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Abstract—Optimal control problems on dynamical systems are con-
cerned with finding a control policy, which minimizes a desired objective,
where the objective value depends on the future evolution of the system
(the state of the system), which, in turn, depends on the control policy. For
systems which contain subsystems that are disjoint across the state vari-
ables, distributed optimization techniques exist, which iteratively update
subsystems concurrently and then exchange information between subsys-
tems with shared control variables. This article presents a method, based
on the asynchronous alternating directions method of multiplier algorithm,
which extends these techniques to subsystems with shared control and
state variables, while maintaining similar communication structure. The
method is used as the basis for splitting network flow control problems into
many subnetwork control problems with shared boundary conditions. The
decentralized and parallel nature of the method permits high scalability
with respect to the size of the network. For highly nonconvex applications,
an efficient method, based on adjoint gradient computations, is presented
for solving subproblems with shared state. The method is applied to
decentralized, coordinated ramp metering and variable speed limit control
on a realistic freeway network model using distributed model predictive
control.

Index Terms—Decentralized control, distributed algorithms, optimal
control, traffic control.

I. INTRODUCTION

Finite-horizon optimal control is a popular method for comput-
ing predictive control strategies for dynamical systems [1]–[3], its
applicability growing with the increase of computational power and
pervasiveness of physical sensing. In general, a finite-horizon optimal
control problem will take the following form:

min
x∈X

f(s, x) (1)

subject to : s = g(x) (2)

where x represents the vector of control variables belonging to the
set of feasible controls X (which we may assume to be R

n for
simplicity), s represents the vector of “state” variables, constrained to
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be a deterministic function g(x) of the control, and f is some objective
function of the control and state we wish to minimize.

Related Work in Distributed Optimization: Much attention has
recently been given to distributed methods for finite-horizon optimal
control problems, where g is assumed to be linear and f is assumed to
be quadratic or convex. Distributed optimization has been found useful
for at least two reasons. First, the parallelizability of the individual
sub-problems allows for faster computation time and better overall
convergence properties [4]–[8]. Secondly, physical systems often have
controls physically distributed in space, creating a need for distributed
control algorithms which limit the amount of shared information and
communication between subsystems [9]–[11].

Different assumptions on the structure, smoothness, and convexity
of f , X , and g leads to different convergence bounds and communica-
tion bounds. In optimal control, a method presented in [4] for decou-
pling the quadratic terms from the nonquadratic terms leads to efficient
caching techniques shown to be effective in FPGA applications. A
distributed gradient descent-based approach is given in [10], which
has O(1/

√
k) convergence to the global optimum in the general case,

where k is the number of iterations of the algorithm. A common dual-
decomposition technique employed for distributed optimal control
is the alternating directions method of multipliers [4], [12], [13]
(ADMM), which has been shown to have O (1/k) convergence under
certain assumptions of the smoothness and decomposability of the
objectives [14]. Additionally, an accelerated version of ADMM, based
on Nesterov’s algorithm [15] can give O(1/k2) convergence when the
decomposed objectives are smooth [6].

When the coupling between systems takes on some sparse form,
then one can devise algorithms with limited communication, which
can be beneficial from a latency and architectural standpoint. Optimal
control problems where subsystems have disjoint state variables but
coupled control variables have been shown to be amenable to de-
composition techniques for distributed optimization [7], [10], where
[9] shows how ADMM decomposition leads to less communication
without a decrease in solution accuracy.

In [7], [9], [10], the subsystems with disjoint state are modeled
as agents tasked with optimizing over their own subsystem, where
agents which share some control variables are connected by some
edge in a communication graph. Thus, the more sparse the coupling of
systems, the lesser the communication requirements. Such a model is
referred to as multi-agent optimization [14]. In systems with coupling
due to physical proximity, this consequence has the added benefit
of requiring only physically local communication, and removes the
need for any centralized controller or hub for communication. In
[14], an asynchronous form of ADMM (subsequently referred to as
A-ADMM) is presented for multi-agent optimization, which permits
agents to update themselves in arbitrary order, with communication
only required between neighboring agents. The method in [14] does
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not present an accelerated version and is shown to have O(1/k)
convergence.

