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Estimation of Performance Metrics at Signalized
Intersections Using Loop Detector Data

and Probe Travel Times
Qijian Gan, Gabriel Gomes, and Alexandre Bayen

Abstract— This paper introduces a simple but practical
approach that uses both loop detector data and probe travel times
for computing the vehicle hours traveled (VHT), average delay,
and level of service (LOS) for signalized intersections. The goal
is to improve upon the state-of-the-practice method outlined in
the highway capacity manual (HCM) by incorporating additional
travel time measurements from probe vehicles or vehicle re-
identification systems. The proposed methodology is designed
to work under a variety of traffic conditions, including states
of congestion in which the HCM methodology is not reliable.
Our analysis is then tested using simulation of an arterial site
in Arcadia, CA, USA. The results suggest that the proposed
methodology performs better at the approach level than at the
lane group level. Population size and probe penetration rate are
two key parameters in the estimation. Either a large population
size or a high penetration rate is required in order to produce
reliable estimates of VHT, delay, and LOS. Results also show that
the proposed methodology only requires 7% of the penetration
rate to outperform the HCM methodology.

Index Terms— Loop detector data, probe travel time, highway
capacity manual, VHT, delay, level of service.

I. INTRODUCTION

THE evaluation of performance metrics for urban networks
is an important task for both urban planners and traf-

fic operators. In the planning context, metrics are used to
estimate the impacts of proposed long-term projects at the
neighborhood or city level. The criteria used in California
for evaluating these projects have recently shifted with State
Bill 743 (2013). This bill seeks to upgrade the process for
evaluating transportation projects under the California Envi-
ronmental Quality Act (CEQA) such that it aligns with the
broader goal of reducing environmental impacts, specifically
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by reducing greenhouse gas emissions. The guidelines that
have emerged from this process [1] argue against the use of
the Level Of Service (LOS), which grades the network perfor-
mance into different scales (E.g., Table I), as a guiding metric,
and for alternatives such as Vehicle Miles Traveled (VMT)
and Vehicle Hours Traveled (VHT), which take into account
more details of drivers’ travel behaviors. Among the stated
reasons for this is the fact that LOS forecasts tend to favor
development in lightly populated areas over urban areas and
city centers. Standard LOS evaluations fail to promote mode
shifts away from cars and into cleaner alternatives such as
bikes, buses, and walking. It is also argued that delay-based
metrics in general are not adequate for evaluating projects that
involve changes in trip lengths. It is possible, for example,
to decrease average delay while increasing travel times, if
trips are made longer. Hence, the trend in urban planning is
currently towards aggregate metrics such as VHT and VMT,
and away from delay-based metrics such as LOS.

The case is somewhat different in the short-term operations
context. Here the objective is to use performance metrics to
evaluate an intersection or a group of intersections in order
to improve their signal control settings. In this context, trip
lengths are largely fixed - some portion of drivers may be
coaxed into taking a different route, but only by increasing
the delay on their nominal route. Thus, it can be argued that,
at the operations level, the goals of greenhouse gas reduction
and delay reduction are aligned.

The calculation of delay and LOS at urban intersections has
been improved over the years, from the traditional Webster’s
calculation [2] to the Incremental Queue Accumulation (IQA)
method [3], and is well documented in the Highway Capacity
Manual (HCM) [4]. However, using field observations from
six signalized intersections, studies in [5] concluded that the
new HCM method still provides unreliable estimates of delay.
Therefore, the aim of this article is to investigate the extent to
which the estimation quality of delay, LOS and VHT can be
improved by using travel time samples from onboard devices
such as smartphones.

Several technologies now exist that enable the collection of
travel times in urban settings. These include toll tag readers,
bluetooth devices, and smartphones. Additionally, travel times
can be obtained through vehicle re-identification techniques,
such as that of [6]. The availability of probe devices is growing
rapidly. It was reported in [7] that as of July 2015, 68%
of American adults own a smartphone. The potential for
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using probe data to infer traffic states has been established.
Herrera et al. [8] found that a 2 − 3% penetration rate of
cell phones is sufficient to provide accurate measurements of
speeds on a freeway. Patire et al. [9] further confirmed that
relatively low penetration rates for GPS-based probes are suf-
ficient to significantly improve the estimation of traffic states
on freeways. However, fewer studies have been conducted to
assess the ability of doing estimation with varying penetrations
of probe data on local streets. The existence of signalized
intersections on these streets, along with the complexities of
urban routing, makes it likely that a higher rate of probes will
be needed.

