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Eulerian Network Model of Air Traffic Flow 
in Congested Areast 

Alexandre M. B a y e d  Robin L. Raffardb Claire J. Tomlinh 

Absnacl-we derive an Eutrrim nehvork model applicable to air t r m e  Row 

in lhe National Ainpaer System. The model relies 0. a modilrd yenion of the 

Lighrhlil-Whith~m-Rieh.rdl (LWR) partial differential equatioo (PDE), which 

eontnins a wimity Eontmi term inside tho divergence ~1peraI0r. Wc relate the 

PDE ID aircraft rouor, which i s  a key milrle In Air TdUc Conlml. Using the 

method of chimcferbtics, we construct an nnaiyticd .oIutioo 10 the LWR PDE 

for the ease in which the contml depends only on apace (and not time). We 

validstr our model against RPI Air Trifle Data (ETMS data), by Pnt  showing 

that the Eulertan description ennbiea good aimraft count pdietionr, pmvidod a 

good choice of numerical parsmeton i s  made. Finally, we show Some predictive 

cnpabililia 01 the model. 
I .  INTRODUCTION 

There is no single component which defines the National 
Airspace System (NAS), but rather a multitude of systems 
including aircraft, control facilities, procedures, navigation 
and surveillance equipment, analysis equipment, as well as 
the humans (controllers, pilots) who operate the systems. In 
this paper, we are interested in the Trafic Flow Management 
(TFM), which is a unit whose goal is to try to optimize the 
flow. This entails preventing the density of aircraft from be- 
coming too large in certain regions of airspace, and operating 
efficient reroutes when the weather does not allow traffic to 
cross a given region of airspace. These tasks are currently 
not optimized with respect to throughput or maximal density 
tolerable for Air Traffic Controller efficiency. Rather, they 
are prescribed by ployboob, which are procedures that have 
been established over time, based on Controller experience. 

The goal of this article and the companion paper [2] is to 
derive a model for this system, and a mathematical method 
to create an optimization strategy capable of automatically 
generating more efficient control strategies for these tasks. 
We are interested in deriving ‘%ow patterns”, that is, coming 
up with ways to route streams of aircrafi by generating 
the corresponding aircraft velocities. The individual identity 
of the aircraft is thus not important, since the objective of 
such tasks is to come up with a more efficient use of the 
airspace, rather than optimizing local trajectories of aircraft. 
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Ideally, one would like to automatically generate Air Traffic 
Control - friendly procedures of the following kind “aircraft 
on airway 148 at 33,000 ft, fly at 450 kts for the next 
hour and then accelerate by 25 kts for the next half hour”. 
This suggests following an Eulerian approach advocated 
by Menon et al. [lo] and dividing the airspace into line 
elements corresponding to portions of airways, on which we 
can describe the density of aircraft as a function of time and 
of the coordinate along the line. Such an approach focuses on 
the conservation of aircraft on the line elements. A traditional 
way to describe the evolution of the density along these 
portions of lines is to use a partial differential equation 
(PDE). This PDE appears naturally in highway traffic and 
is called the Lighthill-WhithamRichards (LWR) PDE [9 ] ,  
[12]. In this work, we will derive a modified version of the 
LWR PDE specifically applicable to the Air Trufic Conhol 
(ATC) problem of interest. 

The primary goal of this paper is to show that despite the 
information loss inherent in any Eulerian model, the aircraft 
count (which is a crucial ATC metric defined in this paper) 
is predicted accurately. In [2], our goal is to show that fast 
numerical analysis tools can be applied efficiently to this 
problem for simulations purposes, and that adjoint based 
methods can be adapted for this real-time network control 
problem. The main difference between ours and previous 
work using LWR models of air traffic [lo] or highway 
traffic [7], [ I l l ,  [13] is that we generate an optimization 
technique (with throughput and maximal density as objective 
function) using the continuous PDE directly, instead of its 
discretization. This enables the use of fast numerical tech- 
niques specifically developed to treat first order hyperbolic 
PDEs with discontinuous solutions. Furthermore, the opti- 
mization methodology enables the treatment of constraints 
in the control and the state. 

