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Highlights for Reviewers 

 We describe the development of a mobile health platform designed for daily measures 

of functional status in ambulatory, community dwelling subjects, including those who 

have Alzheimer’s disease or related neurodegenerative disorders. 

 We use Smartwatches and Smartphones to measure subject overall activity and outdoor 

location (to derive their lifespace). 

 These clinically-relevant measures track a subject’s functional status. 

 Functional status metrics are integrated with medical information and caregiver reports, 

which are used by a caregiving team to guide referrals for physician/APRN/NP care. 
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 We provide a comparison with existing similar systems. 

 We provide real-world data from current subject enrolees demonstrating system 

accuracy and reliability. 

 We describe the underlying considerations of this system so that interested 

organizations can adapt and scale our approach to their needs. 

 We provide a potential agenda to guide development of future systems. 

 
ABSTRACT 
Background 

The past decades have seen phenomenal growth in the availability of 
inexpensive and powerful personal computing devices. Efforts to leverage these 
devices to improve health care outcomes promise to remake many aspects of 
healthcare delivery, but remain in their infancy.  

 
New Method 

We describe the development of a mobile health platform designed for daily 
measures of functional status in ambulatory, community dwelling subjects, including 
those who have Alzheimer’s disease or related neurodegenerative disorders. Using 
Smartwatches and Smartphones we measure subject overall activity and outdoor 
location (to derive their lifespace). These clinically-relevant measures allow us to track a 
subject’s functional status in their natural environment over prolonged periods of time 
without repeated visits to healthcare providers. Functional status metrics are integrated 
with medical information and caregiver reports, which are used by a caregiving team to 
guide referrals for physician/APRN/NP care.  

 
Comparison with Existing Methods 

We describe the design tradeoffs involved in all aspects of our current system 
architecture, focusing on decisions with significant impact on system cost, performance, 
scalability, and user-adherence.  

 
Results 

We provide real-world data from current subject enrollees demonstrating system 
accuracy and reliability.  
 
Conclusions 

We document real-world feasibility in a group of men and women with dementia 
that Smartwatches/Smartphones can provide long-term, relevant clinical data regarding 
individual functional status. We describe the underlying considerations of this system so 
that interested organizations can adapt and scale our approach to their needs. Finally, 
we provide a potential agenda to guide development of future systems. 
 
Keywords 
Alzheimer’s disease, dementia, functional status, smartphone, smartwatch, activity, 
lifespace 
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INTRODUCTION 
 
New ways to measure functional status are essential to evaluate future treatments for 
Alzheimer’s disease (AD) and other neurodegenerative processes. Currently, measures 
of functional status rely on self- or caregiver- provided status reports (SOTBRH 1959; 
Mahoney & Barthel 1965; Jette et al., 2014; Ottenbacher et al., 1996; among others) or 
brief physical tests (Reuben & Siu 1990; Guralnik et al., 1994; Brown et al., 2000; 
among others) that are potentially biased, infrequently obtained, and cannot capture 
detailed patterns of daily behavior. Yet, daily patterns of behavior are a rich source of 
information regarding functional status and play an important role in quality of life. 
 
The rapid advance in availability, affordability, versatility, and computing power of 
handheld and wearable electronics makes it feasible for the first time to obtain clinically 
relevant disease measures from community-dwelling persons on a daily basis. For 
example, remote monitoring of medication adherence (Hale et al., 2016) or relevant 
clinical metrics (e.g., blood pressure, weight; Agboola et al., 2015; Hudson et al., 2005) 
have improved clinical outcomes for patients with congestive heart failure (review, 
Kitsiou et al., 2015). Remote blood glucose monitoring has demonstrated efficacy in 
helping patients achieve and sustain target blood sugar levels (Greenwood et al., 2015). 
However, clinical effectiveness of telemedicine-based approaches is not an assured bet 
(Steventon et al., 2016). Blood pressure, heart rate, and weight monitoring, combined 
with telephone calls from health coaches, did not lower 180 day readmission rates for 
persons admitted with heart failure (Ong et al., 2016), or improve functional status 
(Karhula et al., 2015). A similar telehealth strategy was demonstrated effective only in a 
subgroup of subjects with higher ejection fractions and lower scores on screening 
instruments for depression (Koehler et al., 2012). These experiences emphasize that 
successful telehealth interventions tend to judiciously measure specific and limited 
outcomes, focus on a specific clinical population, and ensure that end-users receive 
ample instruction to successfully collect data.   
 
