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Lecture abstract

Topics covered in this presentation

I Advantages of FR techniques over RL

I Define FR

I Define Bode & Nyquist plots

I Relation between poles & zeros to Bode plots (slope, etc.)

I Features of 1st- & 2nd-order system Bode plots

I Define Nyquist criterion

I Method of dealing with OL poles & zeros on imaginary axis

I Simple method of dealing with OL stable & unstable systems

I Determining gain & phase margins from Bode & Nyquist plots

I Define static error constants

I Determining static error constants from Bode & Nyquist plots

I Determining TF from experimental FR data
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10 FR techniques 10.1 Intro

Advantages of frequency response (FR) methods, [1, p.
534]

In the following situations

I When modeling TFs from physical data

I When designing lead compensators to meet a steady-state error
requirements

I When finding the stability of NL systems

I In settling ambiguities when sketching a root locus
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10 FR techniques 10.1 Intro

The concept of FR, [1, p. 535]

I At steady-state, sinusoidal
inputs to a linear system
generate sinusoidal responses
of the same frequency with
different amplitudes and phase
angle from the input, each of
which are a function of
frequency.

I Phasor – complex
representation of a sinusoid

I ||G(ω)|| – amplitude
I ∠G(ω) – phase angle
I M cos(ωt+ φ) ... M∠φ Figure: Sinusoidal FR: a. system; b.

TF; c. IO waveforms
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10 FR techniques 10.1 Intro

The concept of FR, [1, p. 535]

I Steady-state output sinusoid

Mo(ω)∠φo(ω)

= Mi(ω)M(ω)∠(φi(ω) + φ(ω))

I Magnitude FR

M(ω) =
Mo(ω)

Mi(ω)

I Phase FR

φ(ω) = φo(ω)− φi(ω)

I FR
M(ω)∠φ(ω)

Figure: Sinusoidal FR: a. system; b.
TF; c. IO waveforms
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10 FR techniques 10.1 Intro

Analytical expressions for FR, [1, p. 536]

I General input sinusoid

r(t) = A cos(ωt) +B sin(ωt)

=
√
A2 +B2 cos

(
ωt− tan−1

(
B
A

))
I Input phasor forms

I Polar, Mi∠φi

Mi =
√
A2 +B2

φi = − tan−1
(
B
A

)
I Rectangular, A− jB
I Euler’s, Mie

jφi

Figure: System with
sinusoidal input
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10 FR techniques 10.1 Intro

Analytical expressions for FR, [1, p. 536]

I Forced response

C(s) =
As+Bω

s2 + ω2
G(s)

I Steady-state forced response after partial fraction expansion

Css(s) =
MiMG

2 e−j(φi−φG)

s+ jω
+

MiMG
2 ej(φi−φG)

s− jω
where MG = ||G(jω)|| and φG = ∠G(jω)

I Time-domain response

c(t) = MiMG cos(ωt+ φi + φG)

I Time-domain response in phasor form

Mo∠φo = (Mi∠φi)(MG∠φG)

I FR of system
G(jω) = G(s)|s→jω
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10 FR techniques 10.2 Asymptotic approximations: Bode plots

History interlude

History (Hendrik Wade Bode)

I 1905 – 1982

I American engineer

I 1930s – Inventor of Bode plots,
gain margin, & phase margin

I 1944 – WWII anti-aircraft
(including V-1 flying bombs)
systems

I 1947 – Cold War anti-ballistic
missiles

I 1957 – Served on NACA (now
NASA) with Wernher von
Braun (inventor of V-1 flying
bombs & V-2 rockets)

Figure: Hendrik Wade Bode
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10 FR techniques 10.2 Asymptotic approximations: Bode plots

General Bode plots, [1, p. 540]

G(jω) = MG(ω)∠φG(ω)

I Separate magnitude and phase plots as a function of frequency
I Magnitude – decibels (dB) vs. log(ω), where dB = 20 log(M)
I Phase – phase angle vs. log(ω)
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10 FR techniques 10.2 Asymptotic approximations: Bode plots

Bode plots approximations, [1, p. 542]

I TF
G(s) = s+ a

I Low frequencies

G(jω) ≈ a∠0◦

I High frequencies

G(jω) ≈ ω∠90◦

I Asymptotes – straight-line
approximations

I Low-frequency
I Break frequency
I High-frequency

Figure: Bode plots of s+ a: a.
magnitude plot; b. phase plot
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10 FR techniques 10.2 Asymptotic approximations: Bode plots