This paper is organized as follows. Since the air traffic 
flow problem is significantly different from the highway 
problem, we will f i s t  rederive the LWR PDE for the case 
of interest in Section 11, and generalize it to a network. 
Then, we determine an analytical solution for the case of 
time-invariant velocity control, which, in [2], will be used 
for numerical validation purposes. In Section 111, we explain 
how to identify the numerical values of.the parameters for 
the airspace of interest, using Enhanced Trafic Management 
System (ETMS) data. Finally, in Section IV, we validate the 
model against real data. In [2], we use this framework to 
describe the NAS, and show how to control it. 
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11. A NEW EULERIAN NETWORK MODEL OF AIRSPACE 
A .  A modiJied LWR model of air trafic 
In describing the air traffic system, like the road system, 
one has to first look at aircraft (or cars) present in the 
system and estimate a density of vehicles. Therefore, given a 
portion of airspace (airway or sector), one needs to introduce 
the oircrafr count [4] defined as the number of aircraft in 
that region. Let us consider a portion airway of length L, 
described by a coordinate z E [0, L]. The number of aircraft 
in the segment [O,z] at time t is called n(z, t ) .  Thus, n(L, t )  
represents the aircraft count on the portion of airway [O,L]. 
Assuming a static mean velocity profile 2) defined on [0, L], 
v(z) > 0 represents the mean velocity of aircraft at location 
z, and the motion of an aircraft is described by the dynamical 
system x =U(.). 

Introducing K ( z )  = s" k, it is fairly easy to see that if 
an aircraft were at location 20 at time t o ,  it would be at 2 

at time t = to  + K ( z )  - K(z0). Because of the sign of U, 
K is invertible, and therefore zo is related to z, t and to  by 

Consider a point z and z + h > z. The number of aircraft 
between z and z + h at t can be related to the number of 
aircraft at to  at locations zo = K- ' (K(z )  - (t - t o ) )  and 
zh = K- ' (K(z  + h)  - (t  - t o ) )  (conservation of aircraft): 

n(K- ' (K(z)  - ( t  - to)) , to) .  In other words, assuming that 
there is no i d o w  at 0. 

0 :(.I 

zo = K- ' (K(z )  - (t - t o ) ) .  

n ( ~  + h, t )  - n(z,t)  = n(K-'(K(r + h)  - (t - t o ) ) ,  t o )  -. 

n(z,t) = niK- ' (K(z)  -,@ - topto.)  
Some simple a gebra (two successive app ications of the 
chain rule) shows that the space derivative and the time 
derivative of n are re1 ted by: 

We recognize this &a first order Id& hyperbolic PDE, and 

an(z,R an(z t )  - + 7J(z)- = 0 

can  now^ enunciate the following proposition: 

Proposition 1. Let U(.) : [O,L] + W+ be a 
PCi([O, L])  firnction with afinite number of discontinuities 
at {zk}k,(o ,..., on [O, L] such that 3m > 0, m 5 w(z) 
f i r  all z E [0,1]. Let q'" E Co([O,T]) and no E Co([O,L]). 
Then the following PDE 

, ' i  n(0,t) = 0 
I admits a unique continuous (weak) solution, given by. 

+ u ( z ) w  = qt"(t) in [o, L] x (0, TI 

in {0} x (O,T] 
n(z, 0) = nob)  in [OIL] x {O} (1) 

where K ( z )  = J," $$, and K-' is its inverse. I 
Proof - Existence: K is well defined because U(.) 2 m for all 
x E [O, 11. Its inverse exists because K is (suictly) increasing. It is easy to 

check that (2) satisfies ( I )  almost everywhere, and that it is continuous. This 
Solution has been constructed using a technique analogous to the algorithm 
of Bayen and Tomlin [3] based an the method of characteristics. 

