretized computational scheme for the model

The formulation described in this section follows [7]
except for the numerical flux, which we will address later.
For the sake of brevity, we will present only the key details.
For a more detailed description of the formulation, see [7].

Before writing the weak DG formulation for the LWR
model, we must first present a few definitions. We wish to
solve the LWR model, (1), for t > 0 on the space interval
x ∈ [0, L] = Ω. In the DG method, Ω is first divided into K
non-overlapping elements, x ∈ [xkl , x

k
r ] = Dk, k = 1, ...,K,

i.e., xkl and xkr are the left and right boundaries of element
Dk respectively. The density, ρ, and flux, f are expanded
in a basis of Lagrange interpolating polynomials, `i(·). The
projection coefficients in this basis are simply values of
the function being expanded at a specified set of points.
The actual values of the functions ρ and f on element k
are denoted by ρk(x, t) and fk(x, t), and the projection
coefficients of these in the Lagrange basis are denoted by
ρk(xi, t) and fk(xi, t), where xi are a set of integration
points on the element with i = 1 . . . N + 1.

The weak DG formulation of LWR is given by

Mk d

dt
ρkh − S>fkh = −

[
`k(x)f∗

]xk
r

xk
l

, (5)

where ρkh = (ρk(x1, t), . . . , ρk(xN+1, t))
T , fkh =

(fk(x1, t), . . . , fk(xN+1, t))
T , `k(x) = (`k1(x), . . . ,

`kN+1(x))T , and

Mk
ij =

hk

2

∫
I

`i(ξ)`j(ξ)dξ, Sij =

∫
I

`i(ξ)
d`j(ξ)

dξ
dξ,

are known as the mass and stiffness matrices respectively.
The variable, ξ is a local variable on the “standard” elemental
interval. The change of variable from standard to physical
intervals using the associated mapping gives rise to the metric
constant, hk

2 which appears in the expression for the mass
matrix, where hk is the physical length of the k-th element.
The term on the right hand side of (5) is responsible for
inter-element fluxes, where f∗ is the numerical flux function.
See [7] for full details on this formulation and for more
details regarding the DG method in general, see [11].

For the purpose of data assimilation, we express the weak
DG formulation of the LWR model in the following form:

dω

dt
= A(ω)ω +B(t) + em(t) , ω(0) = ω0 + eb (6)

This is the global system obtained by assembling the K
elemental systems given by (5). The state vector, ω, is thus
composed of the elemental state vectors, ρkh. The matrix,
A(ω) in this work differs from that in [7] due to the choice
of numerical flux function. Specifically, we now employ the
local Lax–Friedrichs flux instead of the Godunov flux. As a
result, A(ω) absorbs all of the inter-element flux terms. The
fluxes at the boundaries, however, appear in B(t) and are
state-independent. em represents model error which absorbs
both numerical and physical model errors and eb describes
the error in the initial condition.

The observation equation for the system is given by,

Y (t) = Hω(t) + η(t), (7)

where H is an observation operator and Y : R → RM
is an M -element vector containing observations at time, t.
The vector, η, is a noise term which accounts for the error
in measurements. As the state vector, ω, is composed of
grid functions, ρkh over integration points on elements, the
operator, H , attains a simple form: if measurements are
available at all grid-points, then H is the identity matrix.
If the number of available observations, M , is less than the
total number of grid-points, the matrix H comprises only the
corresponding M rows of the full H (identity matrix).

C. Minimax filter
In the minimax framework, the initial state-, model- and

measurement-error terms, em, eb and η can be used to define
the model and error covariance matrices, t 7→ Q(t) and t 7→
R(t). For details on this, see [7]. We further assume that the
initial state-, model- and measurement-error terms, em, eb

and η verify the following inequality:

(eb)>Seb +

∫ T

0

(em)>Qem + η>Rηdt ≤ 1 (8)

for given symmetric positive-definite matrices t 7→ Q(t) and
t 7→ R(t), S = Q(0). The MF equations are given by:

dω̂

dt
= A(ω̂)ω̂ +B(t) + PH>RH(Y −Hω̂) , ω̂(0) = ω0 ,

dU

dt
= −A>(ω̂)U +H>RHV ,U(0) = I ,

dV

dt
= Q−1U +A(ω̂)V , V (0) = S+ , P = V U−1 .

