
6.43.28.6 VERIFICATION OF HYBRID SYSTEMS1

Claire J. Tomlin, Department of Aeronautics and Astronautics, Stanford University, Stan-
ford CA 94305-4035, USA.
Ian Mitchell, Department of Electrical Engineering and Computer Sciences, University of
California, Berkeley, CA 94709, USA.
Alexandre M. Bayen, Department of Aeronautics and Astronautics, Stanford University,
Stanford CA 94305-4035, USA.

Keywords: Hybrid Systems; Verification; Reachability; Safety.

Contents

1. Introduction
2. Hybrid Model and Verification Methodology

2.1 Continuous, Discrete, and Hybrid Systems
2.2 Safety Verification

3. Verifying Continuous Systems
3.1 A Game of Two Identical Vehicles
3.2 Computing Reachable Sets for Continuous Dynamic Games
3.3 Collision Avoidance Example Results

4. Verifying Hybrid Systems
4.1 Background
4.2 Computing Reachable Sets for Hybrid Systems

5. Flight Management System Example
6. Conclusions

Glossary

Hybrid automaton: A dynamical system which combines continuous-state and discrete-
state dynamics, in order to model systems which evolve both continuously and according to
discrete jumps.

Safety verification: Given a region of the state space which represents unsafe operation,
safety verification is a proof that the set of states from which the system can enter this unsafe
region has empty intersection with the system’s set of initial states.

Backwards reachable set: Given a target set of states, this is the set of states from which
trajectories start that can reach the target set.

Controller synthesis for safety: Extraction (from the reachable set computation) of the
control law which must be used on the boundary of the reachable set, in order to keep the
system state out of this reachable set.

Decidable problem: A problem that may be solved by an algorithm which terminates in
a finite number of steps.

Summary

Hybrid system theory lies at the intersection of the fields of engineering control theory and
computer science verification. It is defined as the modeling, analysis, and control, of systems
which involve the interaction of both discrete state systems, represented by finite automata,
and continuous state dynamics, represented by differential equations. The embedded autopi-

1This research is supported by DARPA under the Software Enabled Control Program (AFRL contract
F33615-99-C-3014), by the DoD Multidisciplinary University Research Initiative (MURI) program adminis-
tered by the Office of Naval Research under Grant N00014-02-1-0720.

1

Encyclopedia of Life Support Systems, Al Gogaisi (Ed.), UNESCO-EOLSS Publishers Co. Ltd. Ref: 6:43:28:6, 2005



lot of a modern commercial jet is a prime example of a hybrid system: the autopilot modes
correspond to the application of different control laws, and the logic of mode switching is
determined by the continuous state dynamics of the aircraft, as well as through interaction
with the pilot. To understand the behavior of hybrid systems, to simulate, and to control
these systems, theoretical advances, analyses, and numerical tools are needed. In this chap-
ter, a general model for a hybrid system is first presented, along with an overview of methods
for verifying continuous and hybrid systems. Then, a particular verification technique for
hybrid systems, based on two-person zero-sum game theory for automata and continuous
dynamical systems, is described. A numerical implementation of this technique using level
set methods, and its use in the design and analysis of aircraft collision avoidance protocols,
and in verification of autopilot logic, is demonstrated.

1. Introduction

The field of formal verification in computer science has achieved great success in the analysis
of large scale discrete systems: using temporal logic to express discrete sequences of events,
such as Component A will request data until Component B sends data, researchers in verifi-
cation have uncovered design flaws in such safety critical systems as microprocessors which
control aircraft cockpit displays and design standards for a military hardware bus. Discrete
analysis, however, is not rich enough to verify systems which evolve according to both con-
tinuous dynamics and discrete events. Embedded systems, or physical systems controlled by
a discrete logic, such as the current autopilot logic for automatically controlling an aircraft,
or a future automated protocol for controlling an aircraft in the presence of other aircraft,
are prime examples of systems in which event sequences are determined by continuous state
dynamics. These systems use discrete logic in control because discrete abstractions make it
easier to manage system complexity and discrete representations more naturally accommo-
date linguistic and qualitative information in controller design. While engineering control
theory has successfully designed tools to verify and control continuous state systems, these
tools do not extend to systems which mix continuous and discrete state, as in the examples
above.

Hybrid systems theory lies at the intersection of the two traditionally distinct fields of com-
puter science verification and engineering control theory. It is loosely defined as the mod-
eling and analysis of systems which involve the interaction of both discrete event systems
(represented by finite automata) and continuous time dynamics (represented by differential
equations). The goals of this research are in the design of verification techniques for hybrid
systems, the development of a software toolkit for efficient application of these techniques,
and the use of these tools in the analysis and control of large scale systems. In this chapter,
recent research results are summarized, and a detailed set of references is presented, on the
development of tools for the verification of hybrid systems, and on the application of these
tools to some interesting examples.

The problem that has received much recent research attention has been the verification of the
safety property of hybrid systems, which seeks a mathematically precise answer to the ques-
tion: is a potentially unsafe configuration, or state, reachable from an initial configuration?
For discrete systems, this problem has a long history in mathematics and computer science
and may be solved by posing the system dynamics as a discrete game; in the continuous
domain, control problems of the safety type have been addressed in the context of differen-
tial games. For systems involving continuous dynamics, it is very difficult to compute and
represent the set of states reachable from some initial set. In this chapter, recent solutions

2

Encyclopedia of Life Support Systems, Al Gogaisi (Ed.), UNESCO-EOLSS Publishers Co. Ltd. Ref: 6:43:28:6, 2005



to the problem are presented, including a method, based on the level set techniques of Osher
and Sethian, which determines an implicit representation of the boundary of this reachable
set. This method is based on the theorem, proved using two-person zero-sum game theory
for continuous dynamical systems, that the viscosity solution of a particular Hamilton-Jacobi
partial differential equation corresponds exactly to the boundary of the reachable set. In
addition, it is shown that useful information for the control of such systems can be extracted
from this boundary computation.

Much of the excitement in hybrid system research stems from the potential applications.
With techniques such as the above, it is now possible to verify, and design safe, automated
control schemes for low dimensional systems. Two interesting examples, one in the verifica-
tion of protocols for aircraft collision avoidance, and one in the verification of mode switching
logic in autopilots, are presented in this chapter. Other applications that have been stud-
ied in this framework are surveyed. This chapter concludes with a discussion of problem
complexity.

2. Hybrid Model and Verification Methodology

2.1 Continuous, Discrete, and Hybrid Systems

Much of control theory is built around continuous-state models of system behavior. For
example, the differential equation model given by

ẋ = f(x, u, d) (1)

describes a system with state x ∈ R
n that evolves continuously in time according to the

dynamical system ẋ = f(·, ·, ·), a function of x, u ∈ U ⊆ R
nu , d ∈ D ⊆ R

nd . In general, u

is used to represent variables that can be controlled, called control inputs, and d represents
disturbance inputs, which are variables that cannot be controlled, such as the actions of
another system in the environment. The initial state x(0) = x0 is assumed to belong to a set
X0 ⊆ R

n of allowable initial conditions. A trajectory of (1) is represented as (x(t), u(t), d(t)),
such that x(0) ∈ X0, and x(t) satisfies the differential equation (1) for control and disturbance
input trajectories u(t) and d(t). Sastry and Doyle are recommended as current references
for continuous-state control systems.

