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Abstract— We consider the problem of projecting a vector
onto the simplex ∆ = {x ∈ Rd+ :

∑d
i=1 xi = 1}, using

a Bregman projection. This is a common problem in first-
order methods for convex optimization and online-learning
algorithms, such as mirror descent. We derive the KKT con-
ditions of the projection problem, and show that for Bregman
divergences induced by ω-potentials, one can efficiently compute
the solution using a bisection method. More precisely, an ε-
approximate projection can be obtained in O(d log 1

ε
). We also

consider a class of exponential potentials for which the exact
solution can be computed efficiently, and give a O(d log d)
deterministic algorithm and O(d) randomized algorithm to
compute the projection. In particular, we show that one can
generalize the KL divergence to a Bregman divergence which
is bounded on the simplex (unlike the KL divergence), strongly
convex with respect to the `1 norm, and for which one can still
solve the projection in expected linear time.

I. INTRODUCTION

Many first-order methods for convex optimization and
online learning can be formulated as iterative projections of a
vector on a feasible set. Consider for example the constrained
convex problem, minimizex∈X f(x), where X is a convex set
and f : X → R is convex. This problem can be solved
using the mirror descent algorithm, a first-order method
proposed by Nemirovski and Yudin in [21] (see also [4]),
which generalizes the projected gradient descent method, by
replacing the Euclidean projection step with a generalized
Bregman projection. This method can be summarized in
Algorithm 1.

Algorithm 1 Mirror descent method with learning rates (ητ )
and Bregman divergence Dψ .

1: for τ ∈ N do
2: Query a sub-gradient vector g(τ) ∈ ∂f(x(τ))
3: Update

x(τ+1) = arg min
x∈X

Dψ(x, (∇ψ)−1(∇ψ(x(τ))−ητg(τ)))

(1)
4: end for

Here, Dψ is the Bregman divergence induced by a dis-
tance generating function ψ. The definition and properties
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of Bregman divergences will be reviewed in Section II.
Some important instances of the mirror descent method
include projected gradient descent, obtained by taking the
Bregman divergence to be the squared Euclidean distance,
and the exponentiated gradient descent [18] (also called
Hedge algorithm or multiplicative weights algorithm [1]),
obtained by taking the Bregman divergence to be the KL
divergence.

In this article, we focus specifically on simplex-
constrained convex problems. That is, we suppose that X
is the simplex ∆d = {x ∈ Rd+ :

∑d
i=1 xi = 1}, or more

generally, a product of scaled simplexes, X = α1∆d1 ×
· · · × αI∆

dI . Simplex-constrained problems include non-
parametric statistical estimation, see for example Section
7.2 in [8], multi-commodity flow problems, see Chapter 12
in [10], tomography image reconstruction [5] and learning
dynamics in repeated games [20]. Other variants of the mirror
descent method have been studied as well, such as stochastic
mirror descent [17], [19].

Besides its applications to convex optimization, simplex-
constrained mirror descent plays an important role in online
learning problems [9], in which a decision maker chooses,
at each iteration τ , a distribution x(τ) over a finite action
set A with |A| = d. Then, a bounded loss vector `(τ) ∈
[0, 1]d is revealed, and the decision maker incurs expected
loss

〈
`(τ), x(τ)

〉
=
∑d
i=1 x

(τ)
i `

(τ)
i . This sequential decision

problem is also called prediction with expert advice [11],
and has a long history which dates back to Hannan [15] and
Blackwell [6], who studied this problem in the context of
repeated games.

In (adversarial) online learning problems, one seeks to
design an algorithm which has a guarantee on the worst-case
regret, defined as follows: if the algorithm is presented with a
sequence of losses (`(τ))1≤τ≤T , and it generates a sequence
of decisions (x(τ))1≤τ≤T , then the cumulative regret of the
algorithm up to iteration T is

R((`(τ))0≤τ≤T ) =
∑T
τ=1

〈
`(τ), x(τ)

〉
−minx∈∆

∑T
τ=1

〈
`(τ), x

〉
,

and the worst-case regret is the maximum
such regret over admissible sequences of losses
max(`(τ))0≤τ≤T

R((`(τ))0≤τ≤T ). An algorithm
is said to have sublinear regret if its worst-
case regret grows sub-linearly in T , that is,
lim supT→∞max(`(τ))0≤τ≤T

R((`(τ))0≤τ≤T )

T ≤ 0. The
online mirror descent method, obtained simply by replacing
the subgradient vector g(τ) in Algorithm 1 with the
loss vector `(τ), defines a large class of online learning
algorithms with sub-linear regret, see for example the
survey of Bubeck and Cesa-Bianchi in [9]. The online
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mirror descent method is summarized in Algorithm 2.

Algorithm 2 Online mirror descent method with learning
rates (ητ ) and Bregman divergence Dψ .