Subsystems With Coupled State: One recurring assumption in
the distributed optimization literature above is that subsystems have
disjoint state variables. For network flow problems, where subsystems
correspond to partitions of a network into subnetworks, such an
assumption does not hold. To see this, one can imagine a traffic light
timing plan causing a traffic jam which spreads across the entire
freeway network [16] or a bottleneck of planes in an airspace affecting
flight times throughout the air network [1]. As a result, it is not possible
to decompose the subsystems by only sharing control parameters
without coupling each subsystem to all control variables and modeling
the evolution of the entire network within each subsystem.

Yet, freeway traffic and air traffic subsystems have a very sparse
coupling in their state variables. For instance, discrete traffic models
[17], [18] often assume that the speed of traffic on a particular section
of road is only a function of the speed of traffic on neighboring links.
Thus, each subnetwork subsystem would only share a small number of
control variables and state variables with other subsystems, precisely
those which physically share a border with the subsystem.

The first main contribution of this article is a multi-agent optimiza-
tion algorithm which exploits the sparsity of such systems. Based
on A-ADMM [14], the algorithm permits each agent (subsystem) to
share both control and state variables with neighboring agents, while
still converging to the globally optimal control, given the standard
assumption of convex objectives and linear constraints. At a high
level, the algorithm “relaxes” the state variables external to an agent
while constraining internal state variables to adhere to the subsystem’s
dynamics. Since A-ADMM eventually brings all shared variables
between agents into consensus (i.e., the difference between shared
variables converges to zero), the relaxed external state variables will
converge to satisfying the original constraints.

The other main contribution of this article is an asynchro-
nous and decentralized ramp-metering and variable-speed-limit (VSL)
control scheme which leverages the shared-state A-ADMM algorithm.
The proposed control scheme fits naturally in the context of distrib-
uted transportation management agencies, where no central control is
required, yet global objectives may be achieved (i.e., collaboration is a
social optimum, not a Nash equilibrium).

The rest of the article is structured as follows. Section II presents
the general problem of posing a multi-agent optimal control problem,
with the additional assumption that an agent may share both state
and control variables with other agents. The problem is then posed
in a form amenable to using the A-ADMM algorithm in Section III.
A systematic approach to modeling an optimal control problem over
a dynamical network as a multi-agent distributed optimization over
subnetworks is given in Section IV, as well as a discussion on the
suitability of the method for scaling model predictive control on
dynamical networks. In Section V, we give an adjoint-based approach
to solving the agent’s subnetwork optimal control problem, suitable for
applications with complex, non-convex dynamics. We then present the
application of distributed, predictive ramp-metering and VSL control
on freeway networks in Section VI followed by numerical results in
Section VII with comparisons to existing distributed approaches. We
conclude with some final remarks in Section VIII.

Notation: For a vector x, let x[i] be the ith element of x, and
similarly let y[i, j] be the element of the two-dimensional array in the
ith row and jth column. Let card(x) be the cardinality of a vector
x, i.e., the number of elements in x. If we have a vector x with
card(x) = N and let w be a subset of {1, . . . , N}, then let xw denote
the vector selecting only those elements x[i] where i ∈ w. We define
the concatenation of vectors x ∈ R

m and y ∈ R
n as the resulting

vector z ∈ R
n+m constructed by appending the elements of y onto

Fig. 1. Optimization problem partitioned into D = 3 disjoint state variable
groups. Arrows allow us to compute the u(i), v(i), w(i) subsets for each group
i, where → indicates functional dependency through (3).

TABLE I
SUBSETS u(i), v(i), w(i) FOR FIG. 1 EXAMPLE

x. If a vector d is the concatenation d = (a, b, c), then let [d]a be the
sub-vector of d corresponding to the original element a.