In the estimation of travel times, some studies were con-
cerned with fitting the parameters of a candidate model, e.g.,
a mixture Gaussian in [10] and a model derived from traffic
theory in [11]. While these serve useful purposes, for example
for the route selection problem, the goals of the present
effort only require the estimation of the mean of travel times,
and thus a more simple non-parametric approach is sought.
Zhang et al. in [12] proposed new aggregating and sampling
methods to process the GPS data for the estimation of travel
times and speeds. However, due to the low penetration rate of
probe vehicles, it is impossible to compute more aggregated
metrics such as VHT solely through probe travel times.
Bhaskar et al. in [13] further fused loop detector with probe
vehicle data in order to obtain the statistics (average and
quantile) of travel times. However, such a method is difficult
to implement in the field since it requires detector counts
from the two link boundaries. Ban et al. in [14] used travel
time samples to estimate the queuing delay patterns and queue
lengths. However, the assumptions made in that study either
can be easily violated (e.g., uniform arrivals and no spill-back)
or can not be satisfied (e.g., known signal settings and high
penetrations) in the field.

This article introduces a method for combining travel time
samples with loop detector counts to estimate VHT, delay,
and LOS. The method is contrasted with the formulas of the
HCM [4], which take lane group volumes, queues, capacities,
and signal parameters as inputs. These formulas are provided
in Section II. Section III presents the proposed method. The
framework for studying the method and comparing it to the
HCM formulas is described in Section IV. This framework
consists of a micro-simulation model built with the Aimsun
software [15]. The model covers 11 intersections along streets
running parallel to the eastbound I-210 freeway in Arcadia,
California. The analysis of the simulation results is provided
in Section V. The article ends with conclusions and future
research directions.

II. THE HCM METHOD

The method currently used by both urban planners and
traffic engineers to calculate delay and LOS is that of the
HCM. This method, illustrated in Figure 1, requires informa-
tion about the geometric design, traffic demands (forecasts
in the planning case), and signal settings. The details of
the calculations are provided below. These are applied for
comparison to our proposed method in Section III.

Fig. 1. HCM procedure for calculating delay and LOS.

Fig. 2. Trajectories of vehicles approaching a signalized intersection.

A. HCM Delay Calculations

Figure 2 illustrates the trajectories (solid lines) of vehi-
cles approaching a signalized intersection. The intersection
is controlled by fixed time traffic signals with sequences of
green, yellow, and red phases. Point A is the location where
a vehicle first begins to decelerate as it approaches the queue,
while point B is the location where it has accelerated to its
original speed after exiting the queue [2]. Conceptually, the
delay experienced by a vehicle is measured between point
A and point B. However, in the HCM, the control delay is
measured differently, which only takes into account the delay
between point A and the stop line (point B

′
) (See Exhibit 31-5

in [4]).
The HCM identifies three components of delay: uniform

delay (d1), incremental delay (d2), and initial queue delay (d3).
The average delay for the lane group, dg , is computed as the
sum of these three parts:

dg = d1 + d2 + d3. (1)

The uniform delay represents the delay computed under an
idealized assumption of uniform arrivals. It can be computed
using the Incremental Queue Accumulation (IQA) method
in [4], which is provided below.

d1 = 0.5
∑

i=1(Qi−1 + Qi )tt,i
qC

, (2)

with

tt,i = min{td,i , Qi−1/wq}, (3)

where

tt,i : duration of trapezoid or triangle in interval i (sec),
td,i : duration of time interval i during which the arrival

flow-rate and saturation flow-rate are constant (sec),
Qi : queue size at the end of interval i (veh),
v : demand flow rate (veh/hr),
q : arrival flow rate = v/3600 (veh/sec),
wq : queue change rate (veh/sec),
C : the cycle length (sec).
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The second component (d2) accounts for delay caused by
random arrivals or oversaturation during the analysis period.
This component is calculated with,

d2 = 900 T

(

(X − 1) +
√

(X − 1)2 + 8k I X

cT

)

, (4)

where

T : duration of the analysis period (hr),
X : volume-to-capacity (v/c) ratio,
c : capacity (veh/hr),
k : parameter that depends on controller settings,
I : adjustment factor that accounts for the effect of

an upstream signal on vehicle arrivals.