1: for τ ∈ N do
2: Play action a(τ) ∼ x(τ)

3: Discover loss vector `(τ) ∈ [0, 1]d

4: Incur expected loss
〈
`(τ), x(τ)

〉

5: Update

x(τ+1) = arg min
x∈∆

Dψ(x, (∇ψ)−1(∇ψ(x(τ))−ητ `(τ)))

(2)
6: end for

Online mirror descent, and its stochastic variant, have
been applied to several problems including multi-armed ban-
dits [9], [2], machine learning [12] and repeated games [11],
to cite a few.

In all the variants of simplex-constrained mirror descent,
one needs to solve, at each iteration τ , the Bregman pro-
jection step given in equation (1) or (2). Some instances
of Bregman projections are known to have an exact solution
which can be computed efficiently. For example, the solution
of the KL divergence projection on the simplex is given by
the exponential weights update [21], [3], and the Euclidean
projection on the simplex can be computed efficiently either
by sorting and thresholding in O(d log d), or by using a
randomized pivot method in O(d), see [13].

In this article, we start by deriving the KKT conditions of
the Bregman projection problem in Section II, then consider,
in Section III, a general class of Bregman divergences,
induced by ω-potentials, as defined by Audibert et al. [2].
We show that for this class, the solution can be approximated
efficiently: an ε-approximate solution can be computed in
O(d log 1

ε ) operations. In Section IV, we consider a class
of exponential potentials, and study the resulting Bregman
projection, a generalization of the KL-divergence projection.
We show that for this class, the exact solution can be
computed using a deterministic algorithm with O(d log d)
complexity, or a randomized algorithm with expected linear
complexity. We also study the properties of the resulting
Bregman divergence. In particular, we emphasize a tradeoff
between strong convexity and boundedness, two properties
which affect the convergence rates of the mirror descent
method.

II. BREGMAN PROJECTION AND OPTIMALITY
CONDITIONS

Let ψ : X → R be a convex function defined on a
convex set X , and let X̊ be the subset of X on which ψ
is differentiable. Let ∇ψ : X̊ → R be the gradient of ψ,
and R its range. The Bregman divergence induced by ψ is
defined as follows

Dψ : X × X̊ → R+

(x, y) 7→ Dψ(x, y) = ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉
(3)

By convexity of ψ, the Bregman divergence is non-negative,
and x 7→ Dψ(x, y) is convex. We will refer to ψ as the
distance-generating function. We say that ψ is `ψ-strongly
convex with respect to a reference norm ‖ · ‖ if

Dψ(x, y) ≥ `ψ
2
‖x− y‖2 ∀x, y ∈ X × X̊ .

In order for the Bregman projection (1) to be well-defined,
the gradient vector (or loss vector) at iteration τ must satisfy
the following consistency condition:

∇ψ(x(τ))− ητg(τ) ∈ R. (4)

A. Interpretations of the Bregman projection

The Bregman projection, given in equation (1), can be in-
terpreted as projecting on X , the vector (∇ψ)−1(∇ψ(x(τ))−
ητg

(τ)), obtained by mapping the current iterate x(τ) to the
set R through ∇ψ, taking a step in the opposite direction
of the gradient, then mapping the new vector back through
(∇ψ)−1, see Nemirovski and Yudin [21].

A second interpretation can be obtained, as observed by
Beck and Teboulle [3], by rewriting the objective function
as follows: denoting the vector (∇ψ)−1(∇ψ(x(τ))−ητg(τ))
by x̃(τ), we have by definition of Dψ

x(t+1) = arg min
x∈∆

Dψ(x, x̃(τ))

= arg min
x∈∆

ψ(x)− ψ(x̃(τ))−
〈
∇ψ(x̃(τ)), x− x̃(τ)

〉

= arg min
x∈∆

ψ(x)−
〈
∇ψ(x(τ))− ητg(τ), x

〉
,

which is equivalent to minimizing

x(τ+1) = arg min
x∈∆

ητ
(
f(x(τ)) +

〈
g(τ), x− x(τ)

〉)
+Dψ(x, x(τ)),

which can be interpreted as follows: the first term f(x(τ))+〈
g(τ), x− x(τ)

〉
is the linear approximation of f around the

current iterate x(τ), and the second term Dψ(x, x(τ)) is a
non-negative function which penalizes deviations from x(τ).
The step size (or learning rate) ητ , controls the relative
weight of both terms.

B. Simplex-constrained Bregman projection

In the remainder of the paper, we will assume, to simplify
the discussion, that the feasible set is the simplex ∆d = {x ∈
Rd+ :

∑d
i=1 xi = 1}.

We observe that all the results can be readily extended to
the case in which X is a product of scaled simplexes, as
follows: suppose X = α1∆d1 ×· · ·×αK∆dK , with αk > 0,
and let ψk be a distance generating function on ∆dk . Then
consider the function

ψ : α1∆d1 × · · · × αK∆dK → R

(α1x1, . . . , αKxK) 7→
K∑

k=1

αkψk(xk).