In this manuscript, we describe an integrated hardware and software system (Figure 1 
for block diagram) to monitor individual activity and lifespace. These clinical metrics are 
highly relevant in the care of persons with moderate to advanced dementia who have or 
are at risk of developing functional loss. We devote particular attention to important 
trade-offs necessary to meet cost, usability, accuracy, and reliability criteria. We 
describe our initial experiences using this system to collect these data in a cohort of 
ambulatory adults with mild, moderate, and severe Alzheimer’s disease, and using 
these measurements to predict functional status changes. Finally, we present novel 
data describing the day-to-day variability in these functional measures as they relate to 
dementia stage and caregiver status. 
 
MATERIALS AND METHODS 
 
System considerations. Persons afflicted by progressive neurodegenerative diseases 
show an extensive range of phenotypic involvement. Cognitive or functional losses may 
be only apparent after extensive and highly focused testing in the earliest disease 
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stages; conversely, moderate to severe disease stages may be accompanied by 
marked functional loss. Care needs for persons with dementia will thus significantly 
differ depending upon disease stage. For example, in persons with preclinical signs of 
neurodegenerative diseases, assessment of day-to-day behaviors strongly associated 
with cognition, such as language, may provide an early indication of AD or a similar 
process (Austin et al., in press). Most of these individuals will have preserved functional 
status, and may not derive benefit from detailed assessment of daily activity and 
lifespace. However, for persons with moderate to severe AD, functional decline may 
have severe ramifications, including institutionalization (Smith et al., 2001; Spruytte et 
al., 2001, among others) and death (Covinsky et al., 2003; Lunney et al., 2003, among 
others). We thus chose to design our system specifically to assess measures of 
functional status relevant to community-dwelling (rather than nursing home dwelling) 
individuals with moderate to severe dementia. 
 
Another design choice we decided to implement was to create a system that required 
the least amount of effort possible from its subjects. Taking a lead from the 
pharmacotherapy literature, it is well-established that people have difficulty adhering to 
medication regimes where drugs are taken more than once a day (Claxton et al., 2001). 
We argue that data collection methods that may be embedded into routine day-to-day 
habits thus have the greatest possibility of success, particularly over prolonged time 
frames. This consideration has also been a feature of other successful programs 
attempting to measure daily aspects of defined behaviors (Kaye et al., 2012; Kumar et 
al., 2014; Scheuller et al., 2014).  
 
Device considerations. To collect data measuring functional status required (1) sensors 
to measure activity and outdoor position, and (2) telecommunication channels to 
transmit these data to a central server. Smartphones are particularly appealing devices 
to perform some of these tasks, given their robust GPS capabilities, and their multiple 
communication services (GSM, WiFi, and BlueTooth). Smartphone technology has also 
advanced considerably since their first introduction in 1999. Their major disadvantages 
include overall device size/weight. Also, smartphones are not easily wearable unless 
extra care is taken to use a holster; a complication that might prove problematic for 
caregivers helping persons with Alzheimer’s disease dress, and who might be resistant 
to unfamiliar articles of clothing. Similarly, SmartWatches are also appealing devices to 
perform data collection tasks. SmartWatches contain triaxial accelerometers, and are 
thus able to sense activity. These devices also have accompanying software (usually 
Bluetooth) that mates them to specific SmartPhones, simplifying system integration 
tasks. Further, SmartWatches have a familiar form factor, making their acceptance by 
persons with Alzheimer’s disease easier, and increasing the likelihood that they will be 
worn for prolonged periods of time. SmartWatch disadvantages include fewer 
commercial product choices, short battery life, and status as a technology not as 
advanced as that for Smartphones.  
 