(9)

where t 7→ P (t) is the minimax gain and S+ denotes the
pseudoinverse of the matrix S. Using the implicit midpoint
method, the discrete-time form of the last two equations
in (9) give the following discrete-time system for obtaining
the gain at the j + 1-th time-level from the gain at the j-th
time-level: (

I−∆T
2 A>j

∆T
2 H>RH

∆T
2 Q−1 I+ ∆T

2 Aj

)(
Uj+1

Vj+1

)
=

(
I+ ∆T

2 A>j
∆T
2 H>RH

∆T
2 Q−1 I−∆T

2 Aj

)(
I
Pj

)
, (10)
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where ∆T is the time-step. This time-step must be chosen
such that it satisfies a Courant–Friedrichs–Lewy (CFL)-type
condition, xi and the maximum signal speed, max|f ′(·)|. The
first equation in (9) is also solved using the implicit midpoint
method, giving:(
I +

∆T

2
Aj +

∆T

2
Pj+1H

>
RH

)
ω̂j+1

=

(
I −

∆T

2
Bj −

∆T

2
PjH

>
RH

)
ω̂j +

∆T

2

Pj+1H
>RYj+1 + PjH

>RYj

2
,

(11)

which provides the state estimate, ω̂ at the j + 1-th time-
level using the estimate at j-th time-level and the gain at
both time-levels.

D. Qualitative features of MF

Geometrically, the MF approximates the dynamics of the
reachability set, which is the set of all states of the model
which are compatible with the uncertainty description (8) and
observations (7). In other words, the filter describes how the
ellipsoid (8) is propagated forward in time by the flow map
associated with the model, and the equations (11) describe
the evolution of the minimax center of the approximate
reachability set of the model.

The convergence of the MF for bilinear systems of the
form (6) can be proved for the case of skew-symmetric
operator A(U) which corresponds to the case of the periodic
boundary conditions. Specifically, under certain detectability
conditions, the equation for the estimation error is asymp-
totically stable [10]. For non-periodic boundary conditions,
the convergence of MF can still be analyzed by the LMI
based approach of [10], established for the skew-symmetric
operators b(ρ) := ρρx: indeed, the non-periodic boundary
conditions are treated as sources in the DG approximation of
LWR and b(ρ) is skew-symmetric, provided the test functions
vanish at the elemental boundaries.

In the case studied in this article, boundary conditions
are not periodic and thanks to the DG formulation, can be
treated as source terms. However, the state-transition matrix
is not necessarily skew-symmetric. Hence, in section V, we
perform an experimental evaluation of the MF by applying
its discrete formulation (11) to the real data.

III. ENSEMBLE KALMAN FILTER FOR LWR MODEL

For comparison purpose, this section describes a TSE
approach based on EnKF with the LWR model discretized by
the Godunov scheme. It is based on [5] with modifications
to the system and observation error matrices, in order to use
the highly detailed data for verification. The specification of
the model in this method is slightly different—and reported
to be better in real-world implementation [5]—than that in
the MF. However, by comparing these two filters, practical
performance of the MF can be confirmed. In other words,
we can compare the two filters at their current best.

A. Traffic flow model

The LWR model for velocity (LWR-v) [5] is employed as
the system model:

∂tv(x, t+ ∂xF (v(x, t)) = 0, (12)

where v(x, t) is traffic speed at time t and position x, and F
is a flux function of speed. Note that Eq. (12) and the density-
based LWR model (1) describe equivalent traffic if proper
flux functions F and f were employed; because f(ρ(t, x)) =
v(t, x)ρ(t, x) holds. The following quadratic-linear speed-
density function VQL is employed:

v = VQL(ρ) =

 vmaxQL

(
1 − ρ

ρmax QL

)
, if ρ ≤ ρc,

−w
(

1 − ρmax QL

ρ

)
, otherwise,

(13)

where vmax QL is a maximum speed, ρmax QL is a maximum
density, vc is a critical speed, ρc is a critical density, and w
is a backward wave speed. This flux function differs slightly
from that for the MF (4). Note that the number of the free
variables is three, namely, vmax QL, w, and ρmax QL; because
vc = vmax QL − w and ρc = ρmax QLw/vmax QL hold to
satisfy the continuity of the function.

B. Discretized computational scheme for the model
Using the Godunov scheme, Eq. (12) can be discretized

as:

vn+1
i = VQL

(
V −1

QL (vni )− ∆T

∆X

(
G̃(vni , v

n
i+1)− G̃(vni−1, v

n
i )
))
(14)

with the Godunov flux

G̃(v1, v2) =



v2ρmaxQL

(
1

1+v2/w

)
, if vc ≥ v2 ≥ v1,

vcρmaxQL

(
1 − vc

vmax QL

)
, if v2 ≥ vc ≥ v1,

v1ρmaxQL

(
1 − v1

vmax QL

)
, if v2 ≥ v1 ≥ vc,

min
{
V −1

QL (v1)v1, V
−1

QL (v2)v2
}
, if v1 ≥ v2,

(15)

where ∆X is space discretization width. This is called Cell
Transmission Model for velocity (CTM-v) [5]. The CFL
condition for CTM-v is max{vmax QL, w}∆T/∆X ≤ 1.