Multiplying this PDE by 6 and integrating from 20 = 0 10 the ANI 
discontinuity 21 of U(.) gives: 

from which we deduce 
w(u)6(u,t)-(u,t)du a6 = 0 

ax 
Integrating by palls gives 

since6(2o,t) = Oandw(zl) > O.Usingthefactthatu(.) E C i ( [ x o , z l ] ) ,  
3M > 0, Ic'(z)l 5 A4 for all z E [zo,z1]. from which we deduce 

then, using Gronwall's lemma, 

which implies 6(z,t) = 0 almost everywhere in [zo,q]. By continuity, 
nl(z. t) = m(z, t) everywhere in [so, X I ] .  and therefore at 21. The same 
proofapplicsta [ x i , q ]  sineeni(z1,t)  = nz(z l , t )  forallt. Byinduction 
on xk, they are equal everywhere in 1x0, ztl and therefore in [0, L ] .  0 
In equation ( I ) ,  4'" represents the M o w  at the entrance of 
the link (i.e. at z = 0). In highway traffic flow analysis, n is 
sometimes referred to as cumulative flow. It can be related 
to the vehicle density through the integral relation 

(3) 

where p(z, t )  is the vehicle density. It can be checked that 
the vehicle density satisfies the following PDE: 

qp + &(p(z,t)w(z)) = 0 
P(0,  t)@) = 4'"(t) (4) i P(Z> 0) = f o b )  

Equation (4) can be related to equation (1) by a simple 
integration of p along '[O,z]. Equation (4) is a mass con- 
servation equation, written in conservation law form. This 
equation is very closely related to the original LWR PDE [9],  
[12]. The LWR PDE, originally developed for highways, 
in fact reads + &(q(p(z, t ) ) )  = 0, where q(.) is 
a flux hnction depending on p. which relates the cm density 
on the highway to the flux. In practice, a(.) is empirically 
determined, and several models of q(.)  are currently used 
[l], [7], [6]. Computation of the numerical value of the 
parameters associated with these flux functions is a difficult 
task, which can for example be achieved with Kalman 
filtering techniques [13]. In the present case, the flux function 
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, 
q(.) is replaced by a mean velocity U(.) multiplied by the 
density. In [2], U(.) will also depend on t and will be the 
control input of the system. It is also possible to rewrite the 
first equation in (4) as 

ap(x:!U(x) +v(x),(p(x,t)v(s)) = 0 

case, the number of aircraft we consider will almost certainly 
be below this number, meaning that the fluid approximation 
is questionable. This means that instead of using p = &, 
we will use p - in the PDE: we will justify this 
approximation with appropriate validations. In particular, we 
will have to make a choice of a numerical parameter called 

a 
a6 a x  Lrcf := 6x/2. This will be done in Section 111. We then will 

validate the model against real data to show its accuracy and 
predictive capabilities (Section rv). 

which provides the following corollary: 

Corollary 2. The corresponding solution for p is given by: 

ift < K ( x )  
othenvise 

The interpretation’ of the corollary is the following: the 
quantity pv is conserved along the characteristic curves 
t - t o  = K(x) - K(s0). At this stage, p is defined by 
p = & and satisfies (4). However, unlike for highway traffic, 
the density p might not be the best way to characterize the 
flow situation at a given time: if the number of aircraft in 
the system is small, p will be a set of spikes, which is 
intractable numerically. Therefore, a more tractable quantity 
to work with would be g, where 6n represents the number 
of aircraft contained in a finite interval of length 6s. This 
quantity does not a priori satisfy the PDE (4). It is meaningful 
to introduce an additional “density-like” quantity called T, 

which satisfies the PDE and for which we can suggest a 
physical interpretation. 

n(K-’(K(.)-( t - t . , ) ) ) -n(K-’(K(2)-  (t+t,()))l 
T(2, t) = J Zt”fU(2) 

where t,f is a reference time. ~(x,t)u(x) represents the 
number of aircraft included into a window of 2t,f time units 
of location x and can be referred as “time density”. This 
way of accounting for density is meaningful for Air Traffic 
Control, since it incorporates a time scale t,f into the density 
computation and thus provides axess to the time separation 
between aircraft. It is easy to show that T itself satisfies the 
same PDE as p for any value of t,f: 

At this stage, we have three quantities: p, and T. The 
meaning of p as we know it in fluid mechanics assumes a 
large number of particles (i.e. aircraft) per unit volume (the 
threshold is defined by the Kniidsen number). In the present 

