Topics covered in this presentation

- Advantages of FR techniques over RL
- Define FR
- Define Bode & Nyquist plots
- Relation between poles & zeros to Bode plots (slope, etc.)
- Features of 1st- & 2nd-order system Bode plots
- Define Nyquist criterion
- Method of dealing with OL poles & zeros on imaginary axis
- Simple method of dealing with OL stable & unstable systems
- Determining gain & phase margins from Bode & Nyquist plots
- Define static error constants
- Determining static error constants from Bode & Nyquist plots
- Determining TF from experimental FR data
10 Frequency response techniques

10.1 Introduction
10.2 Asymptotic approximations: Bode plots
10.3 Introduction to Nyquist criterion
10.4 Sketching the Nyquist diagram
10.5 Stability via the Nyquist diagram
10.6 Gain margin and phase margin via the Nyquist diagram
10.7 Stability, gain margin, and phase margin via Bode plots
10.8 Relation between closed-loop transient and closed-loop frequency responses
10.9 Relation between closed- and open-loop frequency responses
10.10 Relation between closed-loop transient and open-loop frequency responses
10.11 Steady-state error characteristics from frequency response
10.12 System with time delay
10.13 Obtaining transfer functions experimentally
10 Frequency response techniques

10.1 Introduction

10.2 Asymptotic approximations: Bode plots
10.3 Introduction to Nyquist criterion
10.4 Sketching the Nyquist diagram
10.5 Stability via the Nyquist diagram
10.6 Gain margin and phase margin via the Nyquist diagram
10.7 Stability, gain margin, and phase margin via Bode plots
10.8 Relation between closed-loop transient and closed-loop frequency responses
10.9 Relation between closed- and open-loop frequency responses
10.10 Relation between closed-loop transient and open-loop frequency responses
10.11 Steady-state error characteristics from frequency response
10.12 System with time delay
10.13 Obtaining transfer functions experimentally
Advantages of frequency response (FR) methods, [1, p. 534]

In the following situations

- When modeling TFs from physical data
- When designing lead compensators to meet a steady-state error requirements
- When finding the stability of NL systems
- In settling ambiguities when sketching a root locus
The concept of FR, [1, p. 535]

- At steady-state, sinusoidal inputs to a linear system generate sinusoidal responses of the same frequency with different amplitudes and phase angle from the input, each of which are a function of frequency.

- **Phasor** – complex representation of a sinusoid
 - $||G(\omega)||$ – amplitude
 - $\angle G(\omega)$ – phase angle
 - $M \cos(\omega t + \phi)$ … $M \angle \phi$

Figure: Sinusoidal FR: a. system; b. TF; c. IO waveforms
The concept of FR, [1, p. 535]

- **Steady-state output sinusoid**

\[
M_o(\omega) \angle \phi_o(\omega) = M_i(\omega) M(\omega) \angle (\phi_i(\omega) + \phi(\omega))
\]

- **Magnitude FR**

\[
M(\omega) = \frac{M_o(\omega)}{M_i(\omega)}
\]

- **Phase FR**

\[
\phi(\omega) = \phi_o(\omega) - \phi_i(\omega)
\]

- **FR**

\[
M(\omega) \angle \phi(\omega)
\]

Figure: Sinusoidal FR: a. system; b. TF; c. IO waveforms
Analytical expressions for FR, [1, p. 536]

- **General input sinusoid**
 \[
 r(t) = A \cos(\omega t) + B \sin(\omega t) = \sqrt{A^2 + B^2} \cos(\omega t - \tan^{-1}\left(\frac{B}{A}\right))
 \]

- **Input phasor forms**
 - **Polar,** \(M_i \angle \phi_i \)
 \[
 M_i = \sqrt{A^2 + B^2} \\
 \phi_i = -\tan^{-1}\left(\frac{B}{A}\right)
 \]
 - **Rectangular,** \(A - jB \)
 - **Euler’s,** \(M_i e^{j\phi_i} \)

Figure: System with sinusoidal input
Analytical expressions for FR, [1, p. 536]

- **Forced response**
 \[C(s) = \frac{A{s} + B\omega}{s^2 + \omega^2} G(s) \]

- **Steady-state forced response after partial fraction expansion**
 \[C_{ss}(s) = \frac{\frac{1}{2}M_i M_G e^{-j(\phi_i - \phi_G)}}{s + j\omega} + \frac{\frac{1}{2}M_i M_G e^{j(\phi_i - \phi_G)}}{s - j\omega} \]
 Where \(M_G = ||G(j\omega)|| \) and \(\phi_G = \angle G(j\omega) \)