The selection of T typically ranges from 15 minutes to
one hour, during which traffic conditions are assumed to
remain steady. The selection of k varies from 0.04 to 0.5.
For pretimed, coordinated, and “recall-to-maximum” phases,
a value of k = 0.5 is recommended. The selection of I
is typically within [0.09, 1]. A value of I = 1 is used for
isolated intersections, while smaller values are recommended
for interacting intersections.

A third component d3 is included whenever a queue exists
at the beginning of the analysis period. This term is calculated
with,

d3 = 3600

vT

(

tA
Qb + Qe − Qeo

2
+ Q2

e − Q2
eo

2c
− Q2

b

2c

)

, (5)

with

Qe = Qb + tA(v − c), (6)

Qeo =
{

0 if v < c

T (v − c) otherwise,
(7)

tA =
{

min{Qb/(c − v), T } if v < c

T otherwise,
(8)

where

tA :duration of unmet demand in the analysis period
(hr),

Qb :initial queue at the beginning of the analysis period
(veh),

Qe :queue at the end of the analysis period (veh),
Qeo :queue at the end of the analysis period when

v ≥ c and Qb = 0 (veh).

The average delays for approach a (da) and for intersection
i (di ) are calculated by aggregating the lane group ones,

da =
∑

g∈Xa
dgvg

va
,

di =
∑

a∈Xi
dava

∑
a∈Xi

va
. (9)

Here Xa is the set of lane groups belonging to approach a,
Xi is the set of approaches belonging to intersection i , and
va = ∑

g∈Xa
vg is the volume on approach a.

TABLE I

LOS CRITERIA FOR SIGNALIZED INTERSECTION IN THE HCM

Fig. 3. Measurement of link travel times.

Once the average delays for lane groups, approaches, and
intersections are calculated, the corresponding LOS’s can be
found using the lookup table provided in Table I.

B. Commentary

Although the HCM delay estimation methodology is widely
used by traffic engineers and has been tested and validated
in numerous field studies, there are several limitations that
are worth noting. First, the method requires a large amount
of information regarding the geometric design, signal timing
parameters, demand volumes, estimated capacities, and even
estimated queues. This makes its application time consuming
and error prone. Second, the delay calculation for actuated
traffic signals is very complicated since the cycle lengths and
green times depend on arrival patterns and may vary during
the analysis period. Third, the formulas assume that traffic
conditions in the downstream of the intersection are clear.
For this reason the results become less reliable when queue
spillback occurs. Finally, the methodology assumes that lane
groups exist independently of one another, such that their
delays can be computed separately with simple equations.
Hence, interaction between different lane group movements
for the same approach is not considered.

III. THE PROPOSED METHOD

In this section, we propose a new method for computing link
delays and VHTs that makes use of travel time measurements
obtained from probe vehicles or by some re-identification
technique. As illustrated in Figure 3, it is assumed that travel
times are collected for some portion of the vehicle population
from the entrance of an approach section (point A) to the exit
of the intersection (points B). The goal is to combine this
data with existing loop detector measurements so as to obtain
estimates of delay and VHT.

Figure 4 illustrates the proposed method. The inputs are
volumes obtained from mid-block loop detectors, the set of
travel time samples, and the geometric characteristics of the
intersection, specifically the segment lengths and free-flow
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Fig. 4. The proposed method to calculate VHT, delay, and LOS.

speeds (or, equivalently, the free flow travel times). The mid-
block volumes and the probe travel times are provided to
the VHT estimation algorithm. This component does not
require system parameters. Delay is calculated directly from
the sampled travel times and the free flow travel time. Delay is
then used in Table I to obtain LOS. Further details are provided
below.