‘Note that a more convenient way to write the solution for t 5 K ( r )  is 
p ( z , t )  = p ( z o ( z , t ) , O ) W  wherezo = K-’ (K(z )  - t )  is the origin 
of the characteristic curve of the system in the ( ~ , t )  plane, going through 
2 at t. 

e.50 W b W  h v  7WW 

Fig. 1. Top: Tracks offlights incoming into Chicago (ORD). The uppa 
Stream comes from Canada, the lower from New York and Boston (BOS). 
Additional slreams merge into the network (Detroit and Hartford Bradley). 
Bottom: Network m d e l  for the tracks shown above, with waypoints la- 
beled. The model includes five links, merging into ORD. The corresponding 
inflow tems correspond to a single airport as in BOS or Detroit (DTW), or 
to a set of airports, as in New York (EWR, JFK, LGA). 

B. Network model 
The model of the previous section describes traffic on a 
single portion of airway or line element. As was done earlier 
for highways [ 8 ] ,  this model can be generalized to airway 
networks, i.e. sets of interconnected airways, as shown in 
Figure I for inbound traffic into Chicago (ORD). We now 
derive a framework to describe unidirectional air traffic. We 
describe the topology of the network by a unidirectional 
graph ( E ,  V ) ,  in which E is the set of edges or links, and V 
the set of vertices. For simplicity of notation, we will index 
the links by iE { 1 , .  . , N } ,  rather than by the indices of the 
two corresponding vertices. For all i~ {l,. . . ,A’}, we call 
U ( i )  the set of upstream links merging into link i ,  and M the 
set of links for which the upstream links are only merging. 
The number of links merging into a single link is not limited; 
it is possible to have lU(i)l > 2. If there is a divergence at 
the end of a link i, we assume for simplicity that there are 
only two emanating links from the corresponding vertex. We 

. 
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index by il and i, the two emanating links (left and right), 
and call 13, the portion of the flow going from i to il, and 
1 - pi the proportion of the flow going from i to i,. We 
call D the set of links with a divergence at the end of it. 
The are not known a priori and have to be determined. 
These coefficients might depend on t as well, and therefore 
a dependence &(t) is included in the model. 

number of links 
set of source links 
set of links into which other links merge 
set of links ending in a fork 
set of links merging into link i (if i E M )  
indices of the two links of a fork if i E D 
length of link i 
arclength on h k  i: 2; E [0, L;] 
aircraft density an link i 
initial aircrafl density on link i 
velocity profile an link i: vi(.) : [O,L;] - B+ 
inflow at zi = 0 for link i (if applicable) 
portion of  pi which Rows into link i~ 

TABLE 1 
NOTATION FOR THE NETWORK PROBLEM. 

We call S the set of sources in the network, anu 1- a 
sink of the network, at which we might want to perform 
optimization. We index all variables of the previous section 
by i: the aircraft density on link i is pi, the coordinate is 
z;, the main velocity profile is vi, etc. Note that we are 
NOT using Einstein's notation. The notation is summarized 
in Table I. The goveming PDE system thus reads: 

q p + & ( p i ( z i , t ) v : ( z i ) )  = o  

Pi(z,o) = &(z) 
fi(O,t)vi(o,t) = c Pj(Lj,t)Wj(Lj,t) +&t) 

VZ€ {l,... , N }  
Vi€ { 1, . . . , N }  

j € U ( i )  
V i  E M 

pit (0% t)vi,(O, t )  = A(t) pi(&, t)vi'(Li, t )  
pi9(0,t)vir(0,t) = (1 -a(t))pi(Li,t)vi(li,t) 

Vi E 'D 
vi E s 

{ 
f i (O,t )7%(0,t )  = q:"(t) 

(5) 
In the previous system, the PDE (first equation) describes 
the evolution of pi on each link. The second equation is 
the initial condition (i.e. the initial :density of aircraft on 
each link). The third equation expresses the conservation of 
aircraft at the merging points. The fourth and fifth equation 
express the conservation of aircraf? at the divergence points. 
The last equation expresses the boundary conditions (inflow 
at the sources of the network). The sinks of the system 
are free boundary conditions, and therefore do not appear 
in the previous system. Assuming one can solve (S), it 
is possible to use the solution to compute (and optimize) 
certain metrics useful for ATC. For example, one quantity 
of interest is aircraft count, which is the number of aircraft 
in a given sector. If all links of a given sector are indexed 
by i E Sec, the aircraft count of the sector is obtained by 
L s e s  s,", Pi("<> w z i .  