- **Time-domain response**
 \[c(t) = M_i M_G \cos(\omega t + \phi_i + \phi_G) \]

- **Time-domain response in phasor form**
 \[M_o \angle \phi_o = (M_i \angle \phi_i)(M_G \angle \phi_G) \]

- **FR of system**
 \[G(j\omega) = G(s)|_{s \rightarrow j\omega} \]
10 Frequency response techniques

- 10.1 Introduction
- 10.2 Asymptotic approximations: Bode plots
- 10.3 Introduction to Nyquist criterion
- 10.4 Sketching the Nyquist diagram
- 10.5 Stability via the Nyquist diagram
- 10.6 Gain margin and phase margin via the Nyquist diagram
- 10.7 Stability, gain margin, and phase margin via Bode plots
- 10.8 Relation between closed-loop transient and closed-loop frequency responses
- 10.9 Relation between closed- and open-loop frequency responses
- 10.10 Relation between closed-loop transient and open-loop frequency responses
- 10.11 Steady-state error characteristics from frequency response
- 10.12 System with time delay
- 10.13 Obtaining transfer functions experimentally
History interlude

History (Hendrik Wade Bode)

- 1905 – 1982
- American engineer
- 1930s – Inventor of *Bode plots, gain margin, & phase margin*
- 1944 – WWII anti-aircraft (including V-1 flying bombs) systems
- 1947 – Cold War anti-ballistic missiles
- 1957 – Served on NACA (now NASA) with Wernher von Braun (inventor of V-1 flying bombs & V-2 rockets)

Figure: Hendrik Wade Bode
General Bode plots, [1, p. 540]

\[G(j\omega) = M_G(\omega) \angle \phi_G(\omega) \]

- Separate magnitude and phase plots as a function of frequency
 - Magnitude – decibels (dB) vs. \(\log(\omega) \), where \(dB = 20 \log(M) \)
 - Phase – phase angle vs. \(\log(\omega) \)
10 FR techniques

10.2 Asymptotic approximations: Bode plots

Bode plots approximations, [1, p. 542]

- **TF**
 \[G(s) = s + a \]

- **Low frequencies**
 \[G(j\omega) \approx a \angle 0^\circ \]

- **High frequencies**
 \[G(j\omega) \approx \omega \angle 90^\circ \]

- **Asymptotes** – straight-line approximations
 - **Low-frequency**
 - **Break frequency**
 - **High-frequency**

Figure: Bode plots of \(s + a \): a. magnitude plot; b. phase plot
Simple Bode plots, [1, p. 542]

Figure: Bode plot of $\frac{s+a}{a}$

Figure: Bode plot of $\frac{a}{s+a}$
10 FR techniques

10.2 Asymptotic approximations: Bode plots

Simple Bode plots, [1, p. 545]

Figure: Bode plot of s

Figure: Bode plot of $\frac{1}{s}$
Simple Bode plots, [1, p. 549]

Figure: Bode plot of $\frac{s^2 + 2\zeta \omega_n s + \omega_n^2}{\omega_n^2}$

Figure: Bode plot of $\frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$
Detailed 2^{nd}-order Bode plots, [1, p. 550]

Figure: Bode plot of $\frac{s^2 + 2\zeta \omega_n s + \omega_n^2}{\omega_n^2}$

Figure: Bode plot of $\frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$
10 Frequency response techniques

- 10.1 Introduction
- 10.2 Asymptotic approximations: Bode plots
- 10.3 Introduction to Nyquist criterion
 - 10.4 Sketching the Nyquist diagram
 - 10.5 Stability via the Nyquist diagram
 - 10.6 Gain margin and phase margin via the Nyquist diagram
 - 10.7 Stability, gain margin, and phase margin via Bode plots
 - 10.8 Relation between closed-loop transient and closed-loop frequency responses
 - 10.9 Relation between closed- and open-loop frequency responses
 - 10.10 Relation between closed-loop transient and open-loop frequency responses
 - 10.11 Steady-state error characteristics from frequency response
 - 10.12 System with time delay
 - 10.13 Obtaining transfer functions experimentally
History interlude

History (Harry Theodor Nyquist)

- 1889 – 1976
- American engineer
- 1917 – 1934 AT&T
- 1934 – 1954 Bell Telephone Labs
- 1924 – Nyquist-Shannon sampling theorem
- 1926 – Johnson–Nyquist noise
- 1932 – Nyquist stability criterion