A. Travel Time Measurements

Travel time measurements are taken from the beginning of
one road segment (point A) to the beginning of the next road
segment (points B), as shown in Figure 3. Thus the measure-
ments capture the free-flow travel time, plus the delays induced
by the traffic signal and by congestion spilling back from
downstream segments. As a result, neither the details of the
signal controller nor the presence of downstream congestion
need to be provided to the estimator, since both of these are
recorded in the travel time measurements.

We assume that travel times are recorded over some given
period of time T (15 minutes, for example) in some portion
of a network. We use n to denote the total number of arrivals
to points B during this period. The set of travel times is
denoted as t t = {t ti }i=1...n , where tti is the individual travel
time of vehicle i . We assume that only a small portion p
(the penetration rate) of these are observed. The number of
collected samples, n̄, is a binomial random variable with
n trials and probability p, i.e., n̄ ∼ B(n, p). The set of
observed travel times t̄ t is a subset of the actual ones, i.e.,
t̄ t = {t ti }i=1...n̄ ⊆ t t .

B. VHT Estimation

VHT is typically defined as the time spent by vehicles in
some portion of a transportation network during some given
period of time. This concept can be applied to any portion of
the network: a lane group, a road segment, an intersection, etc.
Here we will adopt a slightly different definition of VHT as
the total time spent by vehicles who exit the study area during
the given time interval. The two concepts are illustrated in
Figure 5. These definitions are similar whenever vehicle trips
do not start or end within the study area, and the observation
time period is sufficiently large. The ground-truth VHT thus
can be expressed as,

VHT =
n∑

i=1

tti

= n × mean(tt). (10)

As illustrated in Figure 5, n is the number of vehicles
exiting the study area during the sample time, and t t is the

Fig. 5. Two definitions of VHT calculation. The standard definition is the sum
of the horizontal lengths of trajectories within the box, while our alternative
definition is the sum of the horizontal lengths of solid trajectories, which cross
point B during the observation period. The loop detector is placed at point D.

corresponding set of travel times and mean(t t) is its average.
Since n and t t can be defined for a lane group or an approach,
Eq. (10) can be used to calculate the VHT at the lane group
or the approach level.

The proposed strategy for estimating VHT is to approximate
the two terms in Eq. (10) using the available measurements.
Specifically we use the vehicle count of the mid-block loop
detectors as a proxy for n, and the mean of the reported travel
times as an estimate of the average travel time. Thus we obtain
the following estimator for VHT,

ˆVHT = nd × mean(t̄ t), (11)

where nd is the total number of vehicles observed by the mid-
block detectors (shown in Figure 5) during time interval T .

Despite its simplicity, this estimator has some useful proper-
ties. First, the fact that it is non-parametric implies that it does
not rely on the assumptions of any particular model. This is in
contrast to the HCM methodology which has assumptions on
vehicle’s arrival patterns, traffic conditions, etc. This property
allows the estimator to adapt to changing conditions with little
or no additional tuning. Given the required measurements of
travel time, Eq. (11) is valid for any signal control algorithm
(fixed-time or actuated). It is also valid over a range of
demands and queueing states, as long as the mid-block loop
detector provides a good estimate of the number of trips
completed during the time interval T . Second, the precision
of the estimator is in a direct relation with the availability of
probe data, which is likely to increase in the coming years. In
Section V we investigate the dependency between estimation
error and penetration rate. Finally, if we assume nd to provide
a good estimate of the total number of completed trips, then
the estimator will be consistent, meaning that it will converge
to the true VHT as the penetration rate reaches 100%. One can
observe in Figure 5 that nd becomes a better representation
of the number of trips as the length of the observation time
increases.

C. Delay Estimation

Delay for a vehicle is defined as the difference between its
actual travel time and its free flow travel time,

dv = t tv − t t f , (12)
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where the subindex v represents the vehicle. The free flow
travel time t t f assumes that the vehicle is not delayed by
traffic or the signal. It is typically calculated as the ratio of the
length of the segment to the free-flow speed. Here we assume
that the free-flow speed is given and equal for all vehicles in
the segment. In this case the lane group and approach delays
(per vehicle) can be expressed as,

dg = mean(ttg) − tt f , (13)

da = mean(tta) − tt f , (14)

where t tg and t ta are the collection of travel times for vehicles
in the lane group and the approach segment respectively. These
definitions imply the following relationship between the lane
group delay and the approach delay,

nada =
∑

g∈Xa

ngdg, (15)

where ng is the number of trips completed for lane group g,
and na = ∑

g∈Xa
ng is the number of completed trips for the

approach.
Delays are estimated similarly to VHT, by taking the sample

mean of travel times recorded for either the lane group or the
approach,

d̂g = mean(t̄ t g) − tt f , (16)

d̂a = mean(t̄ t a) − tt f . (17)

