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Lecture abstract

Topics covered in this presentation

I What is root locus

I System analysis via root locus

I How to plot root locus

Bayen (EECS, UCB) Feedback Control Systems September 10, 2013 2 / 39



Lecture outline
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8.2 Defining the root locus
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8.6 An example
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8.9 Root locus for positive-feedback systems
8.10 Pole sensitivity
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8 RL Techniques 8.1 Intro

History interlude

Walter Richard Evans

I 1920 – 1999

I American control theorist

I 1948 – Inventor of the root
locus method

I 1988 – Richard E. Bellman
Control Heritage Award
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8 RL Techniques 8.1 Intro

Definitions, [1, p. 388]

Root locus (RL)

I Uses the poles and zeros of the OL TF
(product of the forward path TF and FB
path TF) to analyze and design the poles
of a CL TF as a system (plant or
controller) parameter, K, that shows up as
a gain in the OL TF is varied

I Graphical representation of
I Stability (CL poles)

I Range of stability, instability, &
marginal stability

I Transient response
I Tr, Ts, & %OS

I Solutions for systems of order > 2

Figure: ±FB system
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8 RL Techniques 8.1 Intro

The control system problem, [1, p. 388]

I OL TF
KG(s)H(s)

I OL TF poles unaffected by the one system
gain, K

Figure: a. -FB CL system;
b. equivalent function

Bayen (EECS, UCB) Feedback Control Systems September 10, 2013 7 / 39



8 RL Techniques 8.1 Intro

The control system problem, [1, p. 388]

I Forward TF

G(s) =
NG(s)

DG(s)

I Feedback TF

H(s) =
NH(s)

DH(s)

I -FB CL TF

T (s) =
KNG(s)DH(s)

DG(s)DH(s) +KNG(s)NH(s)
Figure: a. -FB CL system,
b. equivalent function
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8 RL Techniques 8.1 Intro

Vector representation of complex numbers, [1, p. 388]

I Cartesian, σ + jω

I Polar, M∠θ
I Magnitude, M
I Angle, θ

I Function, F (s)
I Example, (s+ a)

I Vector from the zero, a,
of the function to the
point s Figure: Vector representation of

complex numbers: a. s = σ + jω, b.
(s+ a); c. alternate representation of
(s+ a), d. (s+ 7)|s→5+j2
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8 RL Techniques 8.1 Intro

Vector representation of complex numbers, [1, p. 390]

I Function, F (s)
I Complicated

F (s) =

m∏
i=1

(s+ zi)

n∏
j=1

(s+ pj)

=

∏
numerator’s complex factors∏

denominator’s complex factors

I Magnitude

M =

∏
zero lengths∏
pole lengths

=

m∏
i=1

|(s+ zi)|

n∏
j=1

|(s+ pj)|

I Angle

θ =
∑

zero angles−
∑

pole angles =
m∑
i=1

∠(s+ zi)−
n∑

i=j

∠(s+ pj)
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8 RL Techniques 8.3 Properties of the RL

-FB CL poles, [1, p. 394]

T (s) =
KG(s)

1 +KG(s)H(s)

The angle of the complex number is
an odd multiple of 180◦

KG(s)H(s) = −1 = 1∠(2k + 1)180◦

k = 0,±1,±2,±3, ...

Figure: -FB system

The system gain, K, satisfies
magnitude criterion

|KG(s)H(s)| = 1

angle criterion

∠KG(s)H(s) = (2k + 1)180◦

and thus

K =
1

|G(s)||H(s)|
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8 RL Techniques 8.4 Sketching the RL

Basic rules for sketching -FB RL, [1, p. 397]

I Number of branches: Equals the number of CL poles

I Symmetry: About the real axis

I Real-axis segments: On the real axis, for K > 0, the RL exists to the
left of an odd number of real-axis, finite OL poles and/or finite OL
zeros

I Starting and ending points: The RL begins at the finite & infinite
poles of G(s)H(s) and ends at the finite & infinite zeros of G(s)H(s)
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8 RL Techniques 8.4 Sketching the RL

Basic rules for sketching -FB RL, [1, p. 397]

I Behavior at ∞: The RL approaches straight lines as asymptotes as
the RL approaches ∞. Further, the equation of the asymptotes is
given by the real-axis intercept, σa, and angle, θa, as follows