Fig. 2. Example of velocity profile used for the junction LGA-ORD. The 
horizontal coordinate is the distance from ORD in nm. The corresponding 
links are shown as well as the location of the airspace fixes between the 
links. The curve is a piecewise afine fit obtained using least squares. 

111. APPLICATION TO AIR TRAFFIC FLOW 
In this section, we first explain how to identify the mean 
velocity profiles'from real air traffic data. .We then explain 
how to choose the numerical value of parameters of the 
model. In the next section, these choices will be validated 
against real data. 

A.  System identification: main velocity profiles 
We first explain how we identify the mean velocity profiles 
wi(xi) on each link. We use Enhanced TraJic Management 
System (ETMS) data, which we can obtain at NASA Ames 
(see [4] for a description of ETMS data). From ETMS data, 
we can obtain useful flight information at a 1 minute rate: 
position of each aircraft in the NAS, altitude, velocity, flight 
plan (i.e. set of airways and wayoints). From this data, we 
are able to identify the routes in which traffic is concentrated. 
Note that in recent work, Menon et al. [lo] focused on 
creating a tool which performs similar tasks automatically 
at a NAS-wide level, using FACET 141, a tool developed by 
NASA Ames. The details of this tool are not available to us, 
and we developed our own method to identify the main links 
used by aircraft in the NAS. We analyze 24 hours of ETMS 
data and select all aircraii using the links of the network 
shown in Figure 1. We identify all aircraft which use each 
of the links, and record all tracks and corresponding speeds 
between takeoff and landing. For each of the links shown in 
Figure 1, we identify the mean velocity profiles as piecewise 
affine function, using a least squares fit. The total number 
of aircraft used is 220. The result for the flight New York 
- Chicago is displayed in Figure 2. As can be seen, once 
the En Route altitude is reached, the curve fits are almost 
flat, which means that the aircraft are En Route at a high 
altitude cruise speed. It can also be seen from Figure 2 that 
the data is relatively broadly spread (standard deviation 19.6 
kts). This suggests deriving multilayer models: dividing the 
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link in suhlayers corresponding to altihldes (with different 
speed profiles) has the benefit of being more precise, as 
aircraft tend to have a Mach number - and therefore speed 
which is a function of altitude. This will be considered in 
the future. 

B. Initial and boundary conditions 

Once the mean velocity profiles are computed we identify 
the initial density of aircraft and the hilow (boundary 
conditions) in the network. The initial position of the aircraft 
is easy to extract from the ETMS data: at the prescribed 
time, all airhome aircraft which are on the relevant links are 
selected. 

1) For any selected aircraft a at location x; on link i, the 
classical density pi(si,O) = & ( x i )  is taken to be a “box” 
around ~ 4 ,  of length 2L,r. Calling XI the characteristic 
function of an interval I (i.e. equal to 0 outside o f f  and 
1 inside), p ; ( z , ,  0) is ~X[.t-~.,,=t+L.,l(xi). Taking all 
aircraft initially airhome on link i, the density is: p p ( z ; )  = 
E . .  a m link z .1 2L.rXiZt-Lrr‘.’:+L,d(ii) 

2) Similarly, the density-like function T is computed using the 
knowledge of the mean velocity profile along link i, called 
u;(z;), and the parameter t,er: rp(x;) = 

1 C a  in lik i ~ ) ( ~ D t - t . ~ . ( = ~ ) , ~ ~ + t . r ~ i ( c l ) ~ ( ” i )  

The inflows (boundary conditions) can also be extracted from 
ETMS data: each time an aircraft takes off, it will appear in 
the ETMS data as soon as it is airborne. The ETMS data 
also shows the filed flight plan, which we select when it 
intends to use the links of interest to us. q’”(t) is computed 
the following way. At any instant when the data shows a 
new aircraft on one of the source links S, the track is in 
general passed the entrance point of that link (because of 
the sampling rate of 3 minutes). Calling ss the position of 
this aircraft on link i at the lirst time it appears, we compute 
the time t ,  at which it crossed the location i; = 0 (using 
the knowledge of the mean velocity profile on the l i ) .  We 
then use one of the two definitions above to compute q‘”( t )  
corresponding to either p or T.  

