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Lagrangian sensors

Lagrangian sensors measure their positions as they drift along with
the flow.
When trying to solve the two-dimensional shallow water equations,
one needs accurate initial and boundary conditions which are
usually not available.
Data assimilation of the Lagrangian measurements from the
drifters allow to estimate the velocity field in the river even without
accurate boundary conditions.
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Two-dimensional shallow water equations

∂u

∂t
+
−→
U · ∇u = −g

∂η

∂x
+ Fx +

1

h
∇ · (hνt∇u) (1)

∂v

∂t
+
−→
U · ∇v = −g

∂η

∂y
+ Fy +

1

h
∇ · (hνt∇v) (2)

∂h

∂t
+
−→
U · ∇h + h∇ · −→u = 0 (3)

where

h: total water depth
−→
U = (u, v): velocity field

Fx = − 1
cosα

gn2

h4/3 u
√

u2 + v2 η: free surface elevation

Fy = − 1
cosα

gn2

h4/3 v
√

u2 + v2 νt : turbulent diffusion coefficient

α = α(x , y): bottom slope

n: Manning coefficient.
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Two-dimensional shallow water equations

Boundary conditions:

u(x , y , t)
∣∣
∂Ωland

= 0, v(x , y , t)
∣∣
∂Ωland

= 0, (4)

(u(x , y , t), v(x , y , t))
∣∣
∂Ωupstream

= f (x , y , t), (5)

η(x , y , t)
∣∣
∂Ωdownstream

= g(x , y , t), (6)

Initial conditions:

u(x , y , 0) = u0, v(x , y , 0) = v0, h(x , y , 0) = h0, (7)
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Drifter model

dxDi
(t)

dt
= u(xDi

(t), yDi
(t), t), (8)

dyDi
(t)

dt
= v(xDi

(t), yDi
(t), t), (9)
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State Augmentation

We use state augmentation to simplify the observation model

θn =


u(tn)
v(tn)
h(tn)
xD(tn)
yD(tn)

 (10)
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Forward model

θn+1 = Fn(θn) + wn. (11)

Fn: one time step in the discretized shallow water and drifter
model.
θn+1: predicted system state at time tn+1.
wn: state noise (modeling error between the reality and the 2D
model).
Qn: covariance of the state noise.
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Observation model

yn = Cnθn + εn. (12)

yn: measurements from the drifters.
Cn = (0 I): observation model.
εn: measurement noise.
Rn: covariance of the measurement noise.
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EnKF Algorithm

1. Initialization: An ensemble of Nstates states ξ
(p)
0 indexed by p

are generated to represent the uncertainty in θ0.

2. Time update:

ξ
(p)
n|n−1

= Fn(ξ
(p)
n−1|n−1

) + w
(p)
n−1 (13)

θn|n−1 =
1

Nstates

Nstates∑
p=1

ξ
(p)
n|n−1

(14)

En|n−1 = [ξ
(1)
n|n−1

− θn|n−1, . . . ,

ξ
(Nstates)
n|n−1

− θn|n−1] (15)
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EnKF Algorithm

3. Measurement update:

Γn|n−1 =
1

Nstates − 1
En|n−1E

T
n|n−1 (16)

Kn = Γn|n−1C
T
n (CnΓn|n−1C

T
n + Rn)−1 (17)

ξ
(p)
n|n = ξ

(i)
n|n−1 + Kn(yn − Cnξ

(p)
n|n−1 + ε

(p)
n ) (18)
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Twin experiment results

Drifters are released using a software and the EnKF algorithm runs
using those measurements.
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Limitations

The state noise used here is realistic for twin experiments, since we
know the discrepancy between the ”reality” and the model, as they
are both from the same software.
We need more realistic state noise in order to have the algorithm
run with the real data from November experiment.
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Eulerian sensors - Boundary Conditions

Mike 3

θn

Interpolation

TELEMAC 2D

F (θn)

Mike 3

θn+1

State noise estimation wn = θn+1 − F (θn)

Statistical study

Covariance of the state noise Qn

Figure: State noise estimation process.
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Navier-Stokes equations

1

ρc2
s

∂P

∂t
+
∂uj

∂xj
= SS (19)

∂ui

∂t
+
∂(uiuj)

∂xj
+ 2Ωijuj = −1

ρ

∂P

∂xi
+ gi

+
∂

∂xj
(νT{

∂ui

∂xi
+
∂uj

∂xj
} − 2

3
δijk) + uiSS (20)
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Testing the hydrostatic assumption

Hydrostatic assumption: pressure in the river can be estimated
using the hydrostatic pressure.
Valid for L

H >> 1, where L is the horizontal characteristic length of
the river.
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Navier-Stokes equations using hydrostatic assumption

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (21)

∂u

∂t
+
∂u2

∂x
+
∂vu

∂y
+
∂wu

∂z
= −g

∂η

∂x
− 1

ρ0

∂pa

∂x
− g

ρ0

∫ η

z

∂ρ

∂x
dz

− 1

ρ0h

(
∂sxx
∂x

+
∂sxy
∂y

)
+ Fu +

∂

∂z

(
νt
∂u

∂z

)
(22)

∂v

∂t
+
∂uv

∂x
+
∂v2

∂y
+
∂wv

∂z
= −g

∂η

∂y
− 1

ρ0

∂pa

∂y
− g

ρ0

∫ η

z

∂ρ

∂y
dz

− 1

ρ0h

(
∂syx
∂x

+
∂sxy
∂y

)
+ Fv +

∂

∂z

(
νt
∂v

∂z

)
(23)

Aymeric Mellet and Julie Percelay State Noise Estimation for EnKF



Outline
Introduction

Ensemble Kalman filter algorithm
Estimation of state noise

Ensemble Kalman filter on real data

Method
Navier Stokes equations and assumptions
Parameter adjustments
Generation of state noise occurrences

Telemac2D Mike 3

Eddy viscosity νt

Vertical Eddy Viscosity νt

Horizontal Eddy Viscosity A

Manning’s n Roughness height ks

Figure: Equivalence of parameters between the two dimensional and the
three dimensional models.

A relationship between the roughness height and the Manning’s n
can be found as:

n =
k

1
6
s

25.4
(24)
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Three dimensional simulations
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Boundary conditions
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Result of the 3D simulation
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State noise characteristics
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Cross validation principle

No data are available to validate.

I Remove 1 or 2 drifters from the data set.

I Run the EnKF on the remaining drifters.

I Compute the trajectory of the extracted drifters using the
estimated velocity field.

I Compare it with the real trajectory.
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Future work

I Run the EnKF using the real data set and the generated state
noise.

I Generate a state noise model for the drifters.
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Questions?
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