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Lagrangian sensors

Lagrangian sensors measure their positions as they drift along with
the flow.

When trying to solve the two-dimensional shallow water equations,
one needs accurate initial and boundary conditions which are
usually not available.

Data assimilation of the Lagrangian measurements from the
drifters allow to estimate the velocity field in the river even without
accurate boundary conditions.
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Two-dimensional shallow water equations

ou — 0 1

S+ U-Vu= ga—Z+FX+ ARCAY (1)

ov — on 1

E—{_U Vv:—g$+Fy+EV-(hyth) (2)

Oh

a+T]-Vh+hv-7:o (3)
h: total water depth
U= (u, v): velocity field

h F = coia Iin/3 uvu? 4+ v2 n: free surface elevation
where
Fy = colsa ’in/a vV U2 + V v¢: turbulent diffusion coefficient

a = a(x, y): bottom slope

n: Manning coefficient.
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Two-dimensional shallow water equations

Boundary conditions:

u(x,y, t)laﬂland =0, v(x,y, t)‘aﬂland =0, (4)
(U(X7.y7 t)? V(X7 y? t))‘aﬂupstream = f(X7.y7 t)? (5)
Ny g, =glxy,t), (6)

Initial conditions:

u(x,y,0) = uw, v(x,y,0)=w, h(x,y,0)= ho, (7)
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Drifter model
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State Augmentation

We use state augmentation to simplify the observation model

u(tn)
v(ts)
0, = | h(ts) (10)
XD(tn)
)/D(tn)
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Forward model

Ontr1 = Fn(0n) + wi. (11)

F,: one time step in the discretized shallow water and drifter
model.

On+1: predicted system state at time t,y1.

wp: state noise (modeling error between the reality and the 2D
model).

Q®,: covariance of the state noise.
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Observation model

Yn = Cnbn + €n.

Yn: measurements from the drifters.

Cn = (0 I): observation model.

€n: Measurement noise.

R,: covariance of the measurement noise.
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EnKF Algorithm

Initialization: An ensemble of Nsiates States f(()p) indexed by p
are generated to represent the uncertainty in 6p.

2. Time update:

& = P&, ) F Wi (13)

Time update (Predico): \
Nstates ji i
(1) Projectthe state ahead using " 5 N e
0 . Z £ ( 14) o el EMAG Measurement update (Correct):
n|n—1 Nstates n|’7 1 Equation (13),(14) (1) Compute the Kalman gain:
(2) Projectthe error covariance: Egquation(17)
Equation (15),(16) (2) Update predlctl?n with drifter
E _ [5 measurements:
nin—1 = ISp|p—1 — n\n—l»'“’

X Equation(18)
(15)

Nsa es
ff,‘n:tl ) 9n|n71]
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EnKF Algorithm

3. Measurement update:
1
I—n n— = %N 41
‘ ! Nstates - 1
Kn = I_n|n71CT(Cnrn|n71CT + Rn)il (17)

g(p) fn‘n 1t Kn(yn — n§ 1T E(p)) (18)

Enjn-1Epn_1 (16)

‘Time update (Predict): \

1) Projectthe state ahead usin ~
U] o oo reremac 2 |[Measurement update (Corvect):
(1) Compute the Kalman gain:

Equation (13),(14)

(2) Projectthe error covariance: Equation(17)
Equation (13),(16) (2) Update prediction with drifter
¢ o measurements:

X Equation(18)
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Twin experiment results

Drifters are released using a software and the EnKF algorithm runs
using those measurements.
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Limitations

The state noise used here is realistic for twin experiments, since we
know the discrepancy between the "reality” and the model, as they
are both from the same software.

We need more realistic state noise in order to have the algorithm
run with the real data from November experiment.
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Eulerian sensors - Boundary Conditions
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Navier-Stokes equations
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Estimation of state noise

Testing the hydrostatic assumption

Hydrostatic assumption: pressure in the river can be estimated
using the hydrostatic pressure.

Valid for £ 5 >> 1, where L is the horizontal characteristic length of
the river.

Bathymetry

" Mean (nonhydro - hydro)

0.85 meter)
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00
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Navier-Stokes equations using hydrostatic assumption

AT A 21
ox 0Oy 0z 0 (21)
ou Ou*> Owu Owu on 1 0p, T 0p
m*axwﬁaz—‘gax‘poax‘pg/ ax %
1 [0s«  Osyy 0 ou
- Fut — (e 22
p0h<3x * 8y>+ +8z (Vt82> (22)
dv  Ouv  Ov?  Owv on 1 0p, " dp
A AT et N ARt AN S B
ot + ox + dy * 0z g@y po Oy po/ i
1 0syx  Osyy 0 ov
S [ At 2
poh ( ox * dy ) TR 0z (Vt82> (23)
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| Telemac2D }—»CI\/Iike 3)

G/ertical Eddy Viscosity I/D
/

Estimation of state noise

| Eddy viscosity v

(Horizontal Eddy Viscosity A)
| Manning's n l—»(Roughness height ks)

Figure: Equivalence of parameters between the two dimensional and the
three dimensional models.

A relationship between the roughness height and the Manning's n
can be found as: )
_ ks

"= 54

(24)
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Three dimensional simulations
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n of state noise
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Result of the 3D simulation
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State noise characteristics

¢ Mean magnitude of the state noise velocity ¢ Standard deviation of the magnitude of the velocity in the state noise
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Ensemble Kalman filter on real data

Cross validation principle

No data are available to validate.
» Remove 1 or 2 drifters from the data set.
» Run the EnKF on the remaining drifters.

» Compute the trajectory of the extracted drifters using the
estimated velocity field.

» Compare it with the real trajectory.
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Ensemble Kalman filter on real data

Future work

» Run the EnKF using the real data set and the generated state
noise.

» Generate a state noise model for the drifters.
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Questions?
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