Simple Bode plots, [1, p. 542]
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10 FR techniques 10.2 Asymptotic approximations: Bode plots

Simple Bode plots, [1, p. 545]
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10 FR techniques 10.2 Asymptotic approximations: Bode plots

Simple Bode plots, [1, p. 549]
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10 FR techniques 10.2 Asymptotic approximations: Bode plots

Detailed 2nd-order Bode plots, [1, p. 550]

Figure: Bode plot of
s2+2ζωns+ω

2
n

ω2
n
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10 FR techniques 10.3 Intro to Nyquist criterion

History interlude

History (Harry Theodor Nyquist)

I 1889 – 1976

I American engineer

I 1917 – 1934 AT&T

I 1934 – 1954 Bell Telephone
Labs

I 1924 – Nyquist-Shannon
sampling theorem

I 1926 – Johnson–Nyquist noise

I 1932 – Nyquist stability
criterion Figure: Harry Theodor Nyquist
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10 FR techniques 10.3 Intro to Nyquist criterion

Introduction, [1, p. 559]

I Relates the stability of a CL
system to the OL FR and the
OL poles and zeros

I # CL poles in RHP

I Provides information on the
transient response and
steady-state error

Figure: CL control system
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10 FR techniques 10.3 Intro to Nyquist criterion

Derivation concepts, [1, p. 560]

G(s) =
NG

DG
and H(s) =

NH

DH

G(s)H(s) =
NGHG

DGDH

F (s) = 1 +G(s)H(s) =
DGDH +NGNH

DGDH

T (s) =
G(s)

1 +G(s)H(s)
=

NGNH

DGDH +NGNH

I Poles of 1 +G(s)H(s) are the same as the poles of the OL system,
G(s)H(s)

I Zeros of 1 +G(s)H(s) are the same as the poles of the CL system,
T (s)
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10 FR techniques 10.3 Intro to Nyquist criterion

Derivation concepts, [1, p. 560]

I Map – function

I Contour – collection of points

I For our particular scenario,
assume

F (s) =
(s− z1)(s− z2)...
(s− p1)(s− p2)...

and a clockwise direction for
mapping the points on the
contour A

Figure: Mapping contour A through
function F (s) to contour B
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10 FR techniques 10.3 Intro to Nyquist criterion

Derivation concepts, [1, p. 561]

I If F (s) has only zeros or only
poles that are not encircled by
the contour then contour B
maps in a clockwise direction

Figure: Contour mapping – without
encirclements
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10 FR techniques 10.3 Intro to Nyquist criterion

Derivation concepts, [1, p. 561]

I If F (s) has only zeros that are
encircled by the contour then
contour B maps in a clockwise
direction

I If F (s) has only poles that are
encircled by the contour then
contour B maps in a
counterclockwise direction

I If F (s) has only poles or only
zeros that are encircled by the
contour then contour B map
does encircle the origin

Figure: Contour mapping – with
encirclements
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10 FR techniques 10.3 Intro to Nyquist criterion

Derivation concepts, [1, p. 562]

I If F (s) has #poles = #zeros

that are encircled by the
contour then contour B map
does not encircle the origin Figure: Contour mapping – with

encirclements
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10 FR techniques 10.3 Intro to Nyquist criterion

Derivation concepts, [1, p. 562]

I Each pole or zero of
1 +G(s)H(s) whose vector
undergoes a complete rotation
of contour A must yield a
change of 360◦ in the
resultant, R, or a complete
rotation of contour B

I A zero inside a CW contour A
yields a CW rotation of
contour B

I A pole inside a CW contour A
yields a CCW rotation of
contour B

I N = P − Z
I N , # CCW rotations of

contour B about the origin
I P , # poles of 1 +G(s)H(s)

inside contour A
I Z, # zeros of 1 +G(s)H(s)

inside contour A
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10 FR techniques 10.3 Intro to Nyquist criterion

Derivation concepts, [1, p. 562]

Adjustment – extend the contour A to include
the entire RHP

I Z, # RHP CL poles
I CL stability!