Figure: Harry Theodor Nyquist
Introduction, [1, p. 559]

- Relates the stability of a CL system to the OL FR and the OL poles and zeros
 - # CL poles in RHP
- Provides information on the transient response and steady-state error

Figure: CL control system
Derivation concepts, [1, p. 560]

\[G(s) = \frac{N_G}{D_G} \quad \text{and} \quad H(s) = \frac{N_H}{D_H} \]

\[G(s)H(s) = \frac{N_GH_G}{D_GD_H} \]

\[F(s) = 1 + G(s)H(s) = \frac{D_GD_H + N_GN_H}{D_GD_H} \]

\[T(s) = \frac{G(s)}{1 + G(s)H(s)} = \frac{N_GN_H}{D_GD_H + N_GN_H} \]

- Poles of \(1 + G(s)H(s) \) are the same as the poles of the OL system, \(G(s)H(s) \)
- Zeros of \(1 + G(s)H(s) \) are the same as the poles of the CL system, \(T(s) \)
Derivation concepts, [1, p. 560]

- Map – function
- Contour – collection of points
- For our particular scenario, assume

\[F(s) = \frac{(s - z_1)(s - z_2)\ldots}{(s - p_1)(s - p_2)\ldots} \]

and a clockwise direction for mapping the points on the contour A

Figure: Mapping contour A through function \(F(s) \) to contour B
If $F(s)$ has only zeros or only poles that are not encircled by the contour then contour B maps in a *clockwise* direction.

Figure: Contour mapping – without encirclements
Derivation concepts, [1, p. 561]

- If $F(s)$ has only zeros that are encircled by the contour then contour B maps in a clockwise direction.
- If $F(s)$ has only poles that are encircled by the contour then contour B maps in a counterclockwise direction.
- If $F(s)$ has only poles or only zeros that are encircled by the contour then contour B map does encircle the origin.

Figure: Contour mapping – with encirclements
If $F(s)$ has $\#\text{poles} = \#\text{zeros}$ that are encircled by the contour then contour B map does not encircle the origin.

Figure: Contour mapping – with encirclements
Each pole or zero of \(1 + G(s)H(s) \) whose vector undergoes a complete rotation of contour \(A \) must yield a change of 360\(^\circ\) in the resultant, \(R \), or a complete rotation of contour \(B \).

A zero inside a CW contour \(A \) yields a CW rotation of contour \(B \).

A pole inside a CW contour \(A \) yields a CCW rotation of contour \(B \).

\[
N = P - Z
\]

- \(N \), \# CCW rotations of contour \(B \) about the origin
- \(P \), \# poles of \(1 + G(s)H(s) \) inside contour \(A \)
- \(Z \), \# zeros of \(1 + G(s)H(s) \) inside contour \(A \)
Derivation concepts, [1, p. 562]

Adjustment – extend the contour A to include the entire RHP

- Z, # RHP CL poles
 - CL stability!
- P, # RHP OL poles
 - Easy
- N, # CCW rotations of contour B about origin
 - Difficult

Adjustment – map $G(s)H(s)$ instead of $1 + G(s)H(s)$

- N, # CCW rotations of contour B about -1
 - Less difficult

Figure: Contour enclosing RHP to determine stability
Definition, [1, p. 563]

Definition (Nyquist stability criterion)

- If a contour, \(A \), that encircles the entire RHP is mapped through the OL system, \(G(s)H(s) \), then the \# of RHP CL poles, \(Z \), equals the \# of RHP OL poles, \(P \), minus the \# of CCW revolutions, \(N \), around \(-1\) of the mapping.

\[
Z = P - N
\]

- The mapping is called the Nyquist diagram of \(G(s)H(s) \).

- FR technique because the mapping of points on the positive \(j\omega \)-axis through \(G(s)H(s) \) is the same as substituting \(s = j\omega \) into \(G(s)H(s) \) to form the FR function \(G(j\omega)H(j\omega) \).
Applying the Nyquist stability criterion, [1, p. 563]

- No RHP CL poles
 - \(P = 0 \)
 - \(N = 0 \)
 - \(Z = 0 \)
 - CL system is stable

- 2 RHP CL poles
 - \(P = 0 \)
 - \(N = -2 \)
 - \(Z = 2 \)
 - CL system is unstable

\[\text{Figure: Mapping examples – with encirclement: a. contour does not enclose CL poles; b. contour does enclose CL poles} \]
10 Frequency response techniques