Discrete-state models, such as finite automata, are also prevalent in control. The finite
automaton given by

(Q, Σ, Init, R) (2)

models a system which is a finite set of discrete state variables Q, a set of input variables
Σ = Σu × Σd which is the Cartesian product of control actions σu ∈ Σu and disturbance
actions σd ∈ Σd, a set of initial states Init ⊆ Q, and a transition relation R : Q × Σ → 2Q

which maps the state and input space to subsets of the state space (2Q). A trajectory of
(2) is a sequence of discrete states and inputs, which satisfies the transition relation at each
step. The original work of Ramadge and Wonham brought the use of discrete state systems
to control, though parallels can be drawn between this work and that of Church, Büchi
and Landweber who originally analyzed the von Neumann-Morgenstern discrete games. A
comprehensive reference for modeling and control of discrete state systems is Cassandras
and Lafortune.

Control algorithms are concerned with the design of a signal, either a continuous or discrete

3

Encyclopedia of Life Support Systems, Al Gogaisi (Ed.), UNESCO-EOLSS Publishers Co. Ltd. Ref: 6:43:28:6, 2005



function of time, which when applied to the system causes the system state to exhibit
desirable properties. These properties should hold despite possible disruptive action of the
disturbance. A concrete example of a continuous-state control problem is in the control of an
aircraft: here the state (position, orientation, velocity) of the aircraft evolves continuously
over time in response to control inputs (throttle, control surfaces), as well as to disturbances
(wind, hostile aircraft).

A hybrid automaton combines continuous-state and discrete-state dynamic systems, in order
to model systems which evolve both continuously and according to discrete jumps. A hybrid
automaton is defined to be a collection:

(S, Init, In, f, Dom, R) (3)

where S = Q × R
n is the Cartesian product of discrete and continuous states; Init ⊆ S is

a set of initial states; In = (Σu × Σd) × (U × D) is the set of actions and inputs; f is a
function which takes state and input and maps to a new state, f : S × In → S; Dom ⊆ S is
a domain; and R : S × In → 2S is a transition relation.

The state of the hybrid automaton is represented as a pair (q, x), describing the discrete and
continuous state of the system. The continuous-state control system is “indexed” by the
mode and thus may change as the system changes modes. Dom describes, for each mode,
the subset of the continuous state space within which the continuous state may exist, and
R describes the transition logic of the system, which may depend on continuous state and
input, as well as discrete state and action. A trajectory of this hybrid system is defined as a
sequence of continuous flows combined with discrete jumps. The introduction of disturbance
parameters to both the control system defined by f and the reset relation defined by R will
allow us to treat uncertainties, environmental disturbances, and actions of other systems.

The hybrid automaton model presented above allows for general nonlinear dynamics. This
model was developed from those of Brockett, Branicky, Lygeros, and Nerode and Kohn,
for which the emphasis was on extending the standard modeling, reachability and stability
analyses, and controller design techniques to capture the interaction between the continuous
and discrete dynamics. Other approaches to modeling hybrid systems involve extending
finite automata to include simple continuous dynamics: these include the timed automata
of Alur and Dill, linear hybrid automata of Henzinger, and hybrid I/O automata of Lynch.

2.2 Safety Verification

Much of the research in hybrid systems has been motivated by the need to verify the behavior
of safety critical system components. The problem of safety verification may be encoded as
a condition on the region of operation in the system’s state space: given a region of the state
space which represents unsafe operation, prove that the set of states from which the system
can enter this unsafe region has empty intersection with the system’s set of initial states.

This problem may be posed as a property of the system’s reachable set of states. There
are two basic types of reachable sets. For a forward reachable set, the initial conditions
are specified and one seeks to determine the set of all states that can be reached along
trajectories that start in that set. Conversely, for a backward reachable set, a final or target
set of states is specified, and one seeks to determine the set of states from which trajectories
start that can reach that target set. For time invariant systems ẋ = f(x) without input, it
is easy to show that the backwards reachable set is the forwards reachable set of ẋ = −f(x).
It is interesting to note that the forward and backward reachable sets are not simply time

4

Encyclopedia of Life Support Systems, Al Gogaisi (Ed.), UNESCO-EOLSS Publishers Co. Ltd. Ref: 6:43:28:6, 2005



target set initial set
forwards reachable
set

backwards
reachable
set

Figure 1: Difference between backwards and forwards reachable sets.

unsafe
target set

initial
conditions

backwards

set
reachable

unsafe initialization

Figure 2: Using the backwards reachable set to verify safety.

reversals of each other. The difference is illustrated in Figure 1 for generic target and initial
sets, in which the arrows represent trajectories of the system. Figure 2 illustrates how a
backwards reachable set may be used to verify system safety.

Powerful software tools for the automatic safety verification of discrete systems have existed
for some time, such as Murφ (Dill), PVS, SMV, and SPIN. The verification of hybrid systems
presents a more difficult challenge, primarily due to the uncountable number of distinct states
in the continuous state space. In order to design and implement a methodology for hybrid
system verification, it is necessary to represent reachable sets of continuous systems, and to
evolve these reachable sets according to the system’s dynamics.

It comes as no surprise that the size and shape of the reachable set depends on the control
and disturbance inputs in the system: control variables may be chosen so as to minimize the
size of the backwards reachable set from an unsafe target, whereas the full range of distur-
bance variables must be taken into account in this computation. Thus, the methodology for
safety verification has two components. The first involves computing the backward reach-
able set from an a priori specified unsafe target set; the second involves extracting from
this computation the control law which must be used on the boundary of the backwards
reachable set, in order to keep the system state out of this reachable set. Application of this
methodology results in a system description with three simple modes (see Figure 3). Outside
of the backwards reachable set, and away from its boundary, the system may use any control
law it likes and it will remain safe (labeled as “safe” in Figure 3). When the system state
touches the reachable set or unsafe target set boundary, the particular control law which is
guaranteed to keep the system from entering the interior of the reachable set must be used.
Inside the reachable set (labeled as “outside safe set” in Figure 3), there is no control law
which will guarantee safety, however application of the particular optimal control law used
to compute the boundary may still result in the system becoming safe, if the disturbance is

5

Encyclopedia of Life Support Systems, Al Gogaisi (Ed.), UNESCO-EOLSS Publishers Co. Ltd. Ref: 6:43:28:6, 2005



boundary
of safe 
set 

outside 
safe set

on 

target set
unsafebackwards

set

safe (under

control)
appropriate

reachable

inside 
safe set

Figure 3: A discrete abstraction with appropriate control information.

not playing optimally for itself.

3. Verifying Continuous Systems

Computing reachable sets for safety specifications has been a main focus of the control and
computer aided verification communities for the past several years. In the past three years,
several experimental reachability tools have been developed, and may be classified according
to how sets of states are represented, and the assumptions on the dynamics under which
states are propagated. A group of methods which seek an efficient overapproximation of the
reachable set is classified as “overapproximative”. The tools d/dt (Maler) and Checkmate
(Krogh) represent sets as convex polyhedra, and propagate these polyhedra under linear
and affine dynamics, which could represent overapproximations of nonlinear dynamics along
each surface of the polyhedra. VeriSHIFT uses ellipsoidal overapproximations of reach sets
for linear systems with linear input; it implements techniques developed by Kurzhanski and
Varaiya. The tool Coho, developed by Greenstreet and Mitchell uses as set representa-
tion two dimensional projections of higher dimensional non-convex polyhedra, and evolves
these “projectagons” under affine over-approximations of nonlinear dynamics using linear
programming. A recent algorithm by Tiwari and Khanna proposes to divide the continu-
ous state space into a finite number of sets, and then to compute the reachable set using
a discrete algorithm. The method works for polynomial dynamics and the subzero level
sets of polynomials as set representation: by partitioning the state space into a “cylindrical
algebraic decomposition” based on the system polynomials, a discrete approximation of the
dynamics can be constructed.