C. Ensemble Kalman Filter

This part briefly summarizes EnKF (adopted from [12]).
A state–space model for EnKF can be described as follows

zn = fn(zn−1,νn), (16)
yn = Hnzn +ψn, (17)

where Eq. (16) is a system equation which is based on the
Godunov scheme, Eq. (17) is an observation equation, zn is
a state vector, fn is a system model, νn is a system noise
vector, yn is an observation vector, Hn is an observation
matrix, and ψn is an observation noise vector, at time step
n respectively. The observation noise vector ψn follows
a normal distribution whose average is 0 and variance-
covariance matrix is En, namely, ψn ∼ N (0, En).

The general procedure of EnKF with M ensemble mem-
bers can be described as follows:
Step 1 Generate an ensemble of the initial states {zm0|0}

M
m=1.

Let n← 1.
Step 2 Prediction step:

Step 2.1 Generate an ensemble of the system noises
{νmn }Mm=1.

Step 2.2 Calculate zmn|n−1 = fn(zmn−1|n−1, ν
m
n ) for

each m.
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Step 3 Filtering step:
Step 3.1 Generate an ensemble of the observation

noises {ψmn }Mm=1.
Step 3.2 Obtain the filter ensemble {zmn|n}

M
m=1 for

each m, by calculating Eq. (18) based on
yn, Hn, En, {zmn|n−1}

M
m=1, {ψmn }Mm=1.

Step 4 Increment the time step, n← n+1. Go back to Step
2 until n = nmax.

The filter ensemble in Step 3.2 can be derived as follows:

zmn|n = zmn|n−1 + K̂n
(
yn + ψ̆Mn −Hnz

m
n|n−1

)
, (18)

where,

K̂n = V̂n|n−1H
>
n (HnV̂n|n−1H

>
n + En)−1, (19a)

V̂n|n−1 = 1
M−1

∑M
j=1 z̆

j
n|n−1(z̆jn|n−1)>, (19b)

z̆mn|n−1 = zmn|n−1 − 1
M

∑M
j=1 z

j
n|n−1, (19c)

ψ̆mn = ψmn − 1
M

∑M
j=1ψ

j
n. (19d)

In this study, the mean of the filter ensemble is taken to be
the “estimation result” at time step n.

The system model, fn and ν, is based on the CTM-v. In
order to integrate the CTM-v into the EnKF framework for
TSE, a random noise is introduced to Eq. (14) as follows:

vn+1
i = νni VQL

(
V −1

QL (vni ) −
∆T

∆X

(
G̃(vni , v

n
i+1) − G̃(vni−1, v

n
i )
))

,

(20)

where νni is a system noise following a uniform distribution
between 1− ν and 1 + ν, and is a component of νmn .

The observation model, Hn and φn, is constructed as
follows. In this study, road-side detectors and GPS-equipped
probe vehicles are considered as available sensors, as they
are widely used in practical. The detectors are assumed to
measure average speed of all the vehicles in each cell in
which the sensors are installed with a standard error ψdetector.
Let δi be indicator of availability of a detector in cell i.

The probe vehicles are assumed to measure trajectories of
individual vehicles which are randomly sampled with a cer-
tain rate. Then the trajectories are converted to average speed
v̂ni of probe vehicles in each cell using the generalized defini-
tion of traffic state [13]: v̂ni =

∑
p∈Pn

i
dni (p)/

∑
p∈Pn

i
tni (p),

where Pni is the set of all probe vehicles, dni (p) is a distance
traveled by probe vehicle p, and tni (p) is a time spent by
probe vehicle p, in cell i at time step n, respectively. Note
that v̂ni may not be identical to vni , even if the GPS mea-
surement is exact—this is an inevitable measurement error of
speed by probe vehicles. This error can be approximated as
follows. If ∆X is sufficiently smaller than ∆T , tni (p) = ∆T
holds for most of the vehicles in the cell. This is likely to be
satisfied since the cell size must satisfy the CFL condition.
Then,

v̂ni '
∑
p∈Pn

i

dni (p)
tni (p) =

∑
p∈Pn

i
v̄ni (p)

|Pn
i |

(21)

holds where v̄ni (p) = dni (p)/tni (p) is the average speed of
vehicle p in cell i at time step n. Eq. (21) simply means
estimation of the mean of v̄ni (p) for p for all the vehicles

in the cell based on sampled vehicle set Pni . Therefore, the
standard error of v̂ni , namely, ψprobe, can be approximated as

ψprobe '
√
|Nn

i |−|P
n
i |

|Nn
i |

σ(v̄ni (p))√
|Pn

i |
, (22)

which is a variance estimate from small samples, where |Nn
i |

is a total number of the vehicles in the cell and can be
inferred by a density estimate, and σ(v̄ni (p)) is the standard
deviation of v̄ni (p) among the sample set P .