II. PROBLEM STATEMENT

We wish to solve an optimization problem with a “free” global
variable x ∈ R

n and a “dependent” variable s ∈ R
m which is a deter-

ministic function of x, where n is the number of “control” parameters
and m is the number of “state” parameters. We assume there is a
partition of s into D disjoint subsets

s =
(
su(1), . . . , su(D)

)
where u(i) are subsets of {1, . . . ,m}. Section IV discusses several
strategies for choosing state partitions based on system dynamics. The
objective function is assumed to be the sum of D sub-objectives, where
sub-objective fi, i ∈ {1, . . . , D} is a convex function of only partition
su(i).1 Furthermore, su(i) is assumed to be a function of some subset
of x and s. Explicitly, for each i ∈ 1, . . . , D, there is well-defined,
linear function gi and subsets v(i) and w(i) (w(i) ∩ u(i) = ∅) where

su(i) = gi
((

xv(i), sw(i)

))
. (3)

The tuple (xv(i), sw(i)) is the concatenation vector of xv(i) and sw(i).
We omit the double parenthesis in the rest, for simplicity. One can
view u(i), v(i), w(i), as the internal state, the control, and the external
state, respectively, of group i. We can now express the optimization
problem we wish to solve as

min
x,s

D∑
i=1

fi
(
su(i)

)
(4)

subject to : su(i) = gi
(
xv(i), sw(i)

)
∀i ∈ 1, . . . , D. (5)

Fig. 1 shows an example of how different sub-objectives may
be coupled and Table I summarizes how one constructs the
u(i), v(i), w(i) subsets from the state and control coupling.

Dependency Graph: There are no assumptions on the subsets v(i)
and w(i), which implies that the value of each sub-objective fi is
coupled to not just the sub-vector su(i), but also the global variable x,
and other sub-vectors su(j). We can express this coupling as a

1We omit the dependency of the objective on the control variable in this
presentation for simplicity. It is still easy in this form to add control variables
into the objective by duplicating a control variable into the state.
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TABLE II
SUBSET INTERSECTION TERMS FOR FIG. 1 EXAMPLE

dependency graph (V,E), where vertices V are each sub-problem
i ∈ {1, . . . , D} and an edge (i, j) ∈ E exists whenever

1) w(i) ∩ u(j) �= ∅ (gi is a function of some variable in su(j)), or
2) v(i) ∩ v(j) �= ∅ (there is some x[k] which both gi and gj depend

upon).

Let the neighboring edges of node i ∈ V be denoted by E(i). A de-
pendency graph construction for the example in Fig. 1 is summarized
in Table II. The intersection of subsets from Table I across different
subproblems reveals that edges exist for groups (1, 2) and (2, 3), but
not for (1, 3).

In Section III, we devise a distributed algorithm solve
Problems (4) and (5) with the following requirements:

1) Each processing node corresponds to a sub-objective node in the
dependency graph.

2) Each node can be updated in parallel.
3) Each node i only exchanges information with its neighbors E(i)

in the dependency graph (V,E).
4) The algorithm is asynchronous and decentralized, i.e., no central

process is required and nodes can be updated arbitrarily.

III. ASYNCHRONOUS-ADMM ALGORITHM

We reformulate Problems (4) and (5) to permit a distributed solution
method via A-ADMM. For each node i ∈ V , we duplicate the “shared
variables” xv(i) and sw(i) as x̄i and s̄i respectively, and reformulate
Problems (4) and (5) as

min
x

D∑
i=1

fi
(
su(i)

)
(6)

subject to : su(i) = gi(x̄i, s̄i) ∀i (7)

s̄i = sw(i) ∀i ∈ 1, . . . , D (8)

x̄i = xv(i) ∀i ∈ 1, . . . , D. (9)

The variable replication allows Constraint (7) in Problems (6)–
(9) to be decoupled across nodes. To decouple Constraints (8) and (9),
we follow a modified process from [14].

First, we duplicate each subset su(i) with a vector si local to
node i ∈ V , and then concatenate all local variables into a sin-
gle variable yi=(si, x̄i, s̄i), such that yi is restricted to the space

Yi = {(si, x̄i, s̄i) : si = gi(x̄i, s̄i)} .
Finally, we can repose Constraints 2 and 3 in an edge-wise fashion as
follows. For each edge e = (i, j) ∈ E, let yi,e and yj,e be the sub-
vectors of yi and yj that are coupled through gj and gi, respectively.
Then Problems (4) and (5) becomes

min
(yi∈Yi)i∈V

D∑
i=1

fi
(
[yi]s

)
(10)

subject to : yi,e = yj,e ∀e ∈ E. (11)

By moving the edge constraints into the objective through a stan-
dard Lagrange multiplier approach, and adding a regularization term
which is equal to zero for feasible solutions [13], we can construct
the augmented Lagrangian L formulation (with tunable augmenting
coefficient ψ), and express the optimization problem as

min
y=(yi)i∈V

max
λ=(λe)e∈E

L(y,λ) (12)