A second group of methods is based on computing “convergent approximations” to reachable
sets: here the goal is to represent as closely as possible the true reachable set. Methods
include numerical computation of static Hamilton-Jacobi equations and to techniques from
viability theory and set valued analysis . In our work, we have developed a reachability
computation method based on level set techniques and viscosity solutions to Hamilton-Jacobi
equations. A set is represented as the zero sublevel set of an appropriate function, and the
boundary of this set is propagated under the nonlinear dynamics using a validated numerical
approximation of a time dependent Hamilton-Jacobi-Isaacs (HJI) partial differential equation
(PDE) governing system dynamics. These convergent approximative methods allow for both
control inputs and disturbance inputs in the problem formulation, and they compute a

6

Encyclopedia of Life Support Systems, Al Gogaisi (Ed.), UNESCO-EOLSS Publishers Co. Ltd. Ref: 6:43:28:6, 2005



Evader
(Player I)

Pursuer
(Player II)

u

d

d0

v

v

x1

x2

x3

Figure 4: Relative coordinate system. Origin is located at the center of the evader.

numerical solution on a fixed grid (the mesh points do not move during the computation).

In most of the overapproximative schemes, the reachable set representation scales polynomi-
ally with the continuous state space dimension n. Exceptions include orthogonal polyhedra,
which is exponential in n, and the algorithm based on cylindrical algebraic decomposition, in
which the representation size depends on the dimension of the polynomials involved. Since
algorithm execution time and its memory requirements generally scale linearly with the
size of the representation of the reachable set, overapproximative schemes in which the set
representation scales polynomially with n have a significant advantage over other schemes.
However, these overapproximative schemes are generally too imprecise for problems in which
the dynamics are nonlinear, and for which the shape of the reachable set is not a polygon or
an ellipse. The schemes based on convergent approximations are exponential in n, and thus
are not practical for problems of dimension greater than about five or six. However, these
schemes can all handle nonlinear dynamics, they work within a differential game setting, and
they make no assumptions about the shape of the reachable set.

In this section, using as motivation a classical pursuit-evasion game involving two identical
vehicles, methodology and results for computing reachable sets for continuous systems (1)
are presented. The material in this section is presented in detail in the Ph.D. dissertation of
Ian Mitchell.

3.1 A Game of Two Identical Vehicles

Consider as a demonstration example, a classical pursuit evasion game involving two identical
vehicles (see Merz for more details). If the vehicles get too close together, a collision occurs.
One of the vehicles (the pursuer) wants to cause a collision, while the other (the evader)
wants to avoid one. Each vehicle has a three dimensional state vector consisting of a location
in the plane and a heading. Isaacs pioneered a framework for solving such games, using a
method similar to the method of characteristics.

The problem is studied in relative coordinates (see Figure 4). The vehicles are drawn as
aircraft, as this example has been used as inspiration for verifying two-aircraft tactical conflict
avoidance strategies in Air Traffic Control.

Fixing the evader at the planar origin and facing to the right, the relative model of pursuer

7

Encyclopedia of Life Support Systems, Al Gogaisi (Ed.), UNESCO-EOLSS Publishers Co. Ltd. Ref: 6:43:28:6, 2005



with respect to evader is:

ẋ =
d

dt





x1

x2

x3



 =





−v + v cos x3 + ux2

v sin x3 − ux1

d − u



 = f(x, u, d), (4)

where the three state dimensions are relative planar location [x1 x2]
T ∈ R

2 and relative
heading x3 ∈ [0, 2π], and v ≥ 0 is the linear velocity of each aircraft. In Figure 4 the relative
heading is measured counter clockwise from the horizontal. The control input is the angular
velocity of the evader, u ∈ U = [−1, +1], and the disturbance input is d ∈ D = [−1, +1],
the pursuer’s angular velocity. A collision occurs if

√

x2
1 + x2

2 ≤ d0 for any value of x3, in
R

3 this collision set is a cylinder of radius d0 centered on the x3 axis. To solve this pursuit
evasion game, the set of initial states from which the pursuer can cause a collision despite
the best efforts of the evader must be determined.

3.2 Computing Reachable Sets for Continuous Dynamic Games

The backwards reachable set is the set of initial conditions giving rise to trajectories that
lead to some target set. More formally, let G0 be the target set, G(τ) be the backwards
reachable set over finite horizon τ < ∞, x(·) denote a trajectory of the system, and x(τ) be
the state of that trajectory at time τ . Then G(τ) is the set of x(0) such that x(s) ∈ G0 for
some s ∈ [0, τ ]. The choice of input values over time influences how a trajectory x(t) evolves.
For systems with inputs, the backwards reachable set G(τ) is the set of x(0) such that for
every possible control input u there exists a disturbance input d that results in x(s) ∈ G0 for
some s ∈ [0, τ ].

The solution to the pursuit evasion game described in the previous section is a backwards
reachable set. Let the target set be the collision set

G0 =

{

x ∈ R
3|

√

x2
1 + x2

2 ≤ d0

}

. (5)

Then G(τ) is the set of initial configurations such that for any possible control input chosen
by the evader, the pursuer can generate a disturbance input that leads to a collision within
τ time units.

A very general implicit surface function representation for the reachable set is used: for
example, consider the cylindrical target set (5) for the collision avoidance example. We
represent this set as the zero sublevel set of a scalar function φ0(x) defined over the state
space

φ0(x) =
√

x2
1 + x2

2 − d0,

G0 =
{

x ∈ R
3|φ0(x) ≤ 0

}

.

Thus, a point x is inside G0 if φ0(x) is negative, outside G0 if φ0(x) is positive, and on
the boundary of G0 if φ0(x) = 0. Constructing this signed distance function representa-
tion for G0 is straightforward for basic geometric shapes. Using negation, minimum, and
maximum operators, functions G0 which are unions, intersections, and set differences can
be constructed. For example, if Gi is represented by gi(x), then, min[g1(x), g2(x)] represents
G1 ∪ G2, max[g1(x), g2(x)] represents G1 ∩ G2, and max[g1(x),−g2(x)] represents G1 \ G2.

The main result of Mitchell’s work is to show that an implicit surface representation of the

8

Encyclopedia of Life Support Systems, Al Gogaisi (Ed.), UNESCO-EOLSS Publishers Co. Ltd. Ref: 6:43:28:6, 2005



Figure 5: Growth of the reachable set.

Figure 6: Other views of the reachable set.

backwards reachable set can be found by solving a modified HJI PDE. Using ∇φ to represent
the gradient of φ, the modified HJI PDE is

∂φ(x, t)

∂t
+ min [0, H(x,∇φ(x, t))] = 0, (6)

with Hamiltonian

H(x, p) = max
u∈U

min
d∈D

p · f(x, u, d) (7)

and terminal conditions

φ(x, 0) = φ0(x). (8)

If G0 is the zero sublevel set of φ0(x), then the zero sublevel set of the viscosity solution
φ(x, t) to (6)–(8) specifies the backwards reachable set as

G(τ) =
{

x ∈ R
3|φ(x,−τ) ≤ 0

}

.