C. Identi$ing the numerical parameters 

As explained in Section 111-B, we have two ways of de- 
scribing the density of aircraft in the network, in terms of 
a density function p and a “density-like” function T ,  which 
respectively account for spatial and temporal distribution of 
aircraft. The function p depends on the numerical parameter 
L,r, which we need to adjust. The value of this parameter 
is crucial for predicting aircraft count: Figure 3 shows how 
errors can occur in translating density functions into aircraft 
count. We want to determine the choice of parameters leading 
to the smallest error in aircraft count prediction. 

We first run the following set of experiments. For the link 
New York - Chicago, we run a set of simulations involving 
Nairera~ aircraft, where Naircraft successively takes all values 
between I and 50. We vary L,r between 0 and 120 nm. For 
each value of Naircran and L,r, we run 400 experiments. Each 
experiment corresponds to a uniformly distributed random 
density of N,i,,fi aircraft along link 1 in [0,400] (see 
Figure 1). The simulation starts at a time to  with the density 
p;  computed as in the previous section, and computes the 
solution of the LWR PDE until the time to + AT. For the 
experiments, AT was chosen equal to one hour (note that the 
duration of the total flight is on the order of two and a half , 

hours). This solution is compared with the solution obtained 
by propagating the Lagrangian trajectories of each of the 
aircraft independently from to to to + AT and computing 
the resulting density. In mathematical terms, we compare 
the two following quantities 

1) pi(., to  + AT) computed hy the LWR PDE (5) 

2) pi(., to + AT) := 

Ea in i ~ X I . t ( t ~ + A T ) - L ~ I , = P ( t o + A T ) + L . . r I ( ’ )  where 
i;( to + AT) is the position of aircraft a at time to + AT. 
In order to characterize the hest choice of numerical param- 
eters, we compute the following two quantities (notations 
refer to Figure 1): 
1) The relative density error, defined by 

I 

C ~ ~ I p i ( z i , ~ o + A T ) - P i ( z i , t o + A T ) l d r ;  

C f? pi(zilto + AT)dzi 

k1.4.5 

<=,,4,5 

This quantity represents the error in density prediction due 
to the propagation of p by the PDE. 
2) The absolute aircraft count error, defined by 

where fl means number. This quantity is the sum of count 
error for all sublinks of links 1,4, and 5. Typically, a link is 
divided into sublinks which correspond to different airspace 
sectors. For example, if link 1 goes through 8 sectors, we 
divide it in 8 sublinks and are interested in the aircraft counts 
on these sublinks. This error thus estimates the difference 
between the number of aircraft predicted by the PDE and 
the number obtained by a Lagrangian propagation of aircraft, 
where the error is the sum of all errors on the sublinks. 

The computation of both quantities is illustrated in Figure 4. 
The relative density error and absolute aircraft count error are 
averaged (over the 400 runs) and plotted for the range of n 
and L,r considered. The result is shown in Figure 5. The left 
plot shows the relative density error. As expected, the error 
decreases when the number of aircraft increases and L,r 
increases (typically in fluid mechanics, t he  Kniidsen number 
defines the number of particles per volume above which the 
fluid approximation becomes valid). The right plot shows the 
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Fig. 3. 
update from ETMS data and from the PDE. 

Different predictions obtained by the use of p and P for aircraft density Above: density propagation lhraugh the PDE system (5); below: position 

link i linki - .. - - 

Fig. 4. Len: Illustration of the computation of  the relative density error depicted in Figure 5. The difference between the two density curves (shaded area) 
is divided by the area below the p ;  curve. Right: Illustration of the computation of the error in aircraft count. The link is divided into sublinks (which can 
correspond to secton). For each ofthese sublinks, we compare the number of aircraft predicted by the method (depicted by arrows, which are computed 
from the density) with the number of aircraft obtained by a Lagrangian propagation afthe trajectories. The error is the sum of erron for all sublinks. i.e. 
the sum of the errors in sector counts. 