The gradient of ψ is simply ∇ψ : α1∆̊d1 × · · · ×
αK∆̊dK → R1 × · · · × RK , (α1x1, . . . , αKxK) 7→
(∇ψ1(x1), . . . ,∇ψK(xK)), and its inverse is given by
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(∇ψ)−1 : R1 × . . .RK → α1∆̊d1 × · · · × αK∆̊dK ,
(y1, . . . , yK) 7→ (α1∇ψ−1

1 (y1), . . . , αK∇ψ−1
K (yK)). Fi-

nally, the Bregman divergence decomposes as follows

Dψ((αkxk)k, (αkyk)k)

=
∑
k

αkψk(xk)−
∑
k

αkψk(yk)−
∑
k

〈∇ψ(yk), αk(xk − yk)〉

=
∑
k

αkDψk (xk, yk).

Therefore, the projection on X with Bregman divergence
Dψ can be decomposed into K projections on ∆dk with
Bregman divergence Dψk , as follows:

arg min
xk∈∆dk

Dψ(x, (∇ψ)−1(∇ψ(x(τ))− ητg(τ)))

= arg min
xk∈∆dk

∑

i

αkDψk(xk,∇ψ−1
k (∇ψk(x

(τ)
k )− ητg(τ)

k )),

assuming the consistency condition holds for each k.
Example 1 (Euclidean projection): Consider the function

ψ(x) = 1
2‖x‖22. Then ∇ψ(x) = x, and the Bregman diver-

gence is simply Dψ(x, y) = 1
2‖x− y‖22. As a consequence,

the Bregman projection step reduces to

arg min
x∈∆d

Dψ(x, (∇ψ)−1(∇ψ(x(τ))− ητg(τ)))

= arg min
x∈∆d

1

2
‖x− (x(τ) − ητg(τ))‖22,

which corresponds to a projected gradient descent update,
with step size ητ .

C. Optimality conditions

We now derive the KKT conditions for the Bregman
projection problem given by

minimizex∈Rd Dψ(x, (∇ψ)−1(∇ψ(x̄)− ḡ))

subject to x ∈ ∆d
(5)

where, x̄ ∈ ∆d, and ḡ ∈ Rd are given. Note that we combine
ητg

(τ) into a single vector ḡ, to simplify notation. By strong
convexity, the solution is unique.

Proposition 1: Consider the Bregman projection prob-
lem (5). Then x? ∈ Rd is optimal if and only if there exist
λ? ∈ Rd+ and ν? ∈ R such that





x? = (∇ψ)−1(∇ψ(x̄)− ḡ + λ? + ν?),∑d
i=1 x

?
i = 1,

∀i, x?i ≥ 0, λ?i x
?
i = 0,

where ν? is the vector whose entries are all equal to ν?.
Proof: Define the Lagrangian, for x ∈ Rd, λ ∈ Rd+,

and ν ∈ R,

L(x, λ, ν) = Dψ(x, (∇ψ)−1(∇ψ(x̄)− ḡ))

− 〈λ, x〉+ ν(1−
d∑

i=1

xi). (6)

For all x, y ∈ X̊ , the gradient of the Bregman divergence is
given by

∇xDψ(x, y) = ∇ψ(x)−∇ψ(y).

Thus the gradient of L is given by

∇xL(x, λ, ν) = ∇ψ(x)−∇ψ(x̄) + ḡ − λ− ν.

Writing the KKT conditions of problem (5), we have that
(x?, λ?, ν?) is optimal if and only if





∇ψ(x?)−∇ψ(x̄) + ḡ − λ? − ν? = 0,∑
i x

?
i = 1,

∀i, x?i ≥ 0, λ?i ≥ 0, λ?i x
?
i = 0,

and the first equation can be rearranged as x? =
(∇ψ)−1(∇ψ(x̄) − ḡ + λ? + ν?), which proves the claim.

In the next section, we will derive an efficient algorithm to
compute an approximate solution for the class of Bregman
divergences induced by ω-potentials, by solving the KKT
system given in Proposition 1.

III. EFFICIENT APPROXIMATE PROJECTION WITH
ω-POTENTIALS

Definition 1: Let a ∈ (−∞,+∞] and ω ≤ 0. An increas-
ing, C1-diffeomorphism φ : (−∞, a) → (ω,+∞) is called
an ω-potential if

lim
u→−∞

φ(u) = ω, lim
u→a

φ(u) = +∞,
∫ 1

0

φ−1(u)du <∞.

We associate, to an ω-potential φ, the distance-generating

ω

x

1

a0

φ(u)∫ xi
1
φ−1(u)du

Fig. 1. Illustration of an ω-potential

function ψ defined as follows

ψ : (ω,+∞)d → R

x 7→
d∑

i=1

∫ xi

1

φ−1(u)du.