:=

D∑
i=1

fi
(
[yi]s

)
+

∑
e∈E

λT
e (yi,e − yj,e) + ψ‖yi,e − yj,e‖22. (13)

The above form permits us to apply the A-ADMM algorithm as
proposed and analyzed in [14], and shown in Algorithm 1. At a high-
level, the algorithm iterates by first randomly selecting an edge e =
(i, j) from E. Then, nodes i and j update yi and yj respectively by
minimizing the Lagrangian in (12) in parallel, while holding all other
variables {λ′

e}e′ �=e, {yk}i�∈{i,j} constant. The new yi and yj values
are used to update the dual λe variables by applying a dual-ascent
method [13]. Finally, the process is repeated ad-infinitum by updating
a new edge selected from E, until some convergence or termination
criteria are reached.

Section V presents an efficient solution method, based on dis-
crete adjoint computations, to solving the subproblem on Line 4 of
Algorithm 1.

Remark: The equation in Line 4 differs slightly from the augmented
Lagrangian in (12) and is the result of a number of algebraic manipu-
lations, which are explicitly derived in [13], [14].

Remark: We introduce the asymmetric coefficient Λq,e to account
for the fact that the terms for edge e ∈ E(q) in Line 4 depend upon
whether the updating problem q was the first or second term (i or j) in
the edge pair.

Algorithm 1 Asynchronous Edge Based ADMM

1: while Not Converged do
2: Select edge e = (i, j) ∈ E
3: for q ∈ (i, j) do
4:

yk+1
q ← arg min

y∈Yq

fq ([y]s)

−
∑

e∈E(q)

Λq,eλ
k,T
e (yq,e − ȳke ) +

ψ

2

∥∥yq,e − ȳke
∥∥2

2

5: end for
6: λk+1

e ← λk+1
e − ψ

2

(
yk+1
i,e − yk+1

j,e

)
7: for q �∈ (i, j), e′ �= e do
8: yk+1

q = ykq , λ
k+1
e′ ← λk

e′

9: end for
10: end while
11: Note: ỹke = 1

2 (y
k
i,e + ykj,e)

12: Note: Λq,e =

{
1 q = i
−1 q = j

e = (i, j)

IV. DISTRIBUTED OPTIMIZATION ON COUPLED

DYNAMICAL SYSTEMS

Physical transport systems, such as freeway traffic networks [17],
[19] or gas pipelines [20] are often naturally expressed as a network of
individual dynamical systems which influence one another at contact
points, or junction points. Given the coupling in dynamics across
the entire network, optimizing over partitioned sub-systems, with no
communication between systems, will lead to greedy solutions over
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Fig. 2. A network is partitioned into three subnetworks: solid, dashed, and
dash-dotted. Each subnetwork will share state with neighboring subnetworks.
For a subnetwork i, the cells neighboring i, denoted by Ed

i , are shown in black,
while those excluded from Ed

i are shown in gray. (a) Completed network.
(b) Solid subnetwork with two shared links. (c) Dotted subnetwork with three
shared links. (d) Dash-dotted subnetwork with three shared links.

the individual systems and sub-optimal global results [5]. Thus, any
distributed, globally optimal control scheme applied to such systems
must account for the shared state between the systems. We now show
how this can be done using the multi-agent A-ADMM approach.
Furthermore, we show how the algorithm naturally leads to a commu-
nication scheme which mirrors the physical structure of the underlying
physical network.

Assume some discrete-time, discrete-space dynamical system
which possesses a network-like dynamical coupling in space. Specifi-
cally, consider a graph (V d, Ed) (not to be confused with the depen-
dency graph (V,E) in Section II, where the d superscript is added to
denote the dynamical network) where Ed represent the discrete-space
cells and V d are the junction points where cells connect to one another,
i.e., each cell in Ed has a corresponding upstream and downstream
junction both in V d. Each discrete space “cell” c ∈ {1, . . . , Nd} has
for each discrete time step k ∈ {1, . . . , Td} both a control variable
x[c, k] ∈ R and a state variable s[c, k] ∈ R. The variable s[c, k] is
assumed to be a function of all state and control variables that satisfy
two conditions:

• the time-step is k − 1, and
• the cell must share a junction with cell c.