We ultimately chose the MotoG 32 Gb (Motorola) Smartphone and SmartWatch2 SW 
(Sony) to measure activity and outdoor position.  Factors that led to these decisions 
included MotoG cost compared to its major competitors (Samsung Galaxy, Apple 
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iPhone), and the MotoG’s support for low-power Bluetooth. This decision did involve a 
trade-off regarding battery life (which is longer in Galaxy Smartphones) and processor 
power (thus limiting our Smartphone’s use as a gaming platform). Similarly, the Sony 
SmartWatch had the most favorable price point compared with its competitors. The 
SmartWatch2 has an aesthetically pleasing form factor similar to what one would expect 
from a traditional watch, and can be programmed to look like either an analog or digital 
wristwatch. The Smartwatch is also light (to prevent skin abrasion, whose risk increases 
with age and age-associated loss of subdermal adipose cushioning), waterproof and 
dust-resistant. Of note, it also uses an Android operating system, and thus can take 
advantage of many Google-developed application program interfaces (APIs).  
 
Power considerations. An ongoing concern throughout our design process was to 
maximize battery life. Our minimum goal was to collect at least one day’s worth of data 
on all devices on a single charge session. Subjects could recharge the devices 
overnight, and use them the following day for data collection. To accomplish these 
battery life goals we had to accept a number of trade-offs regarding system data 
collection and transmission performance. These issues were particularly prominent with 
the Smartwatch, which by design has to maintain a low-power Bluetooth connection 
with the Smartphone when in operation. Smartwatch tasks included activity detection 
through the triaxial accelerometer. After extensive testing, we ultimately determined that 
the Smartwatch could not adequately sample the three components of acceleration, 
transmit these data to the Smartphone without regularly falling short of our battery life 
target. We thus had to trade-off a time series of three-dimensional accelerometer 
components (our data gold standard) for calculated step count (performed by the watch 
processor using a hardware-implemented step count sensor). This tradeoff in turn 
limited the extent to which we were able to classify overall activities, but did not detract 
from our ability to detect activity onsets and offsets.  
 
Power issues were lesser, but still relevant, considerations for data collected by the 
Smartphone. Most significantly, we noted poor battery life performance when the 
Smartphone was kept in environments with no available GSM or WiFi communications 
channels; this situation likely arose from repeated efforts by the phone to acquire these 
channels for data transmission.  We also set the GPS to pull location coordinates either 
every 15 seconds, or when the Smartphone detected movement of at least one meter, 
when outside the home. Data collection under these conditions was more than 
adequate for complete reconstruction of subject daily lifespace. 
 
Device operating system considerations. Clearly, device operating system 
considerations are strongly tied to our chosen devices as above. While iOS is an 
elegant operating system, there are many issues associated with iOS that make it 
unsuitable for our development effort. iOS development accounts, while relatively 
inexpensive (99-299 per year USD) are not free, and thus add to development costs. 
iOS also has been described as a “walled garden” whereby access to the sensors 
necessary to perform our data acquisition tasks requires explicit permission (by 
application signing) from Apple, a process that is both time-consuming and not 
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ultimately guaranteed for success. For these reasons, the Android OS was by far our 
best choice.  
 
Regardless of OS choice, we were required to adopt an approach to ongoing OS 
updates. While many Android updates did not affect data collection functionalities, there 
were occasional instances where OS update broke tested and validated code (e.g., 
changes in power management between Android ‘Lollipop’ 5.0 and Android 
‘Marshmallow’ 6.0 significantly influenced how the system handled accelerometer 
queries). We considered a number of strategies, including locking the phones into 
Android 5.0 and changing the phone OS (“rooting”) to undo the power management 
changes. Tradeoffs with these two options are significant: locking the phone OS 
immediately solves the problem, but leads to future problems when the current code set 
is incompatible with future hardware platforms. Since Google supplies no Android 
bootloaders, the bootloaders available for this task have uncertain provenance, and 
may introduce significant security vulnerabilities into the codebase. We thus elected to 
modify our codebase in response to changes in Android OS, regardless of the extent of 
changes we might need to make. 
 
Device/data security considerations. Since lifespace data can easily be examined to 
determine home GPS coordinates, which in turn may be used to determine home 
address, our data is thus regulated by the Health Insurance Portability and 
Accountability Act of 1996 (HIPAA). We thus encrypt all data stored on the Smartphone. 
However, encryption significantly slowed both how fast the app could load, and (more 
significantly), how fast the app could run on the Smartphone. To address these issues, 
we changed the code so that data most frequently read and written by the app was 
placed into a memory buffer for faster access. 
 