By definition, ψ is finite (in particular, the third condition
on the potential ensures that ψ is finite on the boundary
of the simplex since

∫ 0

1
φ−1(u)du < ∞), differentiable on

(ω,+∞)d, and its gradient is given by

∇ψ : (ω,∞)d → R = (−∞, a)d

x 7→ ∇ψ(x) = (φ−1(xi))i=1,...,d,

and since φ−1 in increasing, ψ is convex. Similarly, the
inverse of its gradient is

(∇ψ)−1 : (−∞, a)d → (ω,∞)d

y 7→ (φ(yi))i=1,...,d.
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Proposition 2: Consider the Bregman projection onto the
simplex given in Problem (5), and assume that ψ is induced
by an ω-potential φ. Then x? is a solution if and only if
there exists ν? ∈ R such that{

∀i, x?i =
(
φ(φ−1(x̄i)− ḡi + ν?)

)
+
,∑d

i=1 x
?
i = 1,

where x+ denoted the positive part of x, x+ = max(x, 0).
Proof: Combining the expression of ∇ψ and (∇ψ)−1

with Proposition 1, we have that x? is optimal if and only
if there exist ν? ∈ R and λ? ∈ Rd+ such that





∀i, x?i = φ(φ−1(x̄i)− ḡi + ν? + λ?i ),∑d
i=1 x

?
i = 1,

∀i, x?i ≥ 0, x?i λ
?
i = 0.

Let I = {i : x?i > 0} be the support of x?. Then by the
complementary slackness condition, we have for all i ∈ I,
λ?i = 0, thus x?i = φ(φ−1(x̄i)− ḡi + ν?), and for all i /∈ I,

φ(φ−1(x̄i)− ḡi + ν?)

≤ φ(φ−1(x̄i)− ḡi + ν? + λ?i ) since φ is increasing
= x?i = 0.

Therefore x?i can be simply written x?i =(
φ(φ−1(x̄i)− ḡi + ν?)

)
+

which proves the claim.
Next, we make the following observation regarding the

support of the solution:
Proposition 3: Let x? be the solution to the projection

problem (5), and let I be its support. Then for all i, j, if
i ∈ I and φ−1(x̄i)− ḡi ≤ φ−1(x̄j)− ḡj , then j ∈ I.

Proof: Follows from Proposition 2 and the fact that φ
is increasing.

As a consequence of the previous propositions, comput-
ing the projection reduces to computing the optimal dual
variable ν?, and since the potential is increasing, one can
iteratively approximate ν? using a bisection method, given
in Algorithm 3: we start by defining a bound on the optimal
ν?, ν ≤ ν? ≤ ν̄, then we iteratively halve the size of
the interval by inspecting the value of a carefully defined
criterion function.

Theorem 1: Consider the Bregman projection onto the
simplex given in Problem (5), and assume that ψ is induced
by an ω-potential φ. Let ε > 0, and consider the bisection
method given in Algorithm 3. Then the Algorithm terminates
after T = O(log 1

ε ) steps, and its output x̃(ν̄(T )) is such that

‖x̃(ν̄(T ))− x?‖1 ≤ ε.
Each step of the algorithm has complexity O(d), thus the
total complexity is O

(
d log 1

ε

)
.

Proof: Define, as in Algorithm 3, the function

x̃(ν) =
(
φ(φ−1(x̄i)− ḡi + ν)+

)
i=1,...,d

.

Since φ is, by assumption, increasing, so is ν 7→ x̃i(ν),
which is the key fact that allows us to use a bisection.

We will denote by a superscript (t) the value of each
variable at iteration t of the loop. To prove the claim, we
show the following invariant for t:

Algorithm 3 Bisection method to compute the projection x?

with precision ε.
1: Input: x̄, ḡ, ε.
2: Initialize

ν̄ = φ−1(1)−max
i
φ−1(x̄i)− ḡi

ν = φ−1 (1/d)−max
i
φ−1(x̄i)− ḡi

3: Define x̃(ν) =
(
φ(φ−1(x̄i)− ḡi + ν)+

)
i=1,...,d

4: while ‖x̃(ν)− x̃(ν)‖1 > ε do
5: Let ν+ ← ν̄+ν

2
6: if

∑
i x̃i(ν

+) > 1 then
7: ν̄ ← ν+

8: else
9: ν ← ν+

10: end if
11: end while
12: Return x̃(ν̄)

(i) 0 ≤ ν̄(t) − ν(t) ≤ ν̄(0)−ν(0)

2t ,
(ii) ∀i, 0 ≤ x̃i(ν(t)) ≤ x̃i(ν(t)) ≤ 1,

(iii)
∑d
i=1 x̃i(ν

(t)) ≤ 1 ≤∑d
i=1 x̃i(ν̄

(t)).