10.1 Introduction
10.2 Asymptotic approximations: Bode plots
10.3 Introduction to Nyquist criterion

10.4 Sketching the Nyquist diagram
10.5 Stability via the Nyquist diagram
10.6 Gain margin and phase margin via the Nyquist diagram
10.7 Stability, gain margin, and phase margin via Bode plots
10.8 Relation between closed-loop transient and closed-loop frequency responses
10.9 Relation between closed- and open-loop frequency responses
10.10 Relation between closed-loop transient and open-loop frequency responses
10.11 Steady-state error characteristics from frequency response
10.12 System with time delay
10.13 Obtaining transfer functions experimentally
Method
Example (general)

\[G(s) = \frac{500}{(s+10)(s+3)(s+1)} \]

Figure: Vector evaluation of the Nyquist diagram: a. vectors on contour at low frequency, b. vectors on contour around \(\infty \); c. Nyquist diagram
Example (poles on contour)

\[G(s) = \frac{s+2}{s^2} \]

Figure: a. contour, b. Nyquist diagram
10 Frequency response techniques

10.1 Introduction
10.2 Asymptotic approximations: Bode plots
10.3 Introduction to Nyquist criterion
10.4 Sketching the Nyquist diagram
10.5 Stability via the Nyquist diagram
10.6 Gain margin and phase margin via the Nyquist diagram
10.7 Stability, gain margin, and phase margin via Bode plots
10.8 Relation between closed-loop transient and closed-loop frequency responses
10.9 Relation between closed- and open-loop frequency responses
10.10 Relation between closed-loop transient and open-loop frequency responses
10.11 Steady-state error characteristics from frequency response
10.12 System with time delay
10.13 Obtaining transfer functions experimentally
Example, [1, p. 569]

Example (general)

\[G(s) = \frac{K(s+3)(s+5)}{(s-2)(s-4)} \]

Figure: a. system; b. contour, c. Nyquist diagram
Example (general)

\[G(s) = \frac{K}{s(s+3)(s+5)} \]

Figure: a. contour; b. Nyquist diagram
Stability via mapping only the positive $j\omega$-axis, [1, p. 571]
10.6 Gain margin & phase margin via the Nyquist diagram
Definitions, [1, p. 574]

Two quantitative measures of how stable a system is

- **Gain margin,** G_M – the change in OL gain, expressed in dB, required at 180° of phase shift to make the CL system unstable

- **Phase margin,** Φ_M – the change in OL phase shift required at unity gain to make the CL system unstable

Figure: Nyquist diagram showing gain and phase margins
10 Frequency response techniques

- 10.1 Introduction
- 10.2 Asymptotic approximations: Bode plots
- 10.3 Introduction to Nyquist criterion
- 10.4 Sketching the Nyquist diagram
- 10.5 Stability via the Nyquist diagram
- 10.6 Gain margin and phase margin via the Nyquist diagram
- 10.7 Stability, gain margin, and phase margin via Bode plots
- 10.8 Relation between closed-loop transient and closed-loop frequency responses
- 10.9 Relation between closed- and open-loop frequency responses
- 10.10 Relation between closed-loop transient and open-loop frequency responses
- 10.11 Steady-state error characteristics from frequency response
- 10.12 System with time delay
- 10.13 Obtaining transfer functions experimentally
Stability via Bode plots, [1, p. 576]

Method

- Draw a Bode log-magnitude plot
- Determine the range of the gain that ensures that the magnitude is less than 0 dB (unity gain) at that frequency where the phase is $\pm 180^\circ$
Example, [1, p. 577]

Example (general)

Use Bode plots to determine the range of K within which the unity FB system is stable.

$$G(s) = \frac{k}{(s + 2)(s + 4)(s + 5)}$$

Figure: Bode log-magnitude and phase diagrams
Gain & phase margin via Bode plots, [1, p. 578]

Method

- **Gain margin**
 - Phase plot →
 \[\omega_{G_M} = \omega\big|_{\Phi=180^\circ} \]
 - At \(\omega_{G_M} \), magnitude plot → gain margin, \(G_M \), which is the gain required to raise the magnitude curve to 0 dB

- **Phase margin**
 - Magnitude plot →
 \[\omega_{\Phi_M} = \omega\big|_{G=0dB} \]
 - At \(\omega_{\Phi_M} \), phase plot → phase margin, \(\Phi_M \), which is the difference between the phase value and 180°

Figure: Gain and phase margins on the Bode diagrams
Example (general)