Notice that (6) is solved from time t = 0 backwards to some t = −τ ≤ 0.

There are a few interesting points to make about the HJI PDE (6)–(8). First, the min [0, H]
formulation in (6) ensures that the reachable set only grows as τ increases. This formulation
effectively “freezes” the system evolution when the state enters the target set, which enforces
the property that a state which is labeled as “unsafe” cannot become “safe” at a future time.
Second, note that the maxu mind operation in computing the Hamiltonian (7) results in a
solution which is not necessarily a “no regret”, or saddle, solution to the differential game. By
ordering the optimization so that the maximum occurs first, the control input u is effectively
“playing” against an unknown disturbance – it is this order which produces a conservative
solution, appropriate for the application to system verification under uncertainty.

3.3 Collision Avoidance Example Results

This numerical method can be applied to the collision avoidance problem. In Figure 5, the
target set G0 for the example appears on the far left (the cylinder); the remaining images
show how G(τ) grows as τ increases from zero. For the parameters chosen earlier in this
section, the reachable set converges to a fixed point for τ & 2.6. Figure 6 shows several

9

Encyclopedia of Life Support Systems, Al Gogaisi (Ed.), UNESCO-EOLSS Publishers Co. Ltd. Ref: 6:43:28:6, 2005



Figure 7: Annotated frame from collision avoidance example animation.

Figure 8: Evader keeps pursuer from entering reachable set, and hence avoids collision.

views of this fixed point. Should the pursuer start anywhere within this reachable set, it
can cause a collision by choosing an appropriate input d, no matter what input u the evader
might choose. Conversely, if the pursuer starts outside this reachable set, then there exists
an input u that the evader can choose that will avoid a collision no matter what input d the
pursuer might choose. Thus, for initial conditions outside this set, the system can be verified
to be safe.

Note that the shape of the reachable set in this example complies with our intuition – the
relative heading coordinate x3 is the vertical coordinate in these figures, so a horizontal
slice represents all possible relative planar coordinates of the two vehicles at a fixed relative
heading. Consider a slice through the most extended part of the helical bulge (which occurs
at the midpoint of the set on the vertical axis). The relative heading for this slice is x3 = π,
which is the case in which the two aircraft have exactly opposite headings. It is not surprising
that the reachable set is largest at this relative heading, and smallest for slices at the top
and bottom of the reachable set, where x3 = 0 and thus the aircraft have the same heading.

Figure 7 shows an annotated frame from an animation of the collision system, and a series
of frames from that animation are shown in Figure 8, progressing from left to right. The
evader starts on the left surrounded by the collision circle, while the pursuer starts on the
right. The dotted shape surrounding the evader is the slice of the reachable set for the

Figure 9: Pursuer starts within the reachable set, and can thus cause a collision despite the
evader’s efforts.

10

Encyclopedia of Life Support Systems, Al Gogaisi (Ed.), UNESCO-EOLSS Publishers Co. Ltd. Ref: 6:43:28:6, 2005



current relative heading of the two vehicles; for example, in the leftmost figure the vehicles
have relative heading x3 ≈ π and so the horizontal midplane slice of the reachable set is
shown. The evader wants to continue to the right, and the pursuer simply wants to cause a
collision. By choosing its safe input according to (7), as the pursuer approaches the boundary
of the reachable set, the evader keeps the pursuer from entering the reachable set and thus
from causing a collision. Figure 9 shows a sequence in which the pursuer starts within the
reachable set and can cause a collision.

The computations discussed in this section are expensive to perform: they require gridding
the state space, and thus their complexity is exponential in the continuous state dimension.
The set in Figure 6 took about 5 minutes to compute on a three dimensional grid using
a standard Pentium III laptop; four dimensional problems can take anywhere from a few
hours to a few days to run. In the final section of this chapter, current work in computing
projective overapproximations to decrease the computation time to achieve a useful result
are discussed.

4. Verifying Hybrid Systems

Now consider the problem of computing reachable sets for hybrid systems. Assuming that
tools for discrete and continuous reachability are available, computing reachable sets for
hybrid systems requires keeping track of the interplay between these discrete and continuous
tools.

4.1 Background

Fundamentally, reachability analysis in discrete, continuous or hybrid systems seeks to par-
tition states into two categories: those that are reachable from the initial conditions, and
those that are not. Early work in this area focussed on problem classes which could be solved
in a finite number of steps: it was shown that decidability results exist for timed and some
classes of linear hybrid automata. Software tools were designed to automatically compute
reachable sets for these systems: Uppaal and Kronos for timed automata, and HyTech for
linear hybrid automata. Some of these tools allow symbolic parameters in the model, and
researchers began to study the problem of synthesizing values for these parameters in order
to satisfy some kind of control objective, such as minimizing the size of the backwards reach-
able set. The procedure described here was motivated by work on reachability computation
and controller synthesis on timed automata, and that for controller synthesis on linear hy-
brid automata. Tools based on the analysis of piecewise linear systems, using mathematical
programming tools such as CPLEX have found success in several industrial applications.

The hybrid system analysis algorithm presented here is built upon the implicit reachable set
representation and level set implementation for continuous systems, allowing representation
and analysis of nonlinear hybrid systems, with generally shaped sets. In this sense, this work
is related to that of the viability community , which has extended these concepts to hybrid
systems; though the numerical techniques presented here differ from theirs. Other hybrid
system reachability algorithms fall within this framework; the differences lie in their discrete
and continuous reachability solvers and the types of initial conditions, inputs, invariants and
guards that they admit. Tools such as d/dt, Checkmate, and VeriSHIFT have been designed
using the different methods of continuous reachable set calculation surveyed in the previous
section: the complexity of these tools is essentially the complexity of the algorithm used to
compute reachable sets in the corresponding continuous state space.

Methods for hybrid system verification listed above have found application in automotive

11

Encyclopedia of Life Support Systems, Al Gogaisi (Ed.), UNESCO-EOLSS Publishers Co. Ltd. Ref: 6:43:28:6, 2005



control problems, experimental industrial batch plants, vehicle collision avoidance problems,
as well as envelope protection. The problems that have been solved to date are generally of
low dimension: even the overapproximative methods to date have not been directly applied
to systems of continuous dimension greater than 6. In the next section, we present re-
sults for envelope protection on nonlinear, hybrid systems with three continuous dimensions,
representing the longitudinal dynamics of jet aircraft under hybrid control.

4.2 Computing Reachable Sets for Hybrid Systems

The algorithm is first described with a picture, and then the details of a few key components
are presented.