We first prove the invariant for t = 0. Let i0 =
arg maxi φ

−1(x̄i) − ḡi. By definition of ν̄(0) and ν(0), we
have

φ−1 (1/d)− ν = φ−1(x̄i0)− ḡi0 = φ−1(1)− ν̄, (7)

and it follows that x̃i0(ν(0)) = 1
d and x̃i0(ν̄(0)) = 1.

By (7), ν̄(0) − ν(0) = φ−1(1) − φ−1(1/d) ≥ 0 (since φ−1

is increasing), which proves (i). Next, since ν 7→ x̃i(ν) is
increasing, we have

0 ≤ x̃i(ν(0)) ≤ x̃i(ν̄(0)) ≤ x̃i0(ν̄(0)) = 1,

which proves (ii). Finally, we have

∑d
i=1 x̃i(ν

(0)) ≤ dx̃i0(ν(0)) = 1,
∑d
i=1 x̃i(ν̄

(0)) ≥ x̃i0(ν̄(0)) = 1,

which proves (iii). This proves the invariant for t = 0. Now
suppose it holds at iteration t, and let us prove it still holds
at t + 1. By definition of the bisection (lines 5–10), we
immediately have

ν̄(t+1) − ν(t+1) =
ν̄(t) − ν(t)

2
=

1

2

ν̄(0) − ν(0)

2t
,

which proves (i). We also have that ν(t) ≤ ν(t+1) ≤ ν̄(t+1) ≤
ν̄(t), which proves (ii) since ν 7→ x̃i(ν) is increasing. Finally,
(iii) follows from the condition of the bisection (line 6).

To conclude the proof, we simply observe that since the
distance |ν̄ − ν| decreases exponentially, the algorithm will
terminate after a number of steps logarithmic in 1/ε. Indeed,
since φ is C1 on (−∞, a), it is Lipschitz-continuous on

3294



[φ−1 (0) , φ−1(1)]. Let L be its Lipschitz constant, then

‖x̃(ν(t))− x̃(ν̄(t))‖1 =

d∑

i=1

|x̃i(ν(t))− x̃i(ν̄(t))|

≤ dL|ν(t) − ν̄(t)|

=
dL|ν(0) − ν̄(0)|

2t
by (ii),

thus the algorithm terminates after T = log2
|ν(0)−ν̄(0)|

εdL
iterations, and the last iterate satisfies

‖x̃(ν?)− x̃(ν̄(T ))‖1
≤ ‖x̃(ν(T ))− x̃(ν̄(t))‖1 by (iii) and since x̃i are increasing
≤ ε,

which concludes the proof.

IV. EFFICIENT EXACT PROJECTION WITH EXPONENTIAL
POTENTIALS

We now consider a subclass of ω-potentials, for which we
derive the exact solution.

Definition 2 (Exponential potential): Let ε ≥ 0. The
function

φε : (−∞,+∞)→ (−ε,+∞)

u 7→ eu−1 − ε,
is called the exponential potential with parameter ε. It is a
(−ε)-potential.
The distance generating function induced by this class of
potentials is given by

ψε(x) =

d∑
i=1

∫ xi

1

φ−1
ε (u)du =

d∑
i=1

∫ xi

1

1 + ln(u+ ε)du

=

d∑
i=1

(xi + ε) ln(xi + ε)− (1 + ε) ln(1 + ε)

= H(x+ ε)−H(1 + ε),

where ε is the vector whose entries are all equal to ε, and H
is the generalized negative entropy function, defined on Rd+

H(x) =
∑d
i=1 xi lnxi.

The corresponding Bregman divergence is

Dψε(x, y) = H(x+ ε)−H(y + ε)− 〈∇H(y + ε), x− y〉
= DKL(x+ ε, y + ε)

=

d∑

i=1

(xi + ε) ln
xi + ε

yi + ε
,

and will be denoted DKL,ε(x, y). In particular, when ε = 0,
DKL,ε(x, y) is the KL divergence between the distribution
vectors x and y. When ε > 0, the Bregman divergence is the
KL divergence between x+ ε and y+ ε. In particular, as we
will see in Proposition 6, DKL,ε(x, y) is bounded whenever
ε > 0, while the KL divergence (ε = 0) can be unbounded.

As mentioned in the introduction, projecting on the sim-
plex with the KL divergence plays a central role in many
applications such as online learning. In particular, the projec-
tion problem can be solved exactly inO(d) operations, which

ε ln ε+ (1 + ε) ln(1 + ε)
0 1

H(x)
Hε(x) = H(x+ ε), ε = .1

Fig. 2. Illustration of the distance generating function induced by
exponential potentials with parameter ε, for d = 2: H(x) = x1 ln(x1) +
(1− x1) ln(1− x1).

makes this projection efficient. However, some variants of
mirror descent, such as stochastic mirror descent, require
the Bregman divergence to be bounded on the simplex in
order to have guarantees on the convergence rate, see for
example [14]. In the remainder of this section, we will
show that projecting with the generalized KL divergence
DKL,ε enjoys many desirable properties (strong convexity
with respect to the `1 norm, boundedness), and the projection
can still be computed efficiently.