Next, we wish to express a distributed optimization problem subject
to the above dynamics in the form of Problems (4) and (5). To do so, we
assume a partition of (V d, Ed) into D sub-networks, which implies a
partition of Ed into D subsets (Ed

1 , . . . , E
d
D) and assume an objective

f which is splittable across the state variables internal to each sub-
network. In practice, such partitionings may be chosen, for instance, to
utilize a certain amount of computational power at the disposal of the
designer, or may already have partitionings in place, such as regional
transportation management districts. This leads to a state partitioning
s=(su(1), . . . , su(D)), where (c, k)∈u(i) iff c∈Ed

i .
Based on the two conditions for state dependencies above, we can

deduce that the state of a sub-network depends on the control and
state both internal to the sub-network and directly neighboring the sub-
network. Explicitly, for sub-network i, we can express the dependent
control variables as xv(i) where (c, k) ∈ v(i) iff c ∈ Ed

i or c neighbors
a cell in Ed

i . Similarly, the shared state for sub-network i is sw(i),
where (c, k) ∈ w(i) iff c �∈ Ed

i and c neighbors a cell in Ed
i . Finally,

we conclude that there exists some update equation gi, specific to
the particular dynamical system, where the constraint on su(i) can be
expressed familiarly as su(i) = gi(xv(i), sw(i)).

As an example, we can consider the network in Fig. 2(a), which is
partitioned into three subnetworks based on line-style.

We see that four of the edges share a single junction between
the three subnetworks. Thus, the dynamics assumed above implies
that each subnetwork will share state with each other subnetwork.
Specifically, the solid-lined network in Fig. 2(b) shares one cell each
from the other two subnetworks, while the dashed and dash-dotted
subnetworks in Fig. 2(c) and (d) share two cells with the solid
subnetwork and one cell with the opposite subnetwork. We note again
that while each optimizing agent may have different values of the state
on a particular cell in the network during intermediate stages of the
A-ADMM algorithm, each copy of the state will eventually come into
consensus as the shared-state A-ADMM algorithm converges.

Local Communication Requirements: At this point, all relevant
parameters to Problem (4), (5) have been specified. The assumption
on the dynamical network coupling leads to a desirable dependency
graph (V,E) for the system above. Since each sub-network only
requires shared state from neighboring sub-networks in the sense of
the physical network (V d, Ed), then the dependency graph (V,E) is
constructed by assigning a sub-network to each node V and adding
an edge (i, j) to E only for those sub-networks i and j which physi-
cally neighbor each other. Thus, the A-ADMM algorithm guarantees
that communication only take place between physically neighboring
systems. This is useful for situations where there are limitations in
the networking capabilities due to physical distance, such as freeway
traffic control systems, where collaborations may only exist for those
districts near each other.

Furthermore, the formulation allows for a completely decentral-
ized and asynchronous implementation of the global optimization
problem. If, for instance, all nodes are managed by independent
agencies with varying computational limits, then there are several
practical benefits to the approach. For a single sub-network, since
only information that is directly adjacent to other sub-networks needs
to be shared with other sub-networks, much of the internal formu-
lation of the sub-network can be made completely hidden from the
larger network. The asynchronicity of the algorithm also permits for
neighboring agencies to exchange information in an ad-hoc manner,
and not be bottlenecked by slower updates between separate sub-
networks. We also note that a synchronous version of our algorithm
is easily achievable when preferable by requiring all edges to up-
date once before a subsequent round of updates begin.

Scalability of Subnetwork Splitting for Model Predictive Control: A
common application of finite-horizon optimal control is in the context
of model predictive control (MPC) [5], [16], where optimal control
policies are recomputed in a rolling-horizon fashion. Given the optimal
control problem beginning at a time-step t

min
x={xt,...,xt+T }

f t+T
t (s, x) (14)

subject to : s = gt+T
t (x).

MPC chooses the control policy xt to apply at time-step t by
solving for x = {xt, . . . , xt+T} in Equation (14) using a prediction
horizon of T and updating the objective f t+T

t and constraints gt+T
t

based on the latest estimates of the initial conditions and boundary
conditions.