Since the speed in each cell is both the state and observable
variable, a linear observation model with diagonal Hn can
be formulated as follows:

hni =

 0, if δi = 0 and |Pni | = 0,
1, if δi = 1,
1, if δi = 0 and |Pni | ≥ 1,

(23)

ψni =


0, if δi = 0 and |Pni | = 0,
ψ2

detector, if δi = 1,
ψ2

probe, if δi = 0 and |Pni | ≥ 1,
(24)

where hni is (i, i) element of Hn, and ψni is (i, i) element
of En.

IV. DATA

In this section, specification of the data employed for the
empirical verification is summarized.

A. NGSIM dataset

The NGSIM dataset, publicly provided by [14], is em-
ployed for the empirical verification. The specific data in this
study contains all of the vehicle trajectories from an actual
freeway: a segment of US-101 from 8:09 am to 8:20 am.
Total number of observed vehicles was 1938. It contains a
on-ramp and an off-ramp. However, the in/out flow from/to
the ramps is significantly smaller than the mainline flow;
therefore, they are ignored in the estimations. The road
segment is 596 m length consists of five lanes except one
lane for on/off-ramps. The time resolution of the trajectories
is 0.1s. Then Eulerian traffic state with (1s, 16m) time-space
resolution (i.e., the time step width and the cell length)
is derived from the trajectory data using the generalized
definition [13], and is taken as ground truth.

Fig. 2a shows space-mean speed as time–space diagram.
According to the figure, the road was partially congested;
and clear shockwaves (e.g., backward propagations of jam
from the downstream boundary around time 0, 80, and 400
s) can be found. Therefore, the performance of the method
in various traffic situations, such as in a free-flow regime, in
a congested regime, and with a shockwave can be evaluated.

B. Sensors

As mentioned, road-side detectors and GPS-equipped
probe vehicles are supposed to be available. Their measure-
ments were imitated using the raw dataset. The detectors
are assumed to measure flow, density, and speed in each
installed cell. The probe vehicles are assumed to measure
their trajectory with one second time interval; and then
average speed in each cell is inferred by the Edie’s definition.
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Fig. 1: Comparison scheme of two filters

For the minimax study, the density in a cell with probe
vehicles presence is inferred based on the speed-density
function and the observed speed: ρ̂ni = f−1(v̂ni ).

Following two scenarios on sensors availability are con-
sidered:

1) Detectors are installed at the upstream and downstream
boundaries.

2) Probe vehicles are available with 5% penetration rate;
and detectors are installed at the upstream and down-
stream boundaries.

The initial condition (i.e., t = −125 (s)) was set to be
zero because we cannot determine it precisely in practical
situations; the area influenced strongly by the initial con-
dition (i.e., t < 0 (s)) was discarded from the analysis.
By comparing the methods using these scenario, the relative
accuracy of each method as well as each method’s capability
of using different measurements can be quantified.

C. Flux functions calibration

The flux functions are calibrated using data from the
same duration and location. This is based on a residual
minimization, namely, minθ

∑
i∈D(V (ρi;θ)−ρi)2, where D

is a set of cells in each time step whose traffic is near-steady,
V is a flux function, θ is a parameters vector to be calibrated,
and ρi is density of cell i. The calibrated parameter values are
vmax = 20.6 (m/s) and ρmax = 0.45 (veh/m) for the minimax
and vmax QL = 15.2 (m/s), ρmax QL = 0.70 (veh/m), and
w = 4.79 (m/s) for the EnKF. Note that both flux functions
can describe very similar essential features of the traffic. This
is because the values of the critical density, which determines
whether a traffic is in free-flow or congested regimes, are
almost the same for both methods: 0.225 veh/m for the
minimax and 0.22 veh/m for the EnKF; in addition, data
only contains near-saturated and congested traffic.

V. VERIFICATION

A. Specification of filters

Fig. 1 illustrates comparison scheme of the two filters.
Both of the filters, namely, MF and EnKF, were applied to
the same dataset to estimate the state of the unobserved area.