σa =

∑
finite poles−

∑
finite zeros

#finite poles−#finite zeros

θa =
(2k + 1)π

#finite poles−#finite zeros

where k = 0,±1,±2,±3, ... and the angle is given in radians with
respect to the positive extension of the real-axis
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8 RL Techniques 8.4 Sketching the RL

Example, [1, p. 400]

Example (-FB RL with asymptotes)

I Problem: Sketch the RL

I Solution: On board

Figure: System

Figure: RL & asymptotes for system
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8 RL Techniques 8.5 Refining the sketch

Additional rules for refining a RL sketch, [1, p. 402]

I Real-axis breakaway & break-in points: At the breakaway or break-in
point, the branches of the RL form an angle of 180◦/n with the real
axis, where n is the number of CL poles arriving at or departing from
the single breakaway or break-in point on the real-axis.

I The jω-axis crossings: The jω-crossing is a point on the RL that
separates the stable operation of the system from the unstable
operation.

I Angles of departure & arrival: The value of ω at the axis crossing
yields the frequency of oscillation, while the gain, K, at the jω-axis
crossing yields the maximum or minimum positive gain for system
stability.

I Plotting & calibrating the RL: All points on the RL satisfy the angle
criterion, which can be used to solve for the gain, K, at any point on
the RL.
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8 RL Techniques 8.5 Refining the sketch

Differential calculus procedure, [1, p. 402]

Procedure

I Maximize & minimize the gain, K, using differential calculus: The RL
breaks away from the real-axis at a point where the gain is maximum
and breaks into the real-axis at a point where the gain is minimum.
For all points on the RL

K = − 1

G(s)H(s)

For points along the real-axis segment of the RL where breakaway and
break-in points could exist, s = σ. Differentiating with respect to σ
and setting the derivative equal to zero, results in points of maximum
and minimum gain and hence the breakaway and break-in points.
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8 RL Techniques 8.5 Refining the sketch

Transition procedure, [1, p. 402]

Procedure

I Eliminates the need to differentiate. Breakaway and break-in points
satisfy the relationship

m∑
i=1

1

σ + zi
=

n∑
j=1

1

σ + pj

where zi and pi are the negative of the zero and pole values,
respectively, of G(s)H(s).

Bayen (EECS, UCB) Feedback Control Systems September 10, 2013 21 / 39



8 RL Techniques 8.5 Refining the sketch

The jω-crossings, [1, p. 405]

Procedures for finding jω-crossings

I Using the Routh-Hurwitz criterion, forcing a row of zeros in the
Routh table will yield the gain; going back one row to the even
polynomial equation and solving for the roots yields the frequency at
the imaginary-axis crossing.

I At the jω-crossing, the sum of angles from the finite OL poles &
zeros must add to (2k + 1)180◦. Search the jω-axis for a point that
meets this angle condition.

Bayen (EECS, UCB) Feedback Control Systems September 10, 2013 22 / 39



8 RL Techniques 8.5 Refining the sketch

Angles of departure & arrival, [1, p. 407]

The RL departs from complex, OL poles and arrives at complex, OL zeros

I Assume a point ε close to the complex pole or zero. Add all angles
drawn from all OL poles and zeros to this point. The sum equals
(2k + 1)180◦. The only unknown angle is that drawn from the ε close
pole or zero, since the vectors drawn from all other poles and zeros
can be considered drawn to the complex pole or zero that is ε close to
the point. Solving for the unknown angle yields the angle of departure
or arrival.
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8 RL Techniques 8.5 Refining the sketch

Plotting & calibrating the RL, [1, p. 410]

Search a given line for a point yielding∑
zero angles−

∑
pole angles = (2k + 1)180◦

or
∠G(s)H(s) = (2k + 1)180◦

The gain at that point on the RL satisfies

K =
1

|G(s)H(s)|
=

∏
finite pole lengths∏
finite zero lengths
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8 RL Techniques 8.6 An example

Example, [1, p. 412]

Example (-FB RL & critical points)

I Problem: Sketch RL & find
I ζ = 0.45 line crossing
I jω-axis crossing
I The breakaway point
I The range of stable K

I Solution: On board

Figure: System Figure: RL
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8 RL Techniques 8.7 Transient response design via gain adjustments
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8 RL Techniques 8.7 Transient response design via gain adjustments

Conditions justifying a 2nd-order approximation, [1, p. 415]

I Higher-order poles are much
farther (rule of thumb: > 5×)
into the LHP than the
dominant 2nd-order pair of
poles.