Consider the sequence of eight diagrams in figure 10. Draw the hybrid automaton as a set of
discrete states {q1, . . . , q7} with a transition logic represented by R (the arrows indicate the
possible discrete state transitions, the dependence on continuous state and input variables is
implied but not shown in the Figure). Associated to each discrete state qi are the continuous
dynamics ẋ = f(qi, x, (σu, σd), (u, d)) and domain Dom ⊆ qi×R

n, neither of which are shown
on the diagram. For illustrative purposes, consider only one step of our algorithm applied in
state q1, from which there exist transitions to states q2 and q3 (shown in diagram 2). Initialize
with the unsafe target sets (shown as sets in q1 and q2 in diagram 3), and sets which are
known to be safe (shown as the “safe” set in q3 in diagram 4). Augment the unsafe target
set in q1 with states from which there exists an uncontrolled transition to the unsafe set in
q2 (which is represented as a dashed arrow on diagram 5). Uncontrolled transitions may be
caused by reset relations affected by disturbance actions. In the absence of other transitions
out of state q1, the set of states backwards reachable from the unsafe target set in q1 may
be computed using the reachable set algorithm of the previous section on the dynamics
ẋ = f(qi, x(t), (σu(t), σd(t)), (u(t), d(t))) (diagram 6). However, there may exist regions of
the state space in q1 from which controllable transitions exist – these transitions could reset
the system to a safe region in another discrete state. This is illustrated in diagram 7, with the
region in which the system may “escape” to safety from q1. Thus, the backwards reachable
set of interest in this case is the set of states from which trajectories can reach the unsafe
target set, without hitting this safe “escape” set first. Call this reachable set the reach-avoid
set, it is illustrated in diagram 8.

The algorithm illustrated above is implemented in the following way. The target set G0 ⊆
Q × R

n can include different subsets of the continuous state space for each discrete mode:

G0 = {(q, x) ∈ Q × R
n|g(q, x) ≤ 0} (9)

for a level set function g : Q × R
n → R. Now, one would like to construct the largest set

of states for which the control, with action/input pair (σu, u) can guarantee that the safety
property is met despite the disturbance action/input pair (σd, d).

For a given set K ⊆ Q× R
n, we define the controllable predecessor Preu(K) and the uncon-

trollable predecessor Pred(K
c) (where Kc refers to the complement of the set K in Q × R

n)
by

Preu(K) = {(q, x) ∈ K : ∃(σu, u) ∈ Σu × U ∀(σd, d) ∈ Σd ×D R(q, x, σu, σd, u, d) ⊆ K}
Pred(K

c) = {(q, x) ∈ K : ∀(σu, u) ∈ Σu × U ∃(σd, d) ∈ Σd ×D R(q, x, σu, σd, u, d) ∩ Kc 6= ∅} ∪ Kc

(10)

Therefore Preu(K) contains all states in K for which controllable actions (σu, u) can force

12

Encyclopedia of Life Support Systems, Al Gogaisi (Ed.), UNESCO-EOLSS Publishers Co. Ltd. Ref: 6:43:28:6, 2005



q

2

q2

q2q2

q2q2

q2
q

2

1q

3q

2.

1q

3q

3.

1q

3q

4.

1q

3q

5.

1q

3q

6.

1q

3q

7.

1q

3q

8.

1.

1q

3q

7q

6q 4q

5q

unsafe

unsafe

safe

uncontrolled 
transition

unsafe
reachable

set

controlled 
transition

safe

reach−avoid
set

Figure 10: An illustration of the algorithm for computing reachable sets for hybrid systems.

13

Encyclopedia of Life Support Systems, Al Gogaisi (Ed.), UNESCO-EOLSS Publishers Co. Ltd. Ref: 6:43:28:6, 2005



1E2G

1G
G3

Figure 11: Detail of the reach-avoid set from diagram 8 of Figure 10.

the state to remain in K for at least one step in the discrete evolution. Pred(K
c), on the

other hand, contains all states in Kc, as well as all states from which uncontrollable actions
(σd, d) may be able to force the state outside of K.

Consider two subsets G ⊆ Q × R
n and E ⊆ Q × R

n such that G ∩ E = ∅. The reach-avoid
operator is defined as:

Reach(G,E) = {(q, x) ∈ Q × R
n | ∀u ∈ U ∃d ∈ D and t ≥ 0 such that

(q, x(t)) ∈ G and (q, x(s)) ∈ Dom \ E for s ∈ [0, t]}
(11)

where (q, x(s)) is the continuous state trajectory of ẋ(s) = f(q, x(s), σu, σd, u(s), d(s)) start-
ing at (q, x).

Now, consider the following algorithm:
initialization: W 0 = Gc

0, W+1 = ∅, i = 0
while W i 6= W i+1 do
W i−1 = W i \ Reach (Pred((W

i)c), Preu(W
i))

i = i − 1
end while

In the first step of this algorithm, remove from Gc
0 (the complement of G0), all states from

which a disturbance forces the system either outside Gc
0 or to states from which a disturbance

action may cause transitions outside Gc
0, without first touching the set of states from which

there is a control action keeping the system inside Gc
0. Since at each step, W i−1 ⊆ W i,

the set W i decreases monotonically in size as i decreases. If the algorithm terminates, we
denote the fixed point as W ∗. The set W ∗ is used to verify the safety of the system. Recall
once more from Figure 3: if the system starts inside W ∗, then there exists a control law,
extractable from this computational method, for which the system is guaranteed to be safe.

Returning to the pictorial description of the algorithm in Figure 10, and concentrating on
the result of one step of the algorithm detailed in Figure 11, note that, for iteration i:
Pred((W

i)c) = G1 ∪ G2, E1 ⊂ Preu(W
i), and Reach (Pred((W

i)c), Preu(W
i)) = G3.

To implement this algorithm, Preu, Pred, and Reach must be computed. The computation
of Preu and Pred requires inversion of the transition relation R subject to the quantifiers
∃ and ∀; existence of this inverse can be guaranteed subject to conditions on the map

14

Encyclopedia of Life Support Systems, Al Gogaisi (Ed.), UNESCO-EOLSS Publishers Co. Ltd. Ref: 6:43:28:6, 2005



R. In examples, this inversion may be performed by hand. The algorithm for computing
Reach(G,E) is a direct modification of the reachable set calculation of the previous section,
the details are presented in Ian Mitchell’s dissertation.

5. Flight Management System Example

In this section, the hybrid systems analysis is demonstrated on an interesting and current
example, the landing of a civilian aircraft.

The autopilots of modern jets are highly automated systems which assist the pilot in con-
structing and flying four-dimensional trajectories, as well as altering these trajectories online
in response to Air Traffic Control directives. The autopilot typically controls the throttle
input and the vertical and lateral trajectories of the aircraft to automatically perform such
functions as: acquiring a specified altitude and then leveling, holding a specified altitude,
acquiring a specified vertical climb or descend rate, automatic vertical or lateral navigation
between specified way points, or holding a specified throttle value. The combination of these
throttle-vertical-lateral modes is referred to as the flight mode of the aircraft. A typical com-
mercial autopilot has several hundred flight modes – it is interesting to note that these flight
modes were designed to automate the way pilots fly aircraft manually: by controlling the
lateral and vertical states of the aircraft to set points for fixed periods of time, pilots simplify
the complex task of flying an aircraft. Those autopilot functions which are specific to aircraft
landing are among the most safety critical, as reliable automation is necessary when there is
little room for altitude deviations. Thus, the need for automation designs which guarantee
safe operation of the aircraft has become paramount. Testing and simulation may overlook
trajectories to unsafe states: “automation surprises” have been extensively studied after the
unsafe situation occurs, and “band-aids” are added to the design to ensure the same problem
does not occur again. It is possible that the computation of accurate reachable sets inside
the aerodynamic flight envelope may be used to influence flight procedures and may help to
prevent the occurrence of automation surprises.

In this example, a landing aircraft is examined, attention is focussed the flap setting choices
available to the pilot. While flap extension and retraction are physically continuous oper-
ations, the pilot is presented with a button or lever with a set of discrete settings and the
dynamic effect of deflecting flaps is assumed to be minor. Thus, the flap setting as a discrete
variable.