If $K = 200$, find the gain and phase margins.

$$G(s) = \frac{k}{(s + 2)(s + 4)(s + 5)}$$

Figure: Bode log-magnitude and phase diagrams
10 Frequency response techniques

- 10.1 Introduction
- 10.2 Asymptotic approximations: Bode plots
- 10.3 Introduction to Nyquist criterion
- 10.4 Sketching the Nyquist diagram
- 10.5 Stability via the Nyquist diagram
- 10.6 Gain margin and phase margin via the Nyquist diagram
- 10.7 Stability, gain margin, and phase margin via Bode plots
- 10.8 Relation between closed-loop transient and closed-loop frequency responses
- 10.9 Relation between closed- and open-loop frequency responses
- 10.10 Relation between closed-loop transient and open-loop frequency responses
- 10.11 Steady-state error characteristics from frequency response
- 10.12 System with time delay
- 10.13 Obtaining transfer functions experimentally
Damping ratio & CL FR, [1, p. 580]

Peak magnitude of the CL FR

\[M_p = \frac{1}{2\zeta \sqrt{1 - \zeta^2}} \]

Frequency of the peak magnitude

\[\omega_p = \omega_n \sqrt{1 - 2\zeta^2} \]

Figure: 2nd-order CL system

Figure: CL FR peak vs. \%OS for a 2 pole system
Response speed & CL FR, [1, p. 581]

- Bandwidth of a 2-pole system

\[\omega_{BW} = \omega_n \sqrt{(1 - 2\zeta^2) + \sqrt{4\zeta^4 - 4\zeta^2 + 2}} \]

- \(\omega_n - T_s \) relation

\[\omega_n = \frac{4}{T_s \zeta} \]

- \(\omega_n - T_p \) relation

\[\omega_n = \frac{\pi}{T_p \sqrt{1 - \zeta^2}} \]

- \(\omega_n - T_r \) relation
 - Found using look-up table

Figure: Representative log-magnitude plot
Response speed & CL FR, [1, p. 582]

Figure: Normalized bandwidth vs. damping ratio for:

a. T_s, b. T_p; c. T_r
10 Frequency response techniques

- 10.1 Introduction
- 10.2 Asymptotic approximations: Bode plots
- 10.3 Introduction to Nyquist criterion
- 10.4 Sketching the Nyquist diagram
- 10.5 Stability via the Nyquist diagram
- 10.6 Gain margin and phase margin via the Nyquist diagram
- 10.7 Stability, gain margin, and phase margin via Bode plots
- 10.8 Relation between closed-loop transient and closed-loop frequency responses

- 10.9 Relation between closed- and open-loop frequency responses
- 10.10 Relation between closed-loop transient and open-loop frequency responses
- 10.11 Steady-state error characteristics from frequency response
- 10.12 System with time delay
- 10.13 Obtaining transfer functions experimentally
Constant M circles & constant N circles, [1, p. 583]

Skip for now
10 Frequency response techniques

- 10.1 Introduction
- 10.2 Asymptotic approximations: Bode plots
- 10.3 Introduction to Nyquist criterion
- 10.4 Sketching the Nyquist diagram
- 10.5 Stability via the Nyquist diagram
- 10.6 Gain margin and phase margin via the Nyquist diagram
- 10.7 Stability, gain margin, and phase margin via Bode plots
- 10.8 Relation between closed-loop transient and closed-loop frequency responses
- 10.9 Relation between closed- and open-loop frequency responses
- 10.10 Relation between closed-loop transient and open-loop frequency responses
- 10.11 Steady-state error characteristics from frequency response
- 10.12 System with time delay
- 10.13 Obtaining transfer functions experimentally
Damping ratio from M circles, [1, p. 589]

Skip for now
Damping ratio from phase margin, [1, p. 589]

Skip for now
Response speed from OL FR, [1, p. 591]

Skip for now
10 Frequency response techniques

- 10.1 Introduction
- 10.2 Asymptotic approximations: Bode plots
- 10.3 Introduction to Nyquist criterion
- 10.4 Sketching the Nyquist diagram
- 10.5 Stability via the Nyquist diagram
- 10.6 Gain margin and phase margin via the Nyquist diagram
- 10.7 Stability, gain margin, and phase margin via Bode plots
- 10.8 Relation between closed-loop transient and closed-loop frequency responses
- 10.9 Relation between closed- and open-loop frequency responses
- 10.10 Relation between closed-loop transient and open-loop frequency responses
- 10.11 Steady-state error characteristics from frequency response
- 10.12 System with time delay
- 10.13 Obtaining transfer functions experimentally
Position constant, [1, p. 593]