These are both consistent and unbiased estimators of delay, as
they are sample means taken from the underlying delay distri-
bution. Also, the sample mean has the property of being the
minimum variance estimator amongst all linear estimators of
the mean, regardless of the underlying distribution (assuming
i.i.d. samples). This fact provides important support for the
use of non-parametric estimators for this purpose.

The estimated LOS is obtained by evaluating Table I using
estimated delay values.

IV. STUDY FRAMEWORK

The goals of the experiments are i) to test the various
assumptions that have been made in constructing the VHT and
delay estimators, ii) to assess the performance of the estimators
under various traffic scenarios, iii) to compare the performance
with the HCM methodology, and iv) to study the dependency
of the estimation error on the penetration rate of probe data.
To do this it is necessary to collect a ”ground truth” set of
travel times. For this we used a micro-simulation model, as
described next.

A. Study Site

The experiments were done using an Aimsun model of
Huntington Dr. and Colorado Blvd. in Arcadia, California.
These two streets run parallel to the I-210 freeway and have
been extensively studied as possible detour routes for corridor
management [16]. The model includes eleven signalized inter-
sections, of which six were chosen for detailed study: @San

Clara St., @Santa Anita Ave., @1st Ave., @2nd Ave., @Gate-
way Dr., and @5th Ave. (see Figure 6). Table II provides addi-
tional parameters used in the calculations: link lengths (Ll ) and
free-flow speeds (v f ) per intersection approach.

Lane group is defined as the set of traffic movements sharing
the same lanes. Thus, an approach in which all movements
share all lanes is considered to have only one lane group.
An approach in which left-turns, through movements, and
right-turns are segregated into different lanes is considered
to have three lane groups. The lane group information is also
provided in Table II.

The simulation model includes fixed-time signal controllers
with protected left turns for all intersections. The specific
settings (green times, offsets, etc.) were modified from the
original values in order to produce a variety of queuing
conditions. A common cycle length of 120 seconds was
applied to all intersections. Yellow and all-red times were set to
3 seconds and 2 seconds respectively. Detailed signal settings
are provided in Table II.

The network was initially empty, and the model was run
over the four-hour afternoon peak period, from 4:00 PM to
8:00 PM. At the sources, demands were updated every five
minutes. Vehicles were generated with constant headways
and assigned into the network with if the downstream link
had sufficient space to accommodate them; otherwise, queues
would form at the sources. A Python script was written to
collect detailed trajectories for all vehicles in the network
during the simulation, which were used to form the set of
”ground truth" data.

B. Experimental Design

The steps of the experiments are as follows,
1) Travel times. For an approach link i , the number of

vehicles that exited the intersection during period k
after transiting through the whole link was determined
through the trajectory data set. The corresponding travel
times and vehicle movement information were collected
and organized into the sets indexed by k and i , i.e.,
{t t}k,i . The set {t t}k,i can be used for the study at the
approach level, while it can be used for the lane group
level if vehicle movement information is also used.

2) Loop detector data. The mid-block loop detectors were
placed in the middle of the links. Synthetic measure-
ments were gathered for each lane group in every
approach link and were aggregated into constant obser-
vation periods. The period was selected to be 15 minutes,
i.e., T = 15, since it is a conventional setting in traffic
studies, e.g., in [4].

3) Ground truth calculations. True values of VHT and
delay were computed from the synthetic data for all
lane groups, approaches, and intersections that were
considered. The delays were used to find ground truth
LOS values from Table I.

4) HCM estimates. The signal settings, geometric designs,
and demand volumes were used in Eqs. (1) through (8)
and Table I to calculate HCM estimates of delay and
LOS for all lane groups and for each 15-minute period.
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Fig. 6. Six selected signalized intersections along the Huntington Dr. in the City of Acadia, CA.