For all data collection, transfer, databasing, and analysis operations, we identify 
subjects through their study ID number to maintain anonymity. No subject-supplied 
identifying information is associated with any functional monitoring data. A separate 
server hosted by Salesforce.com maintains subject identifying information, including the 
table associating subject names, addresses, and other private information to subject ID 
number.  
 
To lower the possibility that an unauthorized person might attempt to reverse engineer 
our application to determine sensitive information, such as the IP address of our cloud 
server, we obfuscated the code using ProGuard (proguard.sourceforge.net/). Code 
obfuscation replaces code names, line numbers, and other identifying information with 
random character strings, making it more difficult for decompiling programs to recover 
useable information from the code. However, since ProGuard provides minimum 
obfuscation to Java programs, it will not stop a hacker with expertise and time from 
ultimately recovering the original program. DexGuard, a commercial version of 
ProGuard, can provide greater degrees of obfuscation, but may still be vulnerable to 
attackers with sufficient time. Preventing app reverse engineering remains a major 
focus of IT security professionals.   
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Device upload frequency. The Smartwatch relays step count to the Smartphone every 
60 min. In the event that the Smartphone is not available for data receipt, the 
Smartwatch will time out and retry connecting after a 60 minute delay. All data 
unsuccessfully sent by Smartwatch (no matter how old) remains tagged for 
retransmission until successful receipt by the Smartphone is achieved. Smartwatch 
memory capacity holds greater than one day of step count data without difficulty. The 
Smartphone communicates with our cloud-based server on a daily basis. This 
communication can occur either through GSM (cell phone network) or Wifi connectivity. 
At this time, Smartphone memory capacity and battery life are relatively minor issues 
with regard to data upload to our service, which is performed on a daily basis. This 
decision is based on our battery life concerns.  When batteries with longer lives are 
developed, we could increase the frequency of data pushes to our servers to create a 
more real time picture of these functional activities.  
 
Data upload and upload security considerations.  We iterated through a number of 
different solutions regarding data upload to our servers until we arrived at the best 
choice. Initially, we uploaded data directly from the Smartphones into a Dropbox 
(www.dropbox.com) account. While this approach was suitable for testing small subject 
cohorts in a technology validation context, we immediately appreciated multiple 
limitations of this approach: HIPAA noncompliant, potential changes in terms of service, 
long-term placement of data on servers out of our control. Our first approach to address 
these issues were to transfer data directly to our research server using an http post. We 
augmented transfer security by creating a secure path (using ssh tunneling) for the data 
transfer. This tradeoff involved placing a ssh code library on the Smartphone (a trivial 
concern), and storing ssh credentials to the project server on the Smartphone. Under 
these conditions, if a third party found a lost Smartphone, they might be able to 
decompile the code, find the server username and password, and thus breech the entire 
system. 
 
We ultimately implemented an enterprise service bus between the Smartphone and 
project server using Mulesoft (www.mulesoft.com). Instead of storing server credentials 
on the phone, we store a Mulesoft url. We transmit data from Smartphone to the 
Mulesoft application using a secure process (https post). The Mulesoft application 
(which itself exists within our firewall) in turn communicates with the project server and 
then clears the transmitted data. In this manner, we minimize opportunities for third 
parties to access our server, while maintaining appropriate security protections for data 
from Smartphone to cloud to server. 
 
The major tradeoff associated with this approach is that when Mulesoft updates their 
host (without our prior knowledge), data transmission from Smartphone to server is 
interrupted. Under these conditions, the Smartphone receives notification that data 
transfer was unsuccessful, and data transfer is retried the following hour. At this time, 
there are no open source solutions to perform these tasks; organizations adopting this 
approach will thus have to budget for Mulesoft or similar service bus costs.  
 

http://www.dropbox.com)/
http://www.mulesoft.com)/
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Database considerations. We chose to implement our database using the open source 
relational database MySQL (www.mysql.com) running on a server using the Ubuntu 
Linux (www.ubuntu.com) operating system. For this application, the Linux OS offers 
many advantages over other options (e.g., Windows), including an easier debugging 
environment, and better server integration with both Mulesoft and Salesforce platforms.  
 
We considered encrypting data within the MySQL database. However, both the UCSF 
and UNMC IT security officers deemed that we were providing appropriate data security 
through the combination of the Mulesoft data bus and the university firewalls 
surrounding the server. If the server were to reside outside of the university firewall, we 
would then implement database encryption using AES 128 bit encryption as 
implemented in MySQL encryption tools (AES_ENCRYPT, 
https://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html#function_aes-
encrypt). 
 
