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Lecture abstract

Topics covered in this presentation

I Laplace transform

I Transfer function

I Conversion between systems in time-, frequency-domain, and transfer
function representations

I Electrical, translational-, and rotational-mechanical systems in time-,
frequency-domain, and transfer function representations

I Nonlinearities

I Linearization of nonlinear systems in time-, frequency-domain, and
transfer function representations
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History interlude

Pierre-Simon Laplace

I 1749 – 1827

I French mathematician and
astronomer

I Pioneered the Laplace
transform

I AKA French Newton

I “...all the effects of nature are
only mathematical results of a
small number of immutable
laws.”

I “What we know is little, and
what we are ignorant of is
immense.”
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The Laplace transform definitions, [1, p. 35]

Laplace transform

L[f(t)] = F (s) =

∫ ∞
0−

f(t)e−stdt

Inverse Laplace transform

L−1[F (s)] =
1

2πj

∫ σ+j∞

σ−j∞
F (s)estds

= f(t)u(t)

where
s = σ + jω
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Laplace transform table, [1, p. 36]

f(t) F (s)

δ(t) 1

u(t) 1
s

tu(t) 1
s2

tnu(t) n!
sn+1

e−atu(t) 1
s+a

sin(ωt)u(t) ω
s2+ω2

cos(ωt)u(t) s
s2+ω2

e−at sin(ωt)u(t) ω
(s+a)2+ω2

e−at cos(ωt)u(t) s+a
(s+a)2+ω2
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Laplace transform theorems, [1, p. 37]

Some basic algebraic operations, such as multiplication by exponential
functions or shifts have simple counterparts in the Laplace domain

Theorem (Frequency shift)

L[e−atf(t)] = F (s+ a)

Theorem (Time shift)

L[f(t− T )] = e−sTF (s)
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Laplace transform theorems, [1, p. 37]

Theorem (Linearity)

L[c1f1(t) + c2f2(t)] = c1F1(s) + c2F2(s)

Theorem (Scaling)

L[f(at)] =
1

a
F
(
s
a

)
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Laplace transform theorems, [1, p. 37]

Theorem (Differentiation)

L
[
dnf
dtn

]
= snF (s)−

n∑
k=1

sn−k
dk−1f

dtk−1
(0−)

Examples

L
[
df
dt

]
= sF (s)− f(0−)
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Laplace transform theorems, [1, p. 37]

Theorem (Integration)

L
[∫ t

0− f(τ)dτ
]

=
F (s)

s
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Laplace transform theorems, [1, p. 37]

Theorem (Final value)

L[f(∞)] = lim
s→0

sF (s)

To yield correct finite results, all roots of the denominator of F (s) must
have negative real parts, and no more than one can be at the origin.
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Laplace transform theorems, [1, p. 37]

Theorem (Initial value)

L[f(0+)] = lim
s→∞

sF (s)

To be valid, f(t) must be continuous or have a step discontinuity at t = 0,
i.e., no impulses or their derivatives at t = 0.
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Partial fraction expansion, [1, p. 37]

To find the inverse Laplace transform of a complicated function, we can
convert the function to a sum of simpler terms for which we know the
Laplace transform of each term

F (s) =
N(s)

D(s)

How F (s) can be expanded is governed by the relative order between
N(s) and D(s)

1. O(N(s)) < O(D(s))

2. O(N(s)) ≥ O(D(s))

and the type of roots of D(s)

1. Real and distinct

2. Real and repeated

3. Complex or imaginary
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The transfer function, [1, p. 44]

General n-th order, linear, time-invariant differential equation

an
dnc(t)

dtn
+ an−1

dn−1c(t)

dtn−1
+ ...+ a0c(t) =

bm
dmr(t)

dtm
+ bm−1

dm−1r(t)

dtm−1
+ ...+ b0r(t)

Under the assumption that all initial conditions are zero the transfer
function (TF) from input, c(t), to output, r(t), i.e., the ratio of the output
transform, C(s), divided by the input transform, R(s) is given by

G(s) =
C(s)

R(s)
=
bms

m + bm−1s
m−1 + ...+ b0

ansn + an−1sn−1 + ...+ a0

Also, the output transform, C(s) can be written as

C(s) = R(s)G(s)
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Electrical network TFs, [1, p. 47]

Table: Voltage-current, voltage-charge, and impedance relationships for
capacitors, resistors, and inductors
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Electrical network TFs, [1, p. 48]

Example
(Resistor-inductor-capacitor (RLC)
system)

I Problem: Find the TF relating
the capacitor voltage, VC(s),
to the input voltage, V (s)

I Solution: On board
Figure: RLC system
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Electrical network TFs, [1, p. 59]

Example (Inverting operational
amplifier system)

I Problem: Find the TF relating
the output voltage, Vo(s), to
the input voltage Vi(s)

I Solution: On board
Figure: Inverting operational amplifier
system
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Translational mechanical system TFs, [1, p. 61]

Table: Force-velocity, force-displacement, and impedance translational
relationships for springs, viscous dampers, and mass
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Translational mechanical system TFs, [1, p. 63]

Example (Translational
inertia-spring-damper system)

I Problem: Find the TF relating
the position, X(s), to the
input force, F (s)

I Solution: On board

Figure: Physical system; block diagram
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Rotational mechanical system TFs, [1, p. 69]

Table: Torque-angular velocity, torque-angular displacement, and impedance
rotational relationships for springs, viscous dampers, and inertia
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Rotational mechanical system TFs, [1, p. 63]

Example (Rotational
inertia-spring-damper system)

I Problem: Find the TF relating
the position, Θ2(s), to the
input torque, T (s)

I Solution: On board

Figure: Physical system; schematic;
block diagram
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Nonlinearities, [1, p. 88]

Common physical nonlinearities found in nonlinear (NL) systems

Figure: Some physical nonlinearities
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Linearization, [1, p. 89]

Motivation

I Must linearize a NL system into a LTI DE before we can find a TF

Linearization procedure

1. Recognize the NL component and write the NL DE

2. Linearize the NL DE into an LTI DE

3. Laplace transform of LTI DE assuming zero initial conditions

4. Separate input and output variables

5. Form the TF
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Linearization, [1, p. 89]

1st-order linearization

I Output, f(x)

I Input, x

I Operating at point A,
[x0, f(x0)]

I Small changes in the input can
be related to changes in the
output about the point by way
of the slope of the curve, ma,
at point A

[f(x)− f(x0)] ≈ ma(x− x0)
δf(x) ≈ maδx

f(x) ≈ f(x0) +maδx

Figure: Linearization about point A
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Linearization, [1, p. 89]

General linearization via Taylor series expansion

f(x) = f(x0) +
df

dx
|x=x0

(x− x0)
1!

+
d2f

dx2
|x=x0

(x− x0)2

2!
+ ...

For small excursions of x from x0, we can neglect higher-order terms. The
resulting approximation yields a straight-line relationship between the
change in f(x) and the excursion away from x0. Neglecting higher-order
terms yields

f(x)− f(x0) ≈
df

dx
|x=x0(x− x0) or 5 f =

δf

δx
≈ m|x=x0

which is a linear relationship between δf(x) and δx for small excursions
away from x0.
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Linearization, [1, p. 92]

Example (NL electrical system)

I Problem: Find the TF relating
the inductor voltage, VL(s), to
the input voltage, V (s). The
NL resistor voltage-current
relationship is defined by
ir = 2e0.1vr , where ir and vr
are the resistor current and
voltage, respectively. Also the
input voltage, v, is a
small-signal source.

I Solution: On board
Figure: NL electrical system
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