I P , # RHP OL poles
I Easy

I N , # CCW rotations of contour B about
origin

I Difficult

Adjustment – map G(s)H(s) instead of
1 +G(s)H(s)

I N , # CCW rotations of contour B about
−1

I Less difficult

Figure: Contour enclosing
RHP to determine
stability
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10 FR techniques 10.3 Intro to Nyquist criterion

Definition, [1, p. 563]

Definition (Nyquist stability criterion)

I If a contour, A, that encircles the entire RHP is mapped through the
OL system, G(s)H(s), then the # of RHP CL poles, Z, equals the #
of RHP OL poles, P , minus the # of CCW revolutions, N , around
−1 of the mapping.

Z = P −N

I The mapping is called the Nyquist diagram of G(s)H(s).

I FR technique because the mapping of points on the positive jω-axis
through G(s)H(s) is the same as substituting s = jω into G(s)H(s)
to form the FR function G(jω)H(jω).
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10 FR techniques 10.3 Intro to Nyquist criterion

Applying the Nyquist stability criterion, [1, p. 563]

I No RHP CL poles
I P = 0
I N = 0
I Z = 0
I CL system is stable

I 2 RHP CL poles
I P = 0
I N = −2
I Z = 2
I CL system is unstable Figure: Mapping examples – with

encirclement: a. contour does not
enclose CL poles; b. contour does
enclose CL poles
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10 FR techniques 10.4 Sketching the Nyquist diagram
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10 FR techniques 10.4 Sketching the Nyquist diagram

Method
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10 FR techniques 10.4 Sketching the Nyquist diagram

Example, [1, p. 564]

Example (general)

I G(s) = 500
(s+10)(s+3)(s+1)

Figure: Vector evaluation of the
Nyquist diagram: a. vectors on contour
at low frequency, b. vectors on contour
around ∞; c. Nyquist diagram
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10 FR techniques 10.4 Sketching the Nyquist diagram

Example, [1, p. 567]

Example (poles on contour)

I G(s) = s+2
s2

Figure: a. contour, b. Nyquist diagram
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10 FR techniques 10.5 Stability via the Nyquist diagram
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10 FR techniques 10.5 Stability via the Nyquist diagram

Example, [1, p. 569]

Example (general)

I G(s) = K(s+3)(s+5)
(s−2)(s−4)

Figure: a. system; b. contour, c.
Nyquist diagram
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10 FR techniques 10.5 Stability via the Nyquist diagram

Example, [1, p. 570]

Example (general)

I G(s) = K
s(s+3)(s+5)

Figure: a. contour; b. Nyquist diagram
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10 FR techniques 10.5 Stability via the Nyquist diagram

Stability via mapping only the positive jω-axis, [1, p. 571]
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10 FR techniques 10.6 Gain margin & phase margin via the Nyquist diagram
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10 FR techniques 10.6 Gain margin & phase margin via the Nyquist diagram

Definitions, [1, p. 574]

Two quantitative measures of how
stable a system is

I Gain margin, GM – the change
in OL gain, expressed in dB,
required at 180◦ of phase shift
to make the CL system
unstable

I Phase margin, ΦM – the
change in OL phase shift
required at unity gain to make
the CL system unstable

Figure: Nyquist diagram showing gain
and phase margins
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10 FR techniques 10.7 Stability, gain margin, & phase margin via Bode plots
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10 FR techniques 10.7 Stability, gain margin, & phase margin via Bode plots

Stability via Bode plots, [1, p. 576]

Method

I Draw a Bode log-magnitude plot

I Determine the range of the gain that ensures that the magnitude is
less than 0 dB (unity gain) at that frequency where the phase is
±180◦
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10 FR techniques 10.7 Stability, gain margin, & phase margin via Bode plots

Example, [1, p. 577]

Example (general)

I Use Bode plots to determine
the range of K within which
the unity FB system is stable.

G(s) =
k

(s+ 2)(s+ 4)(s+ 5)

Figure: Bode log-magnitude and phase
diagrams
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10 FR techniques 10.7 Stability, gain margin, & phase margin via Bode plots

Gain & phase margin via Bode plots, [1, p. 578]

Method
I Gain margin

I Phase plot →
ωGM

= ω|Φ=180◦

I At ωGM
, magnitude plot →

gain margin, GM , which is
the gain required to raise the
magnitude curve to 0 dB

I Phase margin
I Magnitude plot →
ωΦM

= ω|G=0dB

I At ωΦM
, phase plot → phase

margin, ΦM , which is the
difference between the phase
value and 180◦

Figure: Gain and phase margins on the
Bode diagrams
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10 FR techniques 10.7 Stability, gain margin, & phase margin via Bode plots

Example, [1, p. 579]

Example (general)

I If K = 200, find the gain and
phase margins.