Decisions regarding how study data is represented in the database ultimately have 
marked influence on many important database performance issues, most importantly 
how quickly the database can be accessed for read/write operations. We chose to 
organize the data in three tiers: (1) raw data taken directly from the devices, (2) 
classified data, e.g., binned step count-outdoor location following raw data quality 
control, and (3) daily functional metrics, for upload to the Salesforce dashboard that our 
project staff used to deliver all study interventions. 
 
We organized data in the 2nd tier in one-day-long bins starting at midnight. Analysis 
software was written in Python (www.python.org), an open-source, well-validated 
software environment distinguished by both its coding ease and execution speed. An 
advantage of Python is the number of validated toolboxes for machine learning, 
database connectivity, Salesforce.com connectivity, etc., including SciPy, NumPy, and 
Scikit, that have been created and validated by the developer community over the past 
decade. These off-the-shelf toolboxes allowed our group to rapidly develop our required 
software. Another advantage to using Python is its large developer community, making 
it less difficult to recruit future team members who are familiar with this language and 
who can examine working code to determine its function and (if needed) required 
modifications. The only significant trade-off entailed by Python is that its execution 
speed would be significantly slower than that of a system written entirely in C. However, 
our team strongly felt that the availability of Python tools greatly outweighed the speed 
increase from a C-based system, developed with much greater difficulty. 
 
To maximize data access speed, we used Python to format and store the data in a 
compressed manner (called a ‘blob’). This strategy also made it very fast to access a 
subject’s daily functional data. The major trade-off involved in storing data by daily 
Python blobs is that it limits what kinds of software might be able to query the database. 
To form blobs, Python uses a process (called ‘pickling’) to string the different data points 
together into a single sequence. This process is Python-specific, meaning that other 
software may be unable to reconstruct the original data from the blob. 
 

http://www.ubuntu.org)/
http://www.python.org)/
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Because we collected data from individuals living across multiple time zones, and 
individual activity and lifespace behavior is highly dependent on their time zone, we 
needed to incorporate time zone information into our data time stamps. Originally, we 
stored data timestamps in UNIX time (number of ms since midnight 1-January-1970 
Coordinated Universal time). However, UNIX time lacks information regarding the 
timezone that the subject resided in when data collection occurred. To incorporate 
timezone information, we switched from UNIX time to Python datetime objects. Major 
tradeoffs associated with this change include the availability of fewer programming tools 
to convert datetime objects to user-friendly time/date metrics, and complications in 
calculating time zone windows. 
 
Data quality control/classification/analysis considerations. Our data quality control 
performs two tasks: identification of data points that are clearly outliers, and determining 
if low data point values arise from a Smartwatch/Smartphone not carried by the subject. 
Details regarding how these tasks are implemented and validated are beyond the scope 
of this text; details regarding validation of step count (Carlson et al., 2012; Rye-Hanton 
et al., in press) and GPS (Wan et al., 2013; Wan & Lin 2013) data have been previously 
published 
 
Prior to SmartPhone and SmartWatch deployment for this study, we also ran a beta test 
to determine data consistency, data accuracy, and system performance. Briefly, project 
staff members at both the Omaha and San Francisco sites wore a SmartWatch and 
kept a SmartPhone with them at all times except for charging. At the end of each day of 
data collection, these staffers would log onto a web-based data portal that provided 
system-obtained step count and GPS data for that day. Staff were asked to clarify 
episodes where collected data did not match their experience, or where data collection 
might have been missed (Supplemental Figure 1). These beta tests provided early 
estimates for data consistency, as well as identifying specific battery life issues not 
appreciated during system design.  
 
Data classification for step count and lifespace is straightforward: we sum daily step 
data from midnight to midnight to determine total daily step count, and we determine 
distance from GPS coordinate to GPS coordinate and calculate maximum distances to 
estimate lifespace.  
 