In applications such as freeway onramp metering, a limiting factor
in choosing an optimization time-horizon is the accuracy of the pre-
dictions of the boundary conditions, or specifically, anticipating future
vehicle demands on freeway onramps. At some point, increasing the
time-horizon will only decrease the effectiveness of the control due to
the deviation in predicted model state versus reality. Thus, it is often
practical to consider the time-horizon fixed in MPC applications, at
which point the scalability with respect to network size becomes of
importance.
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For freeway networks with very small branching factors, it is
reasonable to assume the following:

• For each subnetwork, the number of bordering links is constant.
• The number of shared state and control variables grows linearly

with the time-horizon for each subnetwork.
• The number of subnetworks scales linearly with network size

(for fixed-size subsystems).

One concludes that the amount of communication required for the
A-ADMM subnetwork splitting method would scale linearly with the
network size and quadratically with time-horizon length. If we were
to instead decompose our system, for instance, across time-slices, the
communication requirement would scale quadratically with network
size and linearly with time-horizon length. Given our assumption of
a fixed time-horizon, the subnetwork splitting approach for network-
flow MPC has the added benefit of better scaling in the communication
requirements.

V. SOLVING SUB-PROBLEMS VIA THE ADJOINT METHOD

What is not explicitly expressed in Algorithm 1 is a solution
method for Step 4. In the more general case of non-convex update
equations gi and objectives fi, it is difficult to find even local op-
tima for yi over the space Yi using gradient-descent methods: a
result of the difficulty of projecting and expensiveness of computing
gradients in Yi.

Since [yi]s is a deterministic function of the unconstrained variables
[yi]x̄ and [yi]s̄, it becomes more efficient to eliminate [yi]s from
the search space and concatenate [yi]x̄ and [yi]s̄ into a single “free”
variable r̄i := ([yi]x̄, [yi]s̄). Similar to the convention for yi,e and
yj,e, we denote (r̄i,e, r̄j,e) and (s̄i,e, s̄j,e) as the free variables and
constrained state variables, respectively, shared between nodes i and
j. Then we can repose the sub-optimization in Step 4 in the following
way. We let:

f̄i(si, r̄i) := fi ([y]s)

−
∑

e∈E(i)

Λi,eλ
k,T
e

(
ri,e − r̄ke

)
+

ψ

2

∥∥ri,e − r̄ke
∥∥2

2

+
∑

e∈E(i)

Λi,eλ
k,T
e

(
si,e − s̄ke

)
+

ψ

2

∥∥si,e − s̄ke
∥∥2

2

be the “augmented” sub-objective accounting for the additional
ADMM terms for subproblem i, where r̄e, s̄e denotes the array mean
of ri,e, rj,e and si,e, sj,e respectively. Also, if we let the concatenated
subsystem equations be

Hi(s, r) := s− gi ([r]x̄, [r]s̄)

then we have (
sk+1
i , r̄k+1

i

)
= argmin

s,r
f̄i(s, r) (15)

subject to : Hi(s, r) = 0. (16)

The form of Problem (15) permits us to apply the discrete adjoint
method [21], [22] to compute gradients of f̄i at some search point r̄0i .
If we let s0i be defined so that Hi(s

0
i , r̄

0
i ) = 0, then we can use the fact

that the gradient of H with respect to r is zero (since the right-hand-
side is always zero)

∇rHi

(
s0i , r̄

0
i

)
=

∂Hi(s
0
i , r̄

0
i )

∂s
drs+

∂Hi(s
0
i , r̄

0
i )

∂r
= 0. (17)

Combined with the expression for the gradient of f̄i

∇r f̄i
(
s0i , r̄

0
i

)
=

∂f̄i (s
0
i , r̄

0
i )

∂s
drs+

∂f̄i (s
0
i , r̄

0
i )

∂r
(18)

we can substitute out drs, and arrive at the following expression for
the gradient:

∇r f̄i
(
s0i , r̄

0
i

)
= γT ∂Hi (s

0
i , r̄

0
i )

∂r
+

∂f̄i (s
0
i , r̄

0
i )

∂r
(19)

subject to :
∂Hi (s

0
i , r̄

0
i )

∂s

T

γ = −∂f̄i (s
0
i , r̄

0
i )

∂s

T

. (20)

The γ variable is commonly referred as the discrete adjoint variable,
while (20) is referred to as the discrete adjoint system.2 If we assume
that gi is a closed-form, smooth equation, then all partial derivative
expressions above are well-defined, can be derived by hand and can be
computed with cost on the order of a single forward-simulation. Mild
conditions guarantee a solution for γ (see [23]).