G(s) =
k

(s+ 2)(s+ 4)(s+ 5)

Figure: Bode log-magnitude and phase
diagrams
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10 FR techniques 10.8 Relation between CL transient & CL FRs
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10 FR techniques 10.8 Relation between CL transient & CL FRs

Damping ratio & CL FR, [1, p. 580]

Peak magnitude of the CL FR

Mp =
1

2ζ
√

1− ζ2

Frequency of the peak magnitude

ωp = ωn
√

1− 2ζ2

Figure: 2nd-order CL system

Figure: CL FR peak vs. %OS for a 2
pole system
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10 FR techniques 10.8 Relation between CL transient & CL FRs

Response speed & CL FR, [1, p. 581]

I Bandwidth of a 2-pole system

ωBW = ωn

√
(1− 2ζ2) +

√
4ζ4 − 4ζ2 + 2

I ωn–Ts relation

ωn =
4

Tsζ

I ωn–Tp relation

ωn =
π

Tp
√

1− ζ2

I ωn–Tr relation
I Found using look-up table

Figure: Representative
log-magnitude plot
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10 FR techniques 10.8 Relation between CL transient & CL FRs

Response speed & CL FR, [1, p. 582]

Figure: Normalized bandwidth vs. damping ratio for:
a. Ts, b. Tp; c. Tr
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10 FR techniques 10.9 Relation between CL & OL FRs
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Constant M circles & constant N circles, [1, p. 583]

Skip for now
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Damping ratio from M circles, [1, p. 589]

Skip for now
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Damping ratio from phase margin, [1, p. 589]

Skip for now
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Response speed from OL FR, [1, p. 591]

Skip for now
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Position constant, [1, p. 593]

Type 0 system

G(s) = K

∏n
i=1(s+ zi)∏m
j=1(s+ pj)

Initial log-magnitude value

20 logM = 20 logKp

Position constant

Kp = K

∏n
i=1 zi∏m
j=1 pj

Figure: Typical unnormalized and
unscaled Bode log-magnitude plots
showing the value of static error
constants
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Velocity constant, [1, p. 594]

Type 1 system

G(s) = K

∏n
i=1(s+ zi)

s
∏m
j=1(s+ pj)

Initial log-magnitude value

20 logM = 20 log
Kv

ω0

Velocity constant

Kv = K

∏n
i=1 zi∏m
j=1 pj

Frequency axis intersect

ω = Kv

Figure: Typical unnormalized and
unscaled Bode log-magnitude plots
showing the value of static error
constants
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Acceleration constant, [1, p. 595]

Type 2 system

G(s) = K

∏n
i=1(s+ zi)

s2
∏m
j=1(s+ pj)

Acceleration constant

Ka = K

∏n
i=1 zi∏m
j=1 pj

Initial log-magnitude value

20 logM = 20 log
Ka

ω2
0

Frequency axis intersect

ω =
√
Ka

Figure: Typical unnormalized and
unscaled Bode log-magnitude plots
showing the value of static error
constants
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Modeling time delay, [1, p. 597]

Time delay – delay between the
commanded response and the start
of the output response

G′(s) = e−sTG(s)

FR

G′(jω) = e−jωTG(jω)

= |G(jω)|∠[−ωT + ∠G(jω)]
Figure: Effect of delay upon FR
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Obtaining transfer functions experimentally, [1, p. 602]

Skip for now
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10 FR techniques 10.13 Obtaining TFs experimentally

Method

1. Estimate the pole-zero configuration from the Bode diagrams
I Initial slope → system type
I Phase excursions → #poles & #zeros

2. Look for obvious 1st- & 2nd-order pole or zero FR characteristics

3. Peaking & depressions → underdamped 2nd-order pole & zero,
respectively

4. Extract 1st- & 2nd-order characteristics
I Overlay ±20 or ±40 dB/decade lines on magnitude curve &
±45◦/decade lines on the phase curve

I Estimate break frequencies
I For 2nd-order poles & zeros, estimate ζ & ωn

5. Form a TF of unity gain using the poles & zeros found
I Subtract the FR of the model from the measured FR and repeat the

process if necessary
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