A. A sorting algorithm to compute the exact projection

We first apply the optimality conditions of Proposition 2
to this special class, and show that the solution is entirely
determined by its support.

Proposition 4: Consider the Bregman projection onto the
simplex given in Problem (5), with Bregman divergence
DKL,ε. Let x? be the solution and I = {i : x?i > 0} its
support. Then

{
∀i ∈ I, x?i = −ε+ (x̄i+ε)e

−ḡi

Z? ,

Z? =
∑
i∈I(x̄i+ε)e

−ḡi

1+|I|ε .
(8)

Proof: Applying Proposition 2 with the expression
φ(u) = eu−1 + ε and φ−1(u) = 1 + ln(u + ε), x? is a
solution if and only if there exists ν? ∈ R such that ∀i,
x?i =

(
−ε+ (x̄i + ε)e−ḡieν

?)
+

, and
∑
i x

?
i = 1. Thus, if

I is the support of x?, then these optimality conditions are
equivalent to

{
∀i ∈ I, x?i = −ε+ (x̄i + ε)e−ḡieν

?

,∑
i∈I −ε+ (x̄i + ε)e−ḡieν

?

= 1,

and the second equation can be rewritten as

1 + ε|I| = eν
?∑

i∈I(x̄i + ε)e−ḡi ,

which proves the claim, with Z? = e−ν
?

.
Proposition 4 shows that solving the Bregman projection

with generalized KL divergence reduces to finding the sup-
port of the solution. Next, we show that the support has a
simple characterization. To this end, we associate to (x̄, ḡ)
the vector ȳ defined as follows

∀i, ȳi = (x̄i + ε)e−ḡi ,

and we denote by ȳσ(i) the i-th largest element of ȳ.
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Algorithm 4 Sorting method to compute the Bregman pro-
jection with Dψε

1: Input: x̄, ḡ
2: Output: x?

3: Form the vector ȳi = (x̄i + ε)e−ḡi

4: Sort y, let ȳσ(i) be the i-th smallest element of y.
5: Let j? be the smallest index for which

c(j) := (1 + ε(d− j + 1))ȳσ(j) − ε
∑

i≥j

ȳσ(i) > 0

6: Set Z =
∑
i≥j? ȳσ(i)

1+ε(d−j?+1)
7: Set

x?i =

(
−ε+

ȳi
Z(j?)

)

+

Proposition 5: The function

c(j) 7→ (1 + ε(d− j + 1))ȳσ(j) − ε
∑

i≥j

ȳσ(i)

is increasing, and the support of x? is {σ(j?), . . . , σ(n)},
where j? = min{j : c(j) > 0}.

Proof: First, straightforward algebra shows that

c(j + 1)− c(j) = (1 + ε(d− j))(ȳσ(j+1) − ȳσ(j)) ≥ 0.

Thus c is increasing. To prove the second part of the
claim, we know by Proposition 3 that the support is
{σ(i?), . . . , σ(n)} for some i?, and to show that i? = j? =
min{j : c(j) > 0}, it suffices to show that c(i?) > 0 and
c(j) ≤ 0 for all j < i?. First, by the expression (8) of x?,
we have

x?σ(i?) = −ε+
ȳσ(i?)∑
i≥i? ȳσ(i)

1+ε(d−i?+1)

> 0,

which is equivalent to c(i?) > 0. And if j < i? (i.e. σ(j) is
outside the support), then by the expression (8) again,

0 = x?σ(j) ≥ −ε+
ȳσ(j)∑
i≥i? ȳσ(i)

1+ε(d−i?+1)

which is equivalent to

(1 + ε(d− i? − 1))ȳσ(j) − ε
∑

i≥i?
ȳσ(i) ≤ 0,

but c(j) is smaller than the LHS, since

c(j)− (1 + ε(d− i? − 1))ȳσ(j) − ε
∑

i≥i?
ȳσ(i)

= ε
∑

j≤i<i?
ȳσ(j) − ȳσ(i) ≤ 0,

which concludes the proof.
Theorem 2: Algorithm 4 solves the Bregman projection

problem with exponential potential φε in O(d log d) itera-
tions.

Proof: Correctness of the algorithm follows from the
characterization of the support of x? in Proposition 5 and

Algorithm 5 QuickProjection Algorithm to compute the
Bregman projection with Dψε

1: Input: x̄, ḡ
2: Output: x?