There are many tradeoffs and opportunities that arise from the above approach. Since 
we use the Android step counter API to obtain our step counts, we do not have access 
to the code performing this task, and thus do not know how this specific step counting 
algorithm works. Prior data suggests that step counter performance from pedometers 
employing piezoelectric sensors can vary by body morphology (Kinnunen et al., 2011; 
Lipert & Jegier 2016), cadence (Park et al., 2011; Giannakidou et al., 2012), and what 
part of the body carried the step counter (Graser et al., 2007). Thus, our approach is 
suitable for performing comparisons of an individual’s performance from day-to-day, but 
more problematic for comparing the performances of different individuals. By contrast, 
lifespace estimation from GPS data is a robust process, and not significantly affected by 
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the addition of small travel distances (10-20 meters) that may arise from sensor noise 
when the Smartphone is stationary.  
 
Subjects. We offered our functional monitoring study to a subset of subjects enrolled in 
the Care Ecosystem, a CMMI-supported clinical trial to determine best practices for 
dementia care. Details regarding this trial’s organization and protocol have been 
previously published (Possin et al., 2017). The Nebraska site enrolled 299 individuals, 
of which 191 were randomized to the intervention arm. Enrollment criteria required 
subjects to be Medicare enrolled or eligible, 45 years old or older, able to identify a 
caregiver (who is at least 19 years old), living in a community setting (and not a locked 
dementia unit or skilled nursing facility), and having a diagnosis of AD or related 
dementia. We approached subjects randomized to the Nebraska intervention arm who 
had expressed an interest in participating in functional monitoring during the subject 
consent phase. We initially deployed this technology to 12 subjects. As discussed 
above, most of the investigators who worked with subject functional monitoring data had 
access to no subject PHI, and all subject PHI collected by our system (GPS 
coordinates) was encrypted when outside of our study server. 
 
PRELIMINARY RESULTS 
 
Subjects successfully used this technology to collect data (as measured by number of 
days where a subject returned activity and/or location data) for a majority of days within 
our 5 month observation time (Figure 2). Specifically, we obtained at least one 15 
minute bin of activity data for 57% of all observation days; on average, for each day we 
received data covering 40% of total hours (range 32%-50%). Adherence for obtaining 
lifespace data was even greater, with subjects returning GPS coordinates for 79% of all 
observation days. Of note, these rates are similar to those observed when examining 
individual adherence to a once-a-day drug regime (Claxton et al., 2001). This 
experience suggests that individuals with Alzheimer’s disease, a clinical population 
where adherence to therapies may be challenging given the memory loss characteristic 
of this disease process, can successfully return significant data streams describing 
individual activity and lifespace for prolonged periods of observation. 
 
 
In Figures 3 and 4, we show the daily activity and lifespace, respectively, for 3 selected 
subjects over a 5 month period spanning 1 August 2016 until 31 December 2016. 
Subject 4404 has mild dementia secondary to Alzheimer’s disease and lives with their 
spouse in rural Nebraska. Subject 5778 has moderate dementia secondary to an 
Alzheimer’s/vascular disease overlap, and lives with their spouse in the Omaha 
metropolitan area. Subject 4764 has mild dementia secondary to Alzheimer’s disease, 
and lives with their spouse in the Omaha metropolitan area. For all subjects, 
communication between the SmartWatch and SmartPhone (indicated by time within the 
24 hour clock not coded in grey) is usually present during daylight hours; times where 
we instructed subjects to wear the charged watch. While there are also periods of time 
at night when the SmartWatch and SmartPhone are in communication, we discount 
these values since we instructed subjects to take the watch off at night and recharge it 
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for the following day. Our current system’s inability to determine night-time activity is a 
major limitation that we will address in subsequent system iterations, probably by 
adding a sensor to determine when subjects are lying in bed. We also noted a minor 
interruption in GPS data collection during September because of an Android OS update 
pushed to the SmartPhones. 
 
 
Despite the above-mentioned problems, these data clearly show the feasibility of 
obtaining highly textured, simultaneous data streams measuring activity and lifespace 
over prolonged observation periods in community-dwelling adults. Of particular note is 
that all of these data can be obtained using off-the-shelf, commercially available 
SmartPhones and SmartWatches, and can be successfully used by members of the 
public with only minimal, phone-based training.  
 