As compared to finite-differencing methods, the adjoint formulation
in (19) and (20) reduces the complexity of computing gradients by
a factor proportional to card(r̄i), the number of free variables. It
is shown in [23], that if there are further sparsity and triangularity
assumptions on the ∂Hi/∂s and ∂Hi/∂r̄ matrices, then solving (19)
and (20) can be done with complexity linear in the size of r̄i and si.
A system matching such assumptions is coordinated, freeway onramp
traffic light metering, which is explored in a non-distributed setting
in [23].

VI. DISTRIBUTED, COORDINATED OPTIMAL

RAMP METERING AND VSL

We apply distributed optimization via subnetwork splitting to the
problem of coordinated, predictive freeway onramp metering and
VSL control [5], [16], [24], where traffic lights on freeway onramps
are used to regulate the flow entering freeway mainlines and speed
limits are dynamically adapted in order to prevent congestion and
improve such metrics as driver travel time and speed variability. The
term coordinated indicates that many traffic lights and VSL signs
along a freeway stretch will act cooperatively, given that conditions
near one onramp or VSL sign may eventually affect conditions at a
neighboring onramp or VSL sign. The term predictive indicates that
the metering/VSL strategy should anticipate future conditions on the
roadway using traffic demand predictions and an underlying model of
the evolution of the freeway system.

Similar to discretized freeway models following the cell transmis-
sion model (CTM) approach [17] taken in [18], [23], we adopt the
Link-Node CTM model presented in [16]. The network is given as
a linear sequence of mainline link, onramp and offramp triples,3 as
depicted in Fig. 3. We establish the state variables of the system as
s = {ρ[i, k], l[i, k] : i ∈ [1, N ], k ∈ [1, T ]}, where ρ[i, k] is the num-
ber of vehicles on the mainline link i (with unit length) and l[i, k]
is the number of vehicles queued on onramp i, both at time-step
k. Additionally, the control variables are x = {(c[i, k], ν[i, k]) : i ∈
[1, N ], k ∈ [1, T ]}, where c[i, k] ∈ R+ is the maximum vehicles that

2The discrete adjoint method for computing gradients of constrained opti-
mization problems is a classical result coming from the first-order stationarity
condition of the discrete KKT system, and we refer the reader to [21] for a
general introduction.

3Freeway models with more general network topologies exist [19] and allow
direct application of the subnetwork splitting method presented herewithin. We
limit our discussion to linear freeway networks to simplify the presentation.
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Fig. 3. Overview of the freeway ramp metering network and state evolution.
(a) Dynamical state and control variables of a particular junction i on the
freeway. The relation between mainline density ρ[i, k], onramp queues l[i, k],
metering control rate c[i, k], VSL ν[i, k], and boundary condition split ratios
β[i, k] for a given time-step k are depicted, and mathematically expressed in
(21)–(27). (b) Shows how one may partition the linear network into subnet-
works. While subnetworks may have internal links and onramps, they will also
include links and onramps immediately upstream and downstream as part of
their shared state (denoted by the dashed-line boxes), giving the appearance of
overlapping subnetworks. (a) A single freeway junction near link i. (b) Diagram
of freeway network with A-ADMM subnetwork splitting.

can leave onramp i at time k (ramp metering rate), and ν[i, k] is
the maximum speed of vehicles on link i at time k (VSL rate). The
following system of equations relate the state of the freeway at time-
step k − 1 to k:

d[i, k] = min (c[i, k], l[i, k]) (21)

σ[i, k] = min (w (ρmax − ρ[i, k]) , fmax) (22)

δ[i, k] = min (ν[i, k]ρ[i, k], fmax) (1 − β[i, k]) + d[i, k] (23)

f [i, k] = min (ν[i, k]ρ[i, k], fmax)
min (δ[i, k], σ[i+ 1, k])

δ[i, k]
(24)

r[i, k] = d[i, k]
min (δ[i− 1, k], σ[i, k])

δ[i− 1, k]
(25)

l[i, k] = l[i, k − 1] +D[i, k]− r[i, k − 1] (26)