Type 0 system

\[
G(s) = K \frac{\prod_{i=1}^{n}(s + z_i)}{\prod_{j=1}^{m}(s + p_j)}
\]

Initial log-magnitude value

\[
20 \log M = 20 \log K_p
\]

Position constant

\[
K_p = K \frac{\prod_{i=1}^{n} z_i}{\prod_{j=1}^{m} p_j}
\]

Figure: Typical unnormalized and unscaled Bode log-magnitude plots showing the value of static error constants
Velocity constant, [1, p. 594]

Type 1 system

\[G(s) = K \frac{\prod_{i=1}^{n}(s + z_i)}{s \prod_{j=1}^{m}(s + p_j)} \]

Initial log-magnitude value

\[20 \log M = 20 \log \frac{K_v}{\omega_0} \]

Velocity constant

\[K_v = K \frac{\prod_{i=1}^{n} z_i}{\prod_{j=1}^{m} p_j} \]

Frequency axis intersect

\[\omega = K_v \]

Figure: Typical unnormalized and unscaled Bode log-magnitude plots showing the value of static error constants
10 FR techniques

10.11 Steady-state error characteristics from FR

Acceleration constant, [1, p. 595]

Type 2 system

\[G(s) = K \frac{\prod_{i=1}^{n} (s + z_i)}{s^2 \prod_{j=1}^{m} (s + p_j)} \]

Acceleration constant

\[K_a = K \frac{\prod_{i=1}^{n} z_i}{\prod_{j=1}^{m} p_j} \]

Initial log-magnitude value

\[20 \log M = 20 \log \frac{K_a}{\omega_0^2} \]

Frequency axis intersect

\[\omega = \sqrt{K_a} \]

Figure: Typical unnormalized and unscaled Bode log-magnitude plots showing the value of static error constants
10 Frequency response techniques

- 10.1 Introduction
- 10.2 Asymptotic approximations: Bode plots
- 10.3 Introduction to Nyquist criterion
- 10.4 Sketching the Nyquist diagram
- 10.5 Stability via the Nyquist diagram
- 10.6 Gain margin and phase margin via the Nyquist diagram
- 10.7 Stability, gain margin, and phase margin via Bode plots
- 10.8 Relation between closed-loop transient and closed-loop frequency responses
- 10.9 Relation between closed- and open-loop frequency responses
- 10.10 Relation between closed-loop transient and open-loop frequency responses
- 10.11 Steady-state error characteristics from frequency response
- 10.12 System with time delay
- 10.13 Obtaining transfer functions experimentally
Time delay – delay between the commanded response and the start of the output response

\[G'(s) = e^{-sT} G(s) \]

FR

\[G'(j\omega) = e^{-j\omega T} G(j\omega) \]

\[= |G(j\omega)| \angle [-\omega T + \angle G(j\omega)] \]

Figure: Effect of delay upon FR
10 Frequency response techniques

- 10.1 Introduction
- 10.2 Asymptotic approximations: Bode plots
- 10.3 Introduction to Nyquist criterion
- 10.4 Sketching the Nyquist diagram
- 10.5 Stability via the Nyquist diagram
- 10.6 Gain margin and phase margin via the Nyquist diagram
- 10.7 Stability, gain margin, and phase margin via Bode plots
- 10.8 Relation between closed-loop transient and closed-loop frequency responses
- 10.9 Relation between closed- and open-loop frequency responses
- 10.10 Relation between closed-loop transient and open-loop frequency responses
- 10.11 Steady-state error characteristics from frequency response
- 10.12 System with time delay
- 10.13 Obtaining transfer functions experimentally
Skip for now
1. Estimate the pole-zero configuration from the Bode diagrams
 - Initial slope → system type
 - Phase excursions → \#poles & \#zeros

2. Look for obvious 1st - & 2nd -order pole or zero FR characteristics

3. Peaking & depressions → underdamped 2nd-order pole & zero, respectively

4. Extract 1st - & 2nd-order characteristics
 - Overlay ±20 or ±40 dB/decade lines on magnitude curve & ±45°/decade lines on the phase curve
 - Estimate break frequencies
 - For 2nd-order poles & zeros, estimate \(\zeta \) & \(\omega_n \)

5. Form a TF of unity gain using the poles & zeros found
 - Subtract the FR of the model from the measured FR and repeat the process if necessary