 
DISCUSSION/CLINICAL IMPLICATIONS 
 
In summary, we describe a novel system using SmartPhones and SmartWatches as 
activity and lifespace sensors to measure functional status in community-dwelling 
persons with dementia. As expected, these data streams are characterized by many 
episodes of data loss, arising from both user error (forgetting to charge or carry the 
technology) and unanticipated technical problems (broken software). However, by 
collecting these data for a given individual over long periods of observation, we find that 
we have more than enough data for the purposes of making inferences regarding 
individual functional status. Our efforts to interpret and further classify these data are 
ongoing. 
 
Many groups have implemented systems to measure adult functional status over 
prolonged periods of observation. These systems often rely on motion sensors placed in 
strategic locations throughout an individual’s living quarters. Circadian patterns of 
activity, as well as the indoor place where this activity is occurring, have been 
successfully measured in both assisted living facility (Kaye et al., 2012) and skilled 
nursing facility (Skubic et al., 2014) settings. A major strength of these systems is their 
reliability of data acquisition, since they require no effort on the subject’s part. Use of 
more advanced data processing algorithms (Petersen et al., 2012) and additional 
sensor modalities (Popescu et al., 2008; Liu et al., 2012) further allow these systems to 
discriminate between multiple individuals, and more finely hone estimates of clinically 
important metrics (such as gait speed). However, all of these systems require subjects 
to remain within spaces monitored by sensors, and do not provide data when subjects 
leave the home. Other groups have addressed this problem by providing subjects with 
wearable sensors (Ertin et al, 2011; Sarker et al., 2014), or using sensor functions 
intrinsic to SmartPhones (Schueller et al., 2014). Not surprisingly, major strengths of 
these systems are their ability to follow subjects throughout the community. However, 
adherence to these systems constitutes a subject burden, which may lead to skipped 
periods of data acquisition or even loss of all data if the subject becomes disenchanted 
with the benefit proposition that the technology affords. 
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Data describing individual functional status of community-dwelling adults over long 
periods of time yet with fine temporal and spatial resolution has previously not been 
available to either investigators or clinicians. On first examination, the above data 
appears to have rich implications for both clinical science and practice. For example, we 
note that subject 4404 continues to have an extensive lifespace despite the diagnosis of 
mild Alzheimer’s disease. Despite incomplete data collection, we have sufficient data to 
infer that this subject’s caregiver provides structure and out-of-house activities on a 
month-by-month basis, including visits to the couple’s children in Omaha, and vacations 
at their lake house in northern Nebraska. We further determined after interviewing the 
caregiver that the subject’s overall activity status over our 5 months of observation was 
acceptable. Of note, our approach regularly missed about 2 hours of activity between 
6:30 AM and 8:30 AM (where we observe 4404 activity onset); by caregiver report, the 
subject needed a reminder to wear the watch every morning, and this reminder usually 
occurred at their breakfast. As discussed previously, we may be able to better account 
for this kind of error with the presence of a bed sensor. In this case, functional 
monitoring provides quantitative data supporting the caregiver’s assertion that the 
subject’s functional status remains stable and is appropriate to support their day-to-day 
activities. 
 
Subject 5778 provides a different situation. Here, monitoring suggests that the subject’s 
lifespace has significantly shrunk, with only one foray outside of the home over a 4 
month period of observation. However, this subject’s activity is robust, with regular 
movement over their 12 hours spent awake. This subject also has sharp activity onsets 
(occurring at 0800) and offsets (occurring at 20:00), suggesting that either the subject or 
caregiver is providing significant structure while at home. Thus, while this subject’s 
lifespace in absence of other information is concerning, further knowledge of 
simultaneous activity status provides clinical assurance that this small lifespace may be 
due to an external factor (such as lack of transportation) rather than difficulties dressing, 
moving, and motivating the subject to travel. 
 
Subject 4764 illustrates a specific situation where functional monitoring may improve 
clinical outcomes. By QDRS, this subject has mild dementia, and should thus 
demonstrate minimal functional limitations. However, we quantify 4764’s activity over 
the 5 months of observation at below mean levels determined from all subjects with mild 
AD. Further, we note that lifespace for 3 of the 5 observation months is attenuated. 
These features suggest that subject 4764 may be at risk for functional loss at an earlier 
onset of the disease process compared to subject 4404, who has a similar degree of 
cognitive loss. Management options at this time might include a more detailed 
assessment by an occupational or physical therapist for functional deficits, and a 
program of restorative therapy to stabilize function at current levels. 
 