Fig. 5 .  Top: Relative density error between the density predicted by the 
Eulenan PDE propagation of the density. Bottom: Absolute aircraft count 
error for the junction New York - Chicago. 

absolute aircraft count error, averaged over 400 simulations. 
For this plot, each of the links 1, 4 and 5 have been divided 
in sublinks (20 total), of about 50 nm length. This is a worst 
case scneario, i.e. the number of relevant sectors for a flight 
of this length is never higher. One can see that for L,,r 5 60 
and Naircrafl 2 25, the average aircraft count error is always 
extremely small. 

The best choice for L,f is thus obtained at the intersection 
of the lowest level sets of both plots of Figure 5, i.e. for a 
range of LEf E [20,60] and Naircra~ 2 20. 

Iv. VALIDATION OF THE MODEL 

In the previous section, we have shown that the use of the 
modified LWR PDE either with r (with any tRf)  or p - & 
(with an appropriate choice of Lrer) enables accurate aircraft 
count predictions. In this section, we validate the model 
against real data: in particular, we had made the assumption 

that wi(zi,t) = vi(."). As we know, this will not be the case 
in general. Therefore we run simulations and assess if the 
model is still in agreement with real data over two separate 
experiments. 

A .  Static validation 

In the first experiment, we use the static velocity profiles 
U;(.) determined in the previous sections for the validation 
of the method. We use a 6 hour ETMS data set. From this 
data set, we extract the position of the aircraft, at the initial 
time, construct the corresponding initial aircraft density, and 
propagate it through the PDE system. At any given time, 
we compare the aircraft count predicted by our method and 
the aircraft count provided by the ETMS data (which is 
exact, since it provides the'position of each aircraft). We 
compute the error in aircraft count for a set of ten sublinks 
for the network shown in Figure 1. The result is shown in 
Figure 6 (le!?). The window width L,r was taken equal to 
15 nm. One can see on the left plot that the total error (for 
all airbome aircraft in this airspace) is relatively low (the 
maximal error is 7 aircraft). in fact, the results are much 
better than they seem: most of the errors come from the fact 
that the aircraft distribution is such that there is always at 
least one or two aircraft close to a sublink boundary, which 
will thus be counted in the wrong sublink. In fact, this is not 
really a problem, as it is more an artifact of the computation 
rather than a true error (Figure 7 shows that the density 
unambiguously shows where the aircraft is). Furthermore, 
some of the errors in aircraft count are due to errors present 
in the ETMS data (some have clearly erroneous data; this 
fact has also been reported in [ 5 ] ) .  
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Fig. 6. Len: Error in aircraft count for the static mlidation over a five 
hour period. Right: Error in aircraft count for the dynamic validation over 
a five hour period. 

B. Dynamic validation 

We extend the validation to a case in which the velocity 
profiles are time dependent, i.e. v;(z;,t). The details of 
the identification of these profiles are technical and are 
not explained here. The comparison is the same as in the 
static case. Note that our analytical solution does not handle 
dynamic velocities. This difficulty is alleviated by using a 
numerical scheme presented in the companion paper [Z]. The 
results are shown in Figure 6 and are more accurate than the 
static results, as expected. The same remarks apply, and the 
results are again affected by the quality of ETMS data and the 
inclusion of the computation artifact. The only weakness of 
this validation is that the simulation is run using data tiom 
the same day as the data used in identification. A way to 
improve this would be to perform the velocity identification 
with data of a given day over a 24 hour period, and validate 
it over the next 24 hour period, using the fact that there is 
periodicity in the traffic for normal days. This was not done 
here due to lack of available data. An animation (.avi movie 
file) corresponding to the snapshots of Figure 6 is available 
at [14]. 

In both cases, the validation is very encouraging and shows 
strong predictive capability for our model. The model was 
also tested successfully using data from the westem states 
(Oakland Center with traffic incoming into Bay Area air- 
ports), though for brevity these results are not included here. 
Finally, in [Z], we will use the model for control: in that case, 
one of the control variables is speed, which means that we 
will have direct access to v,(i;, t) (since we compute it). This 
alleviates difficulties of mean velocity profile identification 
shown before. 
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