Technical specification of the filters for the estimation is
as follows. First, time and space resolution are ∆T = 1
(s) and ∆X = 16 (m). For the MF, we set the number of

elements, K = 50 and use a degree N = 2 basis for DG.
Since we do not have any information about errors for this
scheme, we set Q, R, and S each to the identity matrix,
I . In scenario 2, we let the entries of R vary to reflect the
fact that sensors are moving and that some of the locations
will become redundant, i.e., if a particular location does not
contain a sensor, we set the corresponding entry in R to
reflect the low trust in the measurement in that location. As
for the EnKF, the system noise is ν = 0.05 and the number
of the ensembles is 100.

B. Estimation results

Fig. 2b and c shows the estimation results of scenario 2
using time–space diagrams, where the color maps represent
speed, the horizontal axes represent time (the right is the
future) the vertical axes represent space (the above is the
downstream). According to Fig. 2c, the MF generated several
discontinuities which do not exist in the ground truth nor the
EnKF results.

Fig. 3 shows snapshots of speed on the road at certain time
steps in the scenario 2, where the vertical axes represent
space (right is the downstream). Black dots in the figure
represent probe vehicle(s) which appear in the cell at the
given time step, if their y-coordinates are larger than zero.
According to the true state, a backward-moving shockwave,
namely, the end of a jam, can be found around j = 25 at
t = 515 and j = 20 at t = 535. At t = 535, neither filter
captured the shockwave as the jam was not well observed. As
time progresses, both methods estimate the speed of either
side of the shockwave accurately because the number of
observations was increased. Oscillations can be found in the
estimates by the MF compared to the estimates by the EnKF.

The overall performance of the filters by employing Mean
Absolute Percentage Error (MAPE) is as follows: 35.0% for
Minimax scenario 1, 36.6% for EnKF scenario 1, 16.7%
for Minimax scenario 2, and 12.7% for EnKF scenario 2.
According to the result, the MF has slightly better accuracy
than the EnKF for the scenario 1. Contrarily, EnKF has better
accuracy than the MF for the scenario 2. If we include the
area strongly influenced by the zero initial condition for error
computation, the MAPEs are 35.3% for Minimax scenario 1,
40.3% for EnKF scenario 1, and 17.5% for Minimax scenario
2, and 13.5% for EnKF scenario 2. This implies that the MF
recovers quickly from the wrong initial condition.

C. Discussion

The minimax state estimator performs well provided the
LWR model has been discretized by means of the DG
approach, although the physical model error of the LWR
model with quadratic flux function is high as evidenced
by the scenario 1 (EnKF uses 3 parameters flux function
which fit to the data well). The estimation accuracy was
significantly improved by additional observation by probe
vehicles. Taking the severe model error attributed to the
quadratic flux function, the minimax state estimation results
for the case of probe vehicles with a moderate number of
moving sensors appears to be very promising.
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(a) Ground truth (b) Minimax (c) EnKF

Fig. 2: Speed estimates in scenario 2, visualized as time–space diagrams

(a) t = 505 (s) (b) t = 515 (s) (c) t = 525 (s) (d) t = 535 (s)

Fig. 3: Speed estimates near a shockwave in scenario 2

The comparison against the EnKF showed that the accu-
racy of the MF is lower than the EnKF where probe vehicles
are present, although it is almost identical to the EnKF where
the sensors are limited. One source error in the MF seems to
be oscillation and discontinuities in speed estimates. These
may be caused by the probe vehicles as the location of
discontinuities was close to to the trajectories of the probe
vehicles. This appears to be due to the rapidly changing
error properties and number of available observations. The
other reason may be the difference in the flux function.
A promising feature of the MF is its quick recovery from
the wrong initial condition faster than the EnKF, which is
useful in the case when sensors become unavailable for a
period of time. In addition, computational cost of the MF is
significantly lower than EnKF, which relies on Monte Carlo
simulation. This gives MF an advantage over EnKF in the
case of highly accurate discretizations (of the LWR model)
which are required to deal with complex geometries and
quickly varying boundary conditions/sources/observations.

VI. CONCLUSION

This article represents a first attempt at applying the MF to
the LWR model using real traffic data: it has been shown that
the MF can be applied to actual traffic with a comparable
accuracy to that of EnKF if available sensors are limited.
This is a very promising result considering the high model
error in the LWR model employed by the MF. By introducing
probe vehicles as additional sensors, the accuracy of the MF
was improved; however, the improvement was smaller than
that of EnKF. This may be due to oscillations of estimates
near the probe observations; this issue would be resolved by
studying the effect of the time-varying observation matrix.
Apart from that, the convergence of the MF for the case of
the LWR model with general boundary conditions can be
analyzed using the approach of [10] as discussed in section
II-D.
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