A simple point mass model for aircraft vertical navigation is used, which accounts for lift L,
drag D, thrust T , and weight mg. The nonlinear longitudinal dynamics are modeled as





mV̇

mV γ̇

ḣ



 =





−D(α, V ) + T cos α − mg sin γ

L(α, V ) + T sin α − mg cos γ

V sin γ



 (12)

in which the state x = [V, γ, h] ∈ R
3 includes the aircraft’s speed V , flight path angle γ,

and altitude h. We assume the control input u = [T, α], with aircraft thrust T and angle of
attack α. The mass of the aircraft is denoted m. The functions L(α, V ) and D(α, V ) are
modeled based on empirical data and Prandtl’s lifting line theory :

L(α, V ) = 1
2
ρSV 2CL(α), D(α, V ) = 1

2
ρSV 2CD(α) (13)

where ρ is the density of air, S is wing area, and CL(α) and CD(α) are the dimensionless lift
and drag coefficients.

15

Encyclopedia of Life Support Systems, Al Gogaisi (Ed.), UNESCO-EOLSS Publishers Co. Ltd. Ref: 6:43:28:6, 2005



clean wing (0u) 0u → 25d 25 d 25d → 50d 50 d

Figure 12: Discrete transition diagram of flap deflection settings. Clean wing represents no deflection, 25
d represents a deflection of 25◦, and 50 d, a deflection of 50◦. The modes 0u → 25d and 25d → 50d are timed
modes to reflect deflection time: if the pilot selects mode 25 d from clean wing, for example, the model will
transition into an “intermediate” mode for 10 seconds, before entering 25 d. Thus, the transitions from clean
wing to 0u → 25d and from 25 d to 25d → 50d are controlled transitions (σu) in our analysis, the others are
uncontrolled transitions (σd).

In determining CL(α) standard autoland procedures are assumed: the aircraft switches be-
tween three fixed flap deflections δ = 0◦, δ = 25◦ and δ = 50◦ (with slats either extended
or retracted), thus constituting a hybrid system with different nonlinear dynamics in each
mode. This model is representative of current aircraft technology; for example, in civil jet
cockpits the pilot uses a lever to select among four predefined flap deflection settings. A
linear form for the lift coefficient CL(α) = hδ +4.2α is assumed, where parameters h0◦ = 0.2,
h25◦ = 0.8 and h50◦ = 1.25 are determined from experimental data for a DC9-30. The
value of α at which the vehicle stalls decreases with increasing flap deflection: αmax

0◦ = 16◦,
αmax

25◦ = 13◦, αmax
50◦ = 11◦; slat deflection adds 7◦ to the αmax in each mode. The drag coeffi-

cient is computed from the lift coefficient as CD(α) = 0.041 + 0.045C2
L(α) and includes flap

deflection, slat extension and gear deployment corrections. Thus, for a DC9-30 landing at
sea level and for all α ∈ [−5◦, αmax

δ ], the lift and drag terms in (12) are given by

L(α, V ) = 68.6 (hδ + 4.2α)V 2 D(α, V ) = (2.7 + 3.08 (hδ + 4.2α)2)V 2

In this implementation, three operational modes are considered: 0u, which represents δ = 0◦

with undeflected slats, 25d, which represents δ = 25◦ with deflected slats, and 50d, for
δ = 50◦ with deflected slats.

Approximately 10 seconds are required for a 25◦ degree change in flap deflection. For this
implementation, transition modes 0u → 25d and 25d → 50d are defined with timers, in which
the aerodynamics are those of (12) with coefficients which interpolate those of the bounding
operational modes. The corresponding discrete automaton is shown in Figure 12. Transition
modes have only a timed switch at t = tdelay, so controlled switches will be separated by at
least tdelay time units and the system is nonzeno. For the executions shown below, tdelay = 10
seconds.

The aircraft enters its final stage of landing close to 50 feet above ground level. Restrictions
on the flight path angle, aircraft velocity and touchdown (TD) speed are used to determine
the initial safe set W0:























h ≤ 0 landing or has landed

V > V stall
δ faster than stall speed

V < V max
slower than limit speed

V sin γ ≥ ż0 limited TD speed

γ ≤ 0 monotonic descent

∪























h > 0 aircraft in the air

V > V stall
δ faster than stall speed

V < V max
slower than limit speed

γ > −3◦ limited descent flight path

γ ≤ 0 monotonic descent

(14)

16

Encyclopedia of Life Support Systems, Al Gogaisi (Ed.), UNESCO-EOLSS Publishers Co. Ltd. Ref: 6:43:28:6, 2005



Figure 13: Maximally controllable safe envelopes for the multimode landing example. From
left to right the columns represent modes 0u, 25d and 50d.

Numerical values for a DC9-30 are used: stall speeds V stall
0u = 78 m/s, V stall

25d = 61 m/s,
V stall

50d = 58 m/s, maximal touchdown speed ḣ0 = 0.9144 m/s, and maximal velocity V max =
83 m/s. The aircraft’s input range is restricted to a fixed thrust at 20% of its maximal value
(to a value of T = 32kN), and α ∈ [0◦, 10◦].

The results of the fixed point computation are shown in Figures 13 and 14. The interior
of the surface shown in the first row of Figure 13 represents the initial envelopes W0 for
each of the 0u, 25d and 50d modes. The second row of the figure shows the maximally
controllable subset of the envelope for each mode individually, as determined by the reachable
set computation for continuous systems. The clean wing configuration 0u becomes almost
completely uncontrollable, while the remaining modes are partially controllable. The subset
of the envelope that cannot be controlled in these high lift/high drag configurations can be
divided into two components. For low speeds, the aircraft will tend to stall. For values of h

near zero and low flight path angles γ, the aircraft cannot pull up in time to avoid landing
gear damage at touchdown. The third row shows the results for the hybrid reachable set
computation. Here, both modes 0u and 25d are almost completely controllable, since they
can switch instantaneously to the fully deflected mode 50d. However, no mode can control
the states h near zero and low γ, because no mode can pull up in time to avoid landing gear
damage. Figure 14 shows a slice through the reach and avoid sets for the hybrid analysis

17

Encyclopedia of Life Support Systems, Al Gogaisi (Ed.), UNESCO-EOLSS Publishers Co. Ltd. Ref: 6:43:28:6, 2005



50 60 70 80 90
−6

−4

−2

0

2

V (m/s)

γ 
(d

eg
re

es
)

00u

50 60 70 80 90
−6

−4

−2

0

2

V (m/s)

γ 
(d

eg
re

es
)

slice at h = 5 m
25d

50 60 70 80 90
−6

−4

−2

0

2

V (m/s)

γ 
(d

eg
re

es
)

50d

Figure 14: Slices through the reach and avoid sets for the hybrid analysis at a fixed altitude
of h = 5m. From left to right the columns represent modes 0u, 25d and 50d.

at a fixed altitude of h = 5m, for each of the 0u, 25d and 50d modes. Here, the grey-scale
represents the following: dark grey is the subset of the initial escape set that is also safe in
the current mode, mid-grey is the initial escape set, light grey is the known unsafe set, and
white is the computed reach set, or those states from which the system can neither remain
in the same mode nor switch to safety.