I CL zeros near the CL 2nd-order
pole pair are nearly canceled by
the close proximity of
higher-order CL poles.

I CL zeros not canceled by the
close proximity of higher-order
CL poles are far removed from
the CL 2nd-order pole pair.

Figure: Making 2nd-order
approximation
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8 RL Techniques 8.7 Transient response design via gain adjustments

Higher-order system design, [1, p. 416]

Procedure

1. Sketch RL

2. Assume the system is a 2nd-order system without any zeros and then
find the gain to meet the transient response specification

3. Justify your 2nd-order assumptions

4. If the assumptions cannot be justified, your solution will have to be
simulated in order to be sure it meets the transient response
specification. It is a good idea to simulate all solutions, anyway
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8 RL Techniques 8.8 Generalized RL
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8 RL Techniques 8.8 Generalized RL

Example, [1, p. 419]

Example (-FB RL with a parameter
pole)

I Problem: Create an equivalent
system whose denominator is

1 + p1G(s)H(s)

and sketch the RL

I Solution: On board

Figure: System

Figure: RL

Bayen (EECS, UCB) Feedback Control Systems September 10, 2013 31 / 39



8 RL Techniques 8.9 RL for +FB systems
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8 RL Techniques 8.9 RL for +FB systems

+FB CL poles, [1, p. 394]

T (s) =
KG(s)

1−KG(s)H(s)

The angle of the complex number is
an even multiple of 180◦

KG(s)H(s) = 1 = 1∠k360◦

k = 0,±1,±2,±3, ...

Figure: +FB system

The system gain, K, satisfies
magnitude criterion

|KG(s)H(s)| = −1

angle criterion

∠KG(s)H(s) = k360◦

and thus

K =
1

|G(s)||H(s)|
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8 RL Techniques 8.9 RL for +FB systems

Basic rules for sketching +FB RL, [1, p. 421]

I Number of branches: Equals the number of CL poles (same as -FB)

I Symmetry: About the real axis (same as -FB)

I Real-axis segments: On the real axis, for K > 0, the RL exists to the
left of an even number of real-axis, finite OL poles and/or finite OL
zeros

I Starting and ending points: The RL begins at the finite & infinite
poles of G(s)H(s) and ends at the finite & infinite zeros of G(s)H(s)
(same as -FB)
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8 RL Techniques 8.9 RL for +FB systems

Basic rules for sketching +FB RL, [1, p. 422]

I Behavior at ∞: The RL approaches straight lines as asymptotes as
the RL approaches ∞. Further, the equation of the asymptotes is
given by the real-axis intercept, σa, and angle, θa, as follows

σa =

∑
finite poles−

∑
finite zeros

#finite poles−#finite zeros

θa =
k2π

#finite poles−#finite zeros

where k = 0,±1,±2,±3, ... and the angle is given in radians with
respect to the positive extension of the real-axis.

Bayen (EECS, UCB) Feedback Control Systems September 10, 2013 35 / 39



8 RL Techniques 8.10 Pole sensitivity

1 8 Root Locus Techniques
8.1 Introduction
8.2 Defining the root locus
8.3 Properties of the root locus
8.4 Sketching the root locus
8.5 Refining the sketch
8.6 An example
8.7 Transient response design via gain adjustments
8.8 Generalized root locus
8.9 Root locus for positive-feedback systems
8.10 Pole sensitivity

Bayen (EECS, UCB) Feedback Control Systems September 10, 2013 36 / 39



8 RL Techniques 8.10 Pole sensitivity

Definitions, [1, p. 424]

Root sensitivity

I The ratio of the fractional change in a CL pole to the fractional
change in a system parameter, such as a gain.

Sensitivity of a CL pole, s, to gain, K

Ss:K =
K

s

δs

δK

Approximated as

∆s = s(Ss:K)
∆s

K

where δs
δK is found by differentiating the CE with respect to K
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8 RL Techniques 8.10 Pole sensitivity

Example, [1, p. 425]

Example (root sensitivity of a CL
system to gain variations)

I Problem: Find the root
sensitivity of the system at
s = −5 + j5 (for which
K = 50) and calculate the
change in the pole location for
a 10% change in K

I Solution: On board

Figure: System
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