TABLE II

INTERSECTION GEOMETRIC DESIGN AND SIGNAL SETTINGS FOR THE SIX SIGNALIZED INTERSECTIONS

These were aggregated using Eq. (9) to the approach and
intersection levels. Here the demand volume is computed
as the arrival rate at the entrance of each approach

segment. Such a measurement is a good proxy for the
actual demand when no queue spills back to the entrance
point and the analysis time period is long enough. For
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Fig. 7. Lane group based VHT estimation errors in the eastbound direction of the intersection at Santa Anita Ave. from 4:15 PM to 4:30 PM. The population
size is 45 for Left turn, 88 for Through, and 7 for Right turn. Penetration rates greater than 0.6 are not shown in this figure. (a) Eastbound: Left turn.
(b) Eastbound: Through. (c) Eastbound: Right turn.

real-world applications, the mid-block detector counts
can be used as the demand volumes.

5) Sampled travel times. Vehicles that report travel times
are sampled from the whole population in the network at
a penetration rate p. The sampling follows a Binomial
distribution, i.e., n̄ ∼ B(n, p), where n is number of
unique vehicles in the network, and n̄ is the number of
sampled vehicles. Then the set of sampled travel times
{t̄ t}k,i is formed using these sampled vehicles.

6) Estimates of VHT, delay, and LOS. Lane group VHT and
delay estimates were computed with Eqs. (11) and (16)
for all lane groups and time intervals. There are two
possible methods for estimating VHT and delay for
an approach. The first is to aggregate the lane group
VHTs to the approach level and apply Eq. (9) to get
the approach delay. The other is to directly take the
mean of the collected travel times for the approach and
apply Eqs. (11) and (17) to get the approach VHT and
delay. The former is only possible if lane-by-lane counts
with exclusive traffic movements are available, which is
not always the case. Here we consider both of these
possibilities. Estimated LOS values were found using
Table I.

7) Errors calculations. Steps 5) and 6) were repeated
500 times for each penetration rate, and for 18 different
penetrations rates in [0,1]. The selected penetration
ratios are listed in Figure 9. Deviations of the various
estimates from the ground truth values were computed
using the MAPE (Mean Absolute Percentage Error)
metric.

V. RESULTS

In this section, we compare the errors obtained with the
proposed method to those of the HCM.

A. VHT Estimation Errors

1) Lane Group Based: Figure 7 provides box plots of lane
group based VHT estimation errors under different penetration
rates of probe vehicles. The selected approach is the eastbound
direction of the intersection at Santa Anita Ave, which consists
of three different lane groups. We select the time period
from 4:15PM to 4:30PM instead of from 4:00PM to 4:15PM
because the network was initially empty and needed some

time to warm up. On each box, the central mark indicates the
median, and the bottom and top edges indicate the 25th (y25%)
and 75th (y75%) percentiles, respectively. The data points that
are out of the range, [y75%+1.5×(y75%− y25%), y25% −1.5×
(y75% − y25%)], are considered as outliers and are not plotted
in the figure. The whiskers of each box extend to the most
extreme data points not considered as outliers. Analogous plots
for other approaches, intersections, and time intervals exhibit
similar patterns.

The following observations can be made. First, the estima-
tion error as well as its variance reduces as the penetration
rate increases. This is true for all lane groups and population
sizes. Second, for a fixed penetration rate, the estimation error
reduces as the population size grows. Thus we can identify
two important factors for VHT inference: penetration rate
and population size. Either a high penetration rate or a large
population size is needed to produce good estimates of VHT
and delay from sampled travel times.

2) Approach Based: Figure 8 provides the box plots of
approach based VHT estimation errors for the same intersec-
tion and time period. Similar patterns as those in the lane
group case are apparent.

In addition, compared with the lane group based case, VHT
estimates at the approach level turn out to be more reliable
with smaller variance. This can be explained by the fact that
a larger number of samples is taken for the approach than for
the individual lane-groups, while the travel time patterns are
similar across lane groups in the same approach segment.