A major limitation of our current system is the inability to better localize individual activity 
within the home, which we term ‘homespace.’ As described above, there are already a 
number of successful homespace systems currently in operation. Unfortunately, none of 
the current motion sensor based technologies are easily integrated into the 
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SmartPhone/SmartWatch framework we use for activity and lifespace acquisition. We 
have thus been testing a system using low power BlueTooth-based estimotes, RSSI 
triangulation, signal processing, and decision tree algorithms to provide within-room 
localization. Preliminary data suggests that this system’s performance exceeds that of 
journal-based entries for subjects within their home. Our group hopes to integrate this 
homespace system into future iterations of our functional monitoring approach. 
 
In summary, we demonstrate that an inexpensive, easy-to-use system based on 
commercially available telecommunications products such as SmartWatches and 
SmartPhones, with appropriate software, cloud, and analytic infrastructure, can be a 
powerful tool to measure day-to-day functional status in community-dwelling individuals 
who have Alzheimer’s disease or other processes resulting in cognitive and functional 
loss. The modular nature of this system suggests that the scaling required to provide 
this service to larger clinical populations is fully within the realm of possibility 
(particularly by harnessing the power of SmartPhones that caregivers and subjects are 
already carrying for their personal use). This approach provides data measuring 
individual functional status at very fine temporal and spatial precision. Simple data 
visualization tools allow trained clinicians to infer the subject’s functional status, and this 
inference is robust to missed data points. The success of this effort strongly justifies 
further research and development to improve data acquisition (particularly for times 
when individuals may not be wearing the SmartWatch, such as while asleep), further 
refine data visualization and inference algorithms, and develop stronger connections to 
currently-available clinical information technology systems. We also note that the 
availability of data examining physical activity and lifespace in large populations of 
community-dwelling adults will also be of considerable interest to investigators in a 
variety of non-healthcare focused fields, as well as powerful information upon which to 
base public healthcare policy. For example, urban planners trying to determine if 
available open spaces meet people’s needs would benefit from knowing patterns of 
activity and lifespace within a community. These patterns would also provide important 
information to entrepreneurs interested in locating a business or shop. In a healthcare 
policy context, these data would provide baselines of physical activity that could be 
used to predict future community healthcare utilization (particularly for exercise-
sensitive conditions such as diabetes, heart disease, and emphysema), incentivize 
positive health behaviors, and ultimately provide political decision-makers with data 
justifying financial support for programs that change health behaviors. 
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Figure 1.  Current system architecture.  Arrowheads indicate direction of data flow.  The system 
SmartPhone both collects lifespace data and relays data from the activity sensors to the cloud 
for analysis. 
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Figure 2.  Representative data adherence plots for 4 subjects, 1-Aug-2016 through 9-Jan-2017.  
A-D.  Step count and GPS data obtained per day.  Points touching x-axis indicate day where no 
data received.  Blue traces are activity data from SmartWatch; green traces are GPS data from 
SmartPhone. Overall, we have activity data for 57%, GPS data for 69% of observation days.  E.  
Percent days with both step count and GPS data. 
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Figure 2.  Representative activity rasters.    Clock times are military, starting/ending at midnight.  
Each concentric circle represents one day of data collection.  For subjects 4404 and 4764 the 
first day of data collection (1 August 2016) is depicted in the innermost circle; the last day of 
data collection (31 December 2016) is depicted in the outermost circle;  month markers are 
provided on the vertical axis.  For subject 5778 we show one month of data collection beginning 
3 September 2016 and ending 3 October 2016.  Step count values as shown above and coded 
per color map. 
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Figure 3.  Representative lifespace trajectories over a 4-5 month observation period for subjects 
with mild to moderate dementia.    Two subjects reside in Omaha metropolitan area (B,C); one 
in rural Nebraska (A).  Note relatively substantial lifespace trajectories in subjects A and C, but 
quite limited lifespace in subject B.  Each monthly lifespace calculated from GPS positions 
obtained over at least 20 days of the given month.  GPS trajectories in red points; each plane 
depicts another month of data.  Data collection occurred between 1 August 2016 and 31 
December 2016.  In September, an Android OS update temporarily broke data collection code, 
artifactually shrinking lifespaces for all subjects.  Subject home depicted by the thin vertical line.  
Distance calibration provided next to each plot. 

 
 
 