3: Form the vector ȳi = (x̄i + ε)e−ḡi

4: Initialize J = {1, . . . , d}, S = 0, C = 0, s? = d+ 1
5: while J 6= ∅ do
6: Select a random pivot index j ∈ J
7: Partition J

J + = {i ∈ J : ȳi ≥ ȳj} J− = {i ∈ J : ȳi < ȳj}
and compute

S+ =
∑

i∈J+

ȳi C+ = |J +|

8: Let γ = (1 + ε(C + C+))ȳj − ε(S + S+)
9: if γ > 0 then

10: J ← J−, s? = j
11: S ← S + S+, C ← C + C+

12: else
13: J ← J +

14: end if
15: end while
16: Set Z = S

1+εC
17: Set

x?i =
(
−ε+

ȳi
Z

)
+

the expression of x? in Proposition 4. The complexity of the
sort operation (step 4) is O(d log d), and finding j? (step 5)
can be done in linear time since the criterion function c(·) is
such that c(j+1)−c(j) = (1+ε(d−j))(ȳσ(j+1)− ȳσ(j)), so
each criterion evaluation costs O(1). Therefore, the overall
complexity of Algorithm 4 is O(d log d).

B. A randomized pivot algorithm to compute the exact
solution

We now propose a randomized version of Algorithm 4,
which selects a random pivot at each iteration, instead of
sorting the full vector. The resulting algorithm, which we call
QuickProject, is an extension of the QuickSelect algorithm
due to Hoare [16]. A similar idea is used in the randomized
version of the `2 projection on the simplex in [13].

Theorem 3: In expectation, the QuickProject Algorithm
terminates after O(d) operations, and outputs the solution
x? of the Bregman projection problem 5 with the Bregman
divergence DKL,ε.

Proof: First, we prove that the algorithm has expected
linear complexity. Let T (n) be the expected complexity of
the while loop when |J | = n.

The partition and compute step (7) takes 3n operations,
then we recursively apply the loop to J− or J +, which
have sizes (m,n−m) for any m ∈ {1, . . . , n}, with uniform
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probability. Thus we can bound T (n) as follows

T (n) ≤ 3n+
1

n

n∑

m=1

T (max(m,n−m))

≤ 3n+
2

n

n∑

m=n
2

T (m),

and we can show by induction that T (n) ≤ 12n, since
T (0) = 0 and

3n+
2

n

n∑

m=n
2

12m ≤ 3n+ 12
3n

4
= 12n.

To prove the correctness of the algorithm, we will prove
that once the while loop terminates, s? = σ(j?), and S,C are
respectively the sum and the cardinality of {ȳσ(i) : i ≥ j?},
then by Proposition 4, we have the correct expression of x?.
We start by showing the following invariants:

(i) If ȳσ(mt), is the largest element in J (t), then σ(mt +
1) = (s?)(t).

(ii) J (t) contains σ(j?) or σ(j? − 1).
(iii) S and C are the sum and cardinality of {i : σ(i) ≥ s?}.
(iv) γ(t) = c(j(t)), where c is the criterion function defined

in Proposition 5.

The invariant holds for the first iteration since J (1) =
{1, . . . , d}, mt = d, and S(1) = C(1) = 0. Suppose the
invariant is true at iteration t of the loop. Then two cases are
possible:

1) If γ(t) ≤ 0, then J (t+1) = (J (t))+ and m(t+1) = m(t),
and the invariant still holds.

2) If γ(t) > 0, then J (t+1) = (J (t))− and (s?)(t+1) =
j(t), thus

{i : σ(i) ≥ (s?)t+1}
= {i : σ(i) ≥ (s?)(t)} ∪ {i : (s?)t+1 ≤ σ(i) ≤ (s?)(t) − 1}
= {i : σ(i) ≥ (s?)(t)} ∪ (J (t))+,

and by the update step (lines 10–11), the invariant still
holds.

To finish the proof, suppose the while loop terminates after
T iterations, i.e. J (T+1) = ∅. We claim that (s?)(T+1) =
σ(j?). During the last update, two cases are possible:

1) If γ(T ) > 0, then ȳj(T ) is the smallest element of
J (T ). In this case, since c(i) ≤ 0 for i < j?, and
J (T ) contains σ(j?) or σ(j? − 1), it must be that
j(T ) = σ(j?), thus

(s?)T+1 = j(T ) = σ(j?).

2) If γ(T ) ≤ 0, then ȳj(T ) is the largest element of J (T ),
in this case, since c(j?) > 0, it must be that j(T ) =
σ(j? − 1), so m(t) = j? − 1 and

(s?)(T+1) = (s?)(T ) = σ(m(t) + 1) = σ(j?).

This concludes the proof.

C. Properties of the generalized KL divergence

Algorithms 4 and 5 give efficient methods for computing
the projection with generalized KL divergence DKL,ε. In this
section, we show that this family of Bregman divergences
enjoys additional properties, given below.