6. Conclusions

In this chapter, a method and algorithm for hybrid systems analysis, specifically, for the
verification of safety properties of hybrid systems, are presented. This algorithm represents a
set implicitly as the zero sublevel set of a given function, and computes its evolution through
the hybrid dynamics using a combination of constrained level set methods and discrete
mappings through transition functions. Other available methods are briefly summarized.
All techniques rely on the ability to compute reachable sets of hybrid systems, and they
differ mainly in the assumptions made about the representation of sets, and evolution of the
continuous state dynamics.

Acknowledgments

The authors would like to thank John Lygeros and Shankar Sastry, who are coauthors of
the hybrid system algorithm and provided valuable insight into the more recent viscosity
solution proofs. Meeko Oishi provided valuable insights into the use of hybrid analysis of
flight management systems to inspire interface design. The authors also acknowledge the
help of Ron Fedkiw and Stan Osher regarding level set methods; the rendering software that
was used in this chapter was written by Ron Fedkiw.

References

[Alur et al., 1993] Alur, R., Courcoubetis, C., Henzinger, T. A., and Ho, P.-H. (1993). Hy-
brid automata: An algorithmic approach to the specification and verification of hybrid
systems. In Grossman, R. L., Nerode, A., Ravn, A. P., and Rischel, H., editors, Hybrid
Systems, LNCS, pages 366–392. Springer Verlag, New York.

[Alur and Dill, 1994] Alur, R. and Dill, D. (1994). A theory of timed automata. Theoretical
Computer Science, 126:183–235.

18

Encyclopedia of Life Support Systems, Al Gogaisi (Ed.), UNESCO-EOLSS Publishers Co. Ltd. Ref: 6:43:28:6, 2005



[Anderson, 1991] Anderson, J. (1991). Fundamentals of Aerodynamics. McGraw Hill Inc.,
New York.

[Asarin et al., 2000] Asarin, E., Bournez, O., Dang, T., and Maler, O. (2000). Approximate
reachability analysis of piecewise-linear dynamical systems. In Krogh, B. and Lynch, N.,
editors, Hybrid Systems: Computation and Control, LNCS 1790, pages 21–31. Springer
Verlag.

[Aubin et al., 2002] Aubin, J.-P., Lygeros, J., Quincampoix, M., Sastry, S., and Seube, N.
(2002). Impulse differential inclusions: A viability approach to hybrid systems. IEEE
Transactions on Automatic Control, 47(1):2–20.

[Balluchi et al., 1998] Balluchi, A., Benedetto, M. D., Pinello, C., Rossi, C., and
Sangionvanni-Vincentelli, A. (1998). Hybrid control for automotive engine management:
The cut-off case. In Henzinger, T. and Sastry, S., editors, Hybrid Systems: Computation
and Control, number 1386 in LNCS, pages 13–32. Springer Verlag, New York.

[Bardi and Capuzzo-Dolcetta, 1997] Bardi, M. and Capuzzo-Dolcetta, I. (1997). Opti-
mal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser,
Boston.

[Bayen et al., 2002a] Bayen, A. M., Crück, E., and Tomlin, C. J. (2002a). Guaranteed
overapproximation of unsafe sets for continuous and hybrid systems: Solving the Hamilton-
Jacobi equation using viability techniques. In Tomlin, C. J. and Greenstreet, M. R.,
editors, Hybrid Systems: Computation and Control, LNCS 2289, pages 90–104. Springer
Verlag.

[Bayen et al., 2002b] Bayen, A. M., Mitchell, I., Oishi, M., and Tomlin, C. J. (2002b). Au-
tomatic envelope protection and cockpit interface analysis of an autoland system using
hybrid system theory. Submitted to the AIAA Journal of Guidance, Control, and Dynam-
ics.

[Bayen and Tomlin, 2001] Bayen, A. M. and Tomlin, C. J. (2001). A construction procedure
using characteristics for viscosity solutions of the Hamilton-Jacobi equation. In Proceedings
of the IEEE Conference on Decision and Control, pages 1657–1662, Orlando, FL.

[Bemporad and Morari, 1999] Bemporad, A. and Morari, M. (1999). Verification of hybrid
systems via mathematical programming. In Vaandrager, F. and van Schuppen, J. H.,
editors, Hybrid Systems: Computation and Control, number 1569 in LNCS, pages 30–45.
Springer Verlag, Berlin.

[Botchkarev and Tripakis, 2000] Botchkarev, O. and Tripakis, S. (2000). Verification of hy-
brid systems with linear differential inclusions using ellipsoidal approximations. In Krogh,
B. and Lynch, N., editors, Hybrid Systems: Computation and Control, LNCS 1790, pages
73–88. Springer Verlag.

[Branicky, 1994] Branicky, M. S. (1994). Control of Hybrid Systems. PhD thesis, Department
of Electrical Engineering and Computer Sciences, Massachusetts Institute of Technology.

[Brockett, 1993] Brockett, R. (1993). Hybrid models for motion control systems. In Trentel-
man, H. and Willems, J., editors, Perspectives in Control, pages 29–54. Birkhauser,
Boston.

19

Encyclopedia of Life Support Systems, Al Gogaisi (Ed.), UNESCO-EOLSS Publishers Co. Ltd. Ref: 6:43:28:6, 2005



[Büchi and Landweber, 1969] Büchi, J. R. and Landweber, L. H. (1969). Solving sequential
conditions by finite-state operators. In Proceedings of the American Mathematical Society,
pages 295–311.

[Burch et al., 1992] Burch, J., Clarke, E. M., McMillan, K., Dill, D., and Hwang, L.
(1992). Symbolic model checking: 1020 states and beyond. Information and Computation,
98(2):142–170.

[Cardaliaguet et al., 1999] Cardaliaguet, P., Quincampoix, M., and Saint-Pierre, P. (1999).
Set-valued numerical analysis for optimal control and differential games. In Bardi, M.,
Parthasarathy, T., and Raghavan, T. E. S., editors, Stochastic and Differential Games:
Theory and Numerical Methods, volume 4 of Annals of International Society of Dynamic
Games. Birkhäuser.

[Cassandras and Lafortune, 1999] Cassandras, C. and Lafortune, S. (1999). Introduction to
Discrete Event Systems. Kluwer, Boston.

[Church, 1962] Church, A. (1962). Logic, arithmetic, and automata. In Proceedings of the
International Congress of Mathematicians, pages 23–35.

[Chutinan and Krogh, 2001] Chutinan, A. and Krogh, B. H. (2001). Verification of infinite-
state dynamic systems using approximate quotient transition systems. IEEE Transactions
on Automatic Control, 46(9):1401–1410.

[Crandall et al., 1984] Crandall, M. G., Evans, L. C., and Lions, P.-L. (1984). Some prop-
erties of viscosity solutions of Hamilton-Jacobi equations. Transactions of the American
Mathematical Society, 282(2):487–502.

[Dang, 2000] Dang, T. (2000). Vérification et synthèse des systèmes hybrides. PhD thesis,
Institut National Polytechnique de Grenoble (Verimag).

[Dang and Maler, 1998] Dang, T. and Maler, O. (1998). Reachability analysis via face lift-
ing. In Sastry, S. and Henzinger, T., editors, Hybrid Systems: Computation and Control,
number 1386 in LNCS, pages 96–109. Springer Verlag.

[Dill, 1996] Dill, D. L. (1996). The Murφ verification system. In Conference on Computer-
Aided Verification, LNCS, pages 390–393. Springer-Verlag.