3) Impact of Penetration Rates: Based on the above analy-
sis, we further analyze the impact of penetration rates on the
estimation errors. For both lane group and approach based
methods, we first group the population size (P.S.) into different
bins. Then in each bin, we obtain the average VHT estimation
error for each given penetration rate. Figure 9 illustrates
the relation between the average VHT estimation error and
the penetration rate under different bins of population sizes.
Regardless of lane groups, approaches, and population sizes, it
is clear to find a monotonic decreasing trend in the estimation
error as the penetration rate increases. The improvement is
significant especially when the penetration rate is less than
10%. When the penetration rate is 10%, it generally requires
more than 80 vehicles (per 15 minutes) for one lane group
to guarantee the average estimation error less than 10%. For
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Fig. 8. Approach based VHT estimation errors at the intersection of Santa Anita Ave. from 4:15 PM to 4:30 PM. The population size is 140 for the EB
direction, 77 for the WB direction, 170 for the SB direction, and 124 for the NB direction. Penetration rates greater than 0.6 are not shown in this figure.
(a) Eastbound. (b) Westbound. (c) Southbound. (d) Northbound.

Fig. 9. Relations between VHT estimation errors and penetration rates of probe vehicles under different population sizes (P.S.). (a) Lane group based.
(b) Approach based.

the approach based case, it requires more than 100 vehicles
(per 15 minutes) to guarantee the same estimation accuracy.
However, since it is relatively easier for one approach to satisfy
such a requirement, it is better to estimate the performance
metrics at the approach level. Note that when the penetration
rate reaches one, the VHT estimation error is very small but
not zero. That is because the vehicle count from a mid-block
detector (n̄) generally has a small deviation from the actual
number of vehicles exiting the intersection (n).

B. Delay and LOS Calculation Errors

The ground truth delay is calculated using Eqs. (16) and (17)
by replacing the sets of observed travel times t̄ t g and t̄ t a with
the ground truth ones ttg and tta . The HCM delay is calculated
using Eqs. (1) to (9). The delay for the proposed method is
calculated using Eqs. (16) and (17). The same LOS lookup
table (Table I) is used to map the delays to the corresponding
LOS’s.

1) Delay: Figures 10 and 11 provide the lane group based
and the approach based delay estimation errors for the inter-
section at Santa Anita Ave from 4:15PM to 4:30PM. From the
figures, it is not surprising to find that the trends are similar
to those in Figures 7 and 8 since the delays are calculated
from the estimates of average travel times, which are also
used in the VHT estimation. As a comparison, we provide the
corresponding errors using the HCM delay calculation.

We find that our proposed method requires a sufficiently
large population size in order to outperform the HCM
method. This is generally true, for example, as shown in
Figures 10 and 11. In such a case, a low penetration rate,
e.g., 7%-10%, is enough. However, we do find an exception.
As shown in Figure 11(d), the northbound direction requires
a high penetration rate, e.g., 20%, for the proposed method
to outperform the HCM since its estimate is very close to the
ground truth value. Such an exception may be caused by the
following factors: (i) vehicles in this direction were assigned



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GAN et al.: ESTIMATION OF PERFORMANCE METRICS AT SIGNALIZED INTERSECTIONS 9

Fig. 10. Lane group based delay estimation errors in the eastbound direction of the intersection at Santa Anita Ave. from 4:15 PM to 4:30 PM. The delay
error using the HCM method is: 49.5% for Left turn; 14.9% for Through; and 28.5% for Right turn. Penetration rates greater than 0.6 are not shown in this
figure. (a) Eastbound: Left turn. (b) Eastbound: Through. (c) Eastbound: Right turn.

Fig. 11. Approach based delay estimation errors at the intersection of Santa Anita Ave. from 4:15 PM to 4:30 PM. The delay error using the HCM method
is: 36.1% for the EB direction; 90.9% for the WB direction; 15.4% for the SB direction; 7.5% from the NB direction. Penetration rates greater than 0.6 are
not shown in this figure. (a) Eastbound. (b) Westbound. (c) Southbound. (d) Northbound.

with constant headways from the source, which is consistent
with the assumption of uniform arrivals in the HCM method;
and (ii) there exists randomness, e.g., sampling of vehicles,
in our proposed method, which will also bias our estimation
results. Furthermore, we find that when the population size
is small, it requires a higher penetration rate to guarantee the
estimation accuracy. For example, the right-turn movement in
the eastbound direction (Figure 10(c)) has only 7 vehicles,
and it requires a penetration rate of more than 30% in order
to outperform the HCM method.