Proposition 6: For all ε > 0, DKL,ε is `ε-strongly convex
and Lε-smooth w.r.t. ‖ · ‖1, and bounded by Dε on ∆, with

`ε ≥
1

1 + dε
, Lε ≤

1

ε
, Dε ≤ ln

1 + ε

ε
.

Proof: First, we show strong convexity. Let x, y ∈ ∆.
By Taylor’s theorem, ∃z ∈ (x+ ε, y + ε) such that

DKL,ε(x, y) = H(x+ ε)−H(y + ε)− 〈∇H(y + ε), x− y〉

=
1

2

〈
x− y,∇2H(z)(x− y)

〉

=
1

2

∑

i

(xi − yi)2

zi
,

where we used the fact that the Hessian of the negative
entropy function is ∇2H(z) = diag( 1

zi
). And since ∀i,

zi ≥ ε (z belongs to the segment (x+ ε, y + ε)), it follows
that

DKL,ε(x, y) ≤ 1

2ε

∑

i

(xi − yi)2 ≤ 1

2ε
‖x− y‖21.

Furthermore, by the Cauchy-Schwartz inequality,
(
∑
i |xi − yi|)

2 ≤∑i
(xi−yi)2

zi

∑
i zi, thus

DKL,ε(x, y) ≥ 1

2

‖x− y‖21
‖z‖1

=
1

2

1

1 + dε
‖x− y‖21.

To compute the upper bound on DKL,ε, we observe that
DKL,ε(x, y) is jointly-convex in (x, y) (by joint-convexity
of the KL divergence), therefore, its maximum on ∆d ×
∆d is attained on a vertex of the feasible set, that is, for
(x, y) = (δi0 , δj0), for some (i0, j0), where δi0 is the Dirac
distribution on i0. Finally, simple calculation shows that

DKL,ε(δ
i0 , δj0) =

{
0 if i0 = j0,
ln 1+ε

ε otherwise.

0
0.5

1 0

0.5

11
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p

q

0 1
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DKL(x, y0)
DKL,ε(x, y0)
`ε
2
‖x− y0‖21

Lε
2
‖x− y0‖21

Fig. 3. Illustration of Proposition 6, when d = 2. The distributions x
and y are parameterized as follows: x = (p, 1 − p) and y = (q, 1 − q).
The surface plot (left) shows the generalized KL divergence for ε = .1,
with, in dashed lines, the quadratic upper and lower bounds, `ε

2
‖y − x‖21

and Lε
2
‖x − y‖21. The second plot (right) compares DKL,.1(x, y0) and

DKL(x, y0) for a fixed y0 = (.35, .65).
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D. Numerical experiments

We provide a simple python implementation of the
projection algorithms at github.com/walidk/
BregmanProjection. The implementation of
Algorithm 3 is generic and can be instantiated for
any ω-potential by providing the function φ and its inverse.
The implementation of Algorithm 4 and QuickProject are
specific to the generalized exponential potential. Finally,
we report in Figure 4 the run times of both algorithms
as the dimension d grows, averaged over 50 runs, for
randomly generated, normally distributed vectors x̄ and ḡ.
The numerical simulations are also available on the same
repository.
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Fig. 4. Execution time as a function of the dimension d, with ε = .1, in
log-log scale (left). The highlighted region is zoomed-in in linear scale on
the right. The simulation confirms that the QuickProject algorithm is, on
average, faster than the sorting algorithm, especially for large d.

V. CONCLUSION

We studied the Bregman projection problem on the sim-
plex with ω-potentials, and derived optimality conditions for
the solution, which motivated a simple bisection algorithm
to compute ε approximate solutions in O(d log(1/ε)) time.
Then we focused on the projection problem with exponential
potentials, resulting in a Bregman divergence which gen-
eralizes the KL divergence. We showed that in this case,
the solution can be computed exactly in O(d log d) time
using a sorting algorithm, or in expected O(d) time using a
randomized pivot algorithm. This class of divergences is of
particular interest because it has a quadratic upper and lower
bound (i.e. its distance generating function is both strongly
convex and smooth), a property which is essential to obtain
convergence guarantees in some settings, such as stochastic
mirror descent. A question which remains open is whether
one can project in O(d) time using a deterministic algorithm
akin to the “median of medians” algorithm due to Blum et
al. [7] which solves the selection problem in deterministic
linear time.

The fact that one can efficiently compute the exact solution
hinges on the existence of a closed-form solution of the dual
variable ν? given the support of the solution (Proposition 4).
This is also the case for the Euclidean projection, i.e. when
Dψ is the squared Euclidean norm, see [13]. This suggests
that one may derive efficient projection algorithms for other
classes of Bregman divergences, which would, in turn, lead
to new efficient instances of the mirror descent method.
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