[Doyle et al., 1992] Doyle, J., Francis, B., and Tannenbaum, A. (1992). Feedback Control
Theory. Macmillan, New York.

[Esprit, 2001] Esprit (2001). Verification of hybrid systems: Results of a european union
esprit project. In Maler, O., editor, European Journal of Control, Vol. 7, Issue 4.

[Greenstreet and Mitchell, 1999] Greenstreet, M. and Mitchell, I. (1999). Reachability anal-
ysis using polygonal projections. In Vaandrager, F. and van Schuppen, J. H., editors, Hy-
brid Systems: Computation and Control, number 1569 in LNCS, pages 103–116. Springer
Verlag, New York.

[Henzinger, 1996] Henzinger, T. (1996). The theory of hybrid automata. In Proceedings of the
11th Annual Symposium on Logic in Computer Science, pages 278–292. IEEE Computer
Society Press.

20

Encyclopedia of Life Support Systems, Al Gogaisi (Ed.), UNESCO-EOLSS Publishers Co. Ltd. Ref: 6:43:28:6, 2005



[Henzinger et al., 1997] Henzinger, T. A., Ho, P., and Wong-Toi, H. (1997). HyTech: A
model checker for hybrid systems. Software Tools for Technology Transfer, 1:110–122.

[Holzmann, 1997] Holzmann, G. (1997). The model checker Spin. IEEE Transactions on
Software Engineering, 23(5):279–295. Special issue on Formal Methods in Software Prac-
tice.

[Isaacs, 1967] Isaacs, R. (1967). Differential Games. John Wiley.

[Kurzhanski and Varaiya, 2000] Kurzhanski, A. B. and Varaiya, P. (2000). Ellipsoidal tech-
niques for reachability analysis. In Krogh, B. and Lynch, N., editors, Hybrid Systems:
Computation and Control, LNCS 1790, pages 202–214. Springer Verlag.

[Larsen et al., 1997] Larsen, K., Pettersson, P., and Yi, W. (1997). Uppaal in a nutshell.
Software Tools for Technology Transfer, 1.

[Lygeros, 1996] Lygeros, J. (1996). Hierarchical, Hybrid Control of Large Scale Systems.
PhD thesis, Department of Electrical Engineering and Computer Sciences, University of
California at Berkeley.

[Lynch et al., 2002] Lynch, N., Segala, R., and Vaandraager, F. (2002). Hybrid I/O au-
tomata. Submitted. Also, Technical Report MIT-LCS-TR-827b, MIT Laboratory for
Computer Science, Cambridge, MA 02139.

[Merz, 1972] Merz, A. W. (1972). The game of two identical cars. Journal of Optimization
Theory and Applications, 9(5):324–343.

[Mitchell, 2001] Mitchell, I. (2001). Games of two identical vehicles. Technical report, SU-
DAAR 740, Stanford University Department of Aeronautics and Astronautics.

[Mitchell, 2002] Mitchell, I. (2002). Application of Level Set Methods to Control and Reach-
ability Problems in Continuous and Hybrid Systems. PhD thesis, Scientific Computing
and Computational Mathematics, Stanford University.

[Mitchell et al., 2001] Mitchell, I., Bayen, A. M., and Tomlin, C. J. (2001). Validating
a Hamilton-Jacobi approximation to hybrid system reachable sets. In Benedetto, M.
D. D. and Sangiovanni-Vincentelli, A., editors, Hybrid Systems: Computation and Con-
trol, LNCS 2034, pages 418–432. Springer Verlag.

[Mitchell et al., 2002] Mitchell, I., Bayen, A. M., and Tomlin, C. J. (2002). Computing
reachable sets for continuous dynamic games using level set methods. IEEE Transactions
on Automatic Control. Submitted.

[Mitchell and Tomlin, 2002] Mitchell, I. and Tomlin, C. J. (2002). Overapproximating reach-
able sets by Hamilton-Jacobi projections. Journal of Scientific Computing. Submitted May
2002. Accepted with minor revisions August 2002.

[Nerode and Kohn, 1993] Nerode, A. and Kohn, W. (1993). Models for hybrid systems:
Automata, topologies, controllability, observability. In Grossman, R. L., Nerode, A., Ravn,
A. P., and Rischel, H., editors, Hybrid Systems, LNCS 736, pages 317–356. Springer Verlag,
New York.

21

Encyclopedia of Life Support Systems, Al Gogaisi (Ed.), UNESCO-EOLSS Publishers Co. Ltd. Ref: 6:43:28:6, 2005



[Oishi et al., 2001] Oishi, M., Tomlin, C. J., Gopal, V., and Godbole, D. (2001). Address-
ing multiobjective control: Safety and performance through constrained optimization. In
Benedetto, M. D. D. and Sangiovanni-Vincentelli, A., editors, Hybrid Systems: Computa-
tion and Control, LNCS 2034, pages 459–472. Springer Verlag.

[Osher and Fedkiw, 2002] Osher, S. and Fedkiw, R. (2002). The Level Set Method and Dy-
namic Implicit Surfaces. Springer-Verlag.

[Osher and Sethian, 1988] Osher, S. and Sethian, J. A. (1988). Fronts propagating with
curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal
of Computational Physics, 79:12–49.

[Owre et al., 1992] Owre, S., Rushby, J. M., and Shankar, N. (1992). PVS: A prototype
verification system. In Kapur, D., editor, 11th International Conference on Automated
Deduction (CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752,
Saratoga, NY. Springer-Verlag.

[Ramadge and Wonham, 1989] Ramadge, P. J. G. and Wonham, W. M. (1989). The control
of discrete event dynamical systems. Proceedings of the IEEE, Vol.77(1):81–98.

[Sastry, 1999] Sastry, S. S. (1999). Nonlinear Systems: Analysis, Stability and Control.
Springer Verlag, New York.

[Tiwari and Khanna, 2002] Tiwari, A. and Khanna, G. (2002). Series of abstractions for
hybrid automata. In Tomlin, C. J. and Greenstreet, M. R., editors, Hybrid Systems:
Computation and Control, LNCS 2289, pages 465–478. Springer Verlag.

[Tomlin et al., 2000] Tomlin, C. J., Lygeros, J., and Sastry, S. (July 2000). A game theoretic
approach to controller design for hybrid systems. Proceedings of the IEEE, 88(7):949–970.

[Tomlin et al., 2001] Tomlin, C. J., Mitchell, I., and Ghosh, R. (2001). Safety verification of
conflict resolution maneuvers. IEEE Transactions on Intelligent Transportation Systems,
2(2):110–120. June.

[Vidal et al., 2000] Vidal, R., Schaffert, S., Lygeros, J., and Sastry, S. S. (2000). Controlled
invariance of discrete time systems. In Krogh, B. and Lynch, N., editors, Hybrid Systems:
Computation and Control, LNCS 1790, pages 437–450. Springer Verlag.

[von Neumann and Morgenstern, 1947] von Neumann, J. and Morgenstern, O. (1947). The-
ory of Games and Economic Behavior. Princeton University Press.

[Yovine, 1997] Yovine, S. (1997). Kronos: A verification tool for real-time systems. Software
Tools for Technology Transfer, 1:123–133.

22

Encyclopedia of Life Support Systems, Al Gogaisi (Ed.), UNESCO-EOLSS Publishers Co. Ltd. Ref: 6:43:28:6, 2005