2) LOS: Table III summarizes the estimation results of
approach LOS for all intersections in the whole time period
(Totalling 368 samples). Inside the table, confusion matrix and
the following statistical metrics are provided for both the HCM
and the proposed methods: True Positive Rate (TPR), True
Negative Rate (TNR), Precision, Accuracy, and F1 Score. The
above metrics can be computed as

T P R = T P

T P + F N
, (18)

T N R = T N

F P + T N
, (19)

Precision = T P

T P + F P
, (20)

Accuracy = T P + T N

T P + F N + F P + T N
, (21)

F1 = 2T P

2T P + F P + F N
, (22)

where TP is True Positive, TN is True Negative, FP is False
Negative, and FN is False Negative.

From the table, we can find that the HCM method provides
poor performance at different levels of LOS’s. For example, it
only produces 7 out of 30 correct estimates at the LOS of B,
and 8 out of 35 correct estimates at the LOS of E. In contrast,
we find that when the penetration rate is low, e.g., 2%, the
proposed method performs worse than the HCM method,
both at the lane group and the approach levels. However,
as the penetration rate increases, the estimation gets more
accurate. For example, if the penetration rate reaches 7%, the
proposed method outperforms the HCM method both at the
lane group and the approach levels. Furthermore, we find that
the proposed method always performs better at the approach
level than the lane group level for any given penetration
rate. Note that, even with a high penetration rate, e.g., 10%,
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TABLE III

LOS ESTIMATION RESULTS FOR ALL INTERSECTIONS

the proposed method still provides incorrect estimates for
some approaches, which is a result of a low population size.
For example, at the LOS of D, the proposed method still
generates 2 out of 163 LOS estimates of A with pr = 10% at
the approach level.

VI. CONCLUSION

This article has proposed a simple but practical method
for computing performance metrics for intersections. Under
the assumption that travel time data can be obtained from

a sub-population of vehicles, we proposed to combine the
sample mean of travel times with the vehicle count obtained
from mid-block loop detectors to obtain an estimate of VHT.
This estimator has several advantages as compared to the
current state of the practice. First, it is data-driven rather than
model-driven and therefore, it does not rely on any modeling
assumptions. For this reason it can be applied in a variety
of scenarios, including congestion and spillback. It is also
very simple to compute as compared to the delay formulas
of the HCM. The method also does not require signal timing
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parameters to be known. Although the travel time distributions
were assumed to be stationary, it remains to be tested whether
the method works well under actuated or adaptive signal
control. The simple structure of the estimator makes it, in our
opinion, a good candidate for deployment, provided the travel
times can be obtained.

A microsimulation-based traffic model was used to evaluate
the performance of the estimator and compare it to the method-
ology of the HCM currently used by most traffic analysts in
the United States. The simulation model provided a set of
ground truth data, on which both methods were applied. The
complexities of the travel time distribution produced by the
simulator strengthened the case for a data-driven approach.
Two possibilities for data collection were considered: lane-
group level and approach level, and the results showed that
better results were obtained in the latter case. The study
also identified the penetration rate of probe vehicles and the
population size as the two main factors influencing the esti-
mation error. As a comparison, we first showed that the HCM
formulas often failed to produce correct values of LOS (as
shown in Table III). Then we showed that when the population
size is large, the proposed method only requires 7%-10%
of probe vehicles in order to obtain VHT, delay, and LOS
estimates that improve upon the HCM. These numbers hold
promise for the use of probe data for estimating performance
metrics for signalized intersections.

This study considered an ideal case that ignores errors in
the measured travel times. This was done for the sake of
clarity. However, it is easy to see that because the model is
linear, any additional measurement noise will transfer linearly
to the estimates. If ground truth travel time measures from
real technologies such Bluetooth, Cell Data Records (CDR),
etc. are available in the future, it is interesting to analyze the
magnitude and distribution of the measurement errors and the
corresponding impact on the proposed estimation method.
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