ρ[i, k] = ρ[i, k − 1] + f [i− 1, k − 1] (1 − β[i, k − 1])

+ r[i, k − 1]− f [i, k − 1] (27)

where w ∈ R
+ is a constant parameter modeling the speed at which

congestion propagates backwards. The intermediate variables above
all have a physical interpretation: for a time-step k, d[i, k] (resp.
δ[i, k]) is the maximum number of vehicles that can exit offramp
(resp. mainline cell) i, σ[i, k] is the maximum vehicles that can enter
mainline cell i, and r[i, k] (resp. f [i, k]) is the actual number of
vehicles leaving onramp (resp. mainline cell) i.

The recursive definitions above require an initial condition

s0 =
{
ρ0[i], l0[i] : i ∈ [1, N ]

}
(28)

and boundary conditions at the left and right extremes of the network

(sL, sR) =
{(

sL[k], sR[k]
)
: k ∈ [0, T ]

}
(29)

both of which are assumed given. Equations (21)–(25) can be seen as
intermediate computations required to update the state variables given
in (26) and (27), and not explicitly part of the state vector. We note
that the offramps are modeled as stateless, infinite-capacity sinks, and
thus are only captured through β[i, k], the fraction of vehicles which
desire to exit offramp i rather than continue to mainline link i+ 1 at
time-step k. A diagram of the state and control variables for a single
junction is given in Fig. 3(a). The above dynamics are non-convex, but

it is shown in [16] that, assuming some maximum velocity V and ramp
flow C, if a set of variables satisfy the following linear inequalities and
equalities:

f [i, k] ≤ min (ρ[i, k]V, fmax) (30)

f [i, k] (1 − β[i+ 1, k]) + r[i+ 1, k]

≤ min (w (ρmax − ρ[i+ 1, k]) , fmax) (31)

r[i, k] ≤ min (C, l[i, k])

Equations (26)–(27) (32)

then a control c, ν can be constructed such that f, r, ρ, l, c, ν satisfy
(21)–(27). Thus, we can employ the adjoint method presented in
Section V on the relaxed problem in order to improve sub-objectives
during each iteration of the A-ADMM algorithm with a guarantee of
convergence to the global optimum. Other non-convex traffic models,
such as second-order models [19] could be used for more expressivity,
but without the convergence guarantee. We omit the explicit c, ν
reconstruction procedure and refer the reader to [16] for details.

As an objective, we use total travel time, or the cumulative time
spent by all vehicles on the network. Taking 
t to be the dis-
crete time-step, total travel time is mathematically expressed as

fTTT = 
t
∑
i,k

(ρ[i, k] + l[i, k])

and is decomposable across subnetwork splits.
It is clear from the definitions of s and x above that each state

variable is a direct function of only the state and control variables
of neighboring links at the previous time-step, and as such, can be
decomposed using the subnetwork splitting method in Section IV.
Fig. 3(b) depicts such a splitting, where each subnetwork also in-
cludes the neighboring upstream and downstream links as boundary
conditions.

The dependency graph (V,E) for such a network has a nat-
ural structure, where an edge (i, j) is in E if and only if j =
i+ 1, and thus a subnetwork need only communicate with the
linear subnetworks immediately upstream and downstream of itself.
Furthermore, only information pertaining to the bordering links and
onramps of a subnetwork needs to be shared with its neighbors,
allowing a subnetwork to conceal the particular implementation of its
internal freeway model from the rest of the system.

VII. NUMERICAL RESULTS

All simulations were run on a personal laptop with a 2.4 GHz Intel
Core i5 using 8 GB of RAM. The code was implemented in Scala [25],
and makes use of the general-purpose nonlinear optimization software
IpOpt [26].

A. Convergence With Number of Subnetworks

We first investigate the numerical convergence of the
A-ADMM metering and VSL controller on a model 4-lane freeway
network spanning 12 miles (N = 12 cells) with 3 onramps and
2 offramps over a 2 hour simulation (T = 120 time-steps). We
consider three different partitionings by splitting the network into 2, 3,
and 4 subnetworks, respectively. We also simulated the following
alternative controllers for comparison:

• No control: Metering rates are set to maximum ramp flux rates
C and speeds are set to free flow velocity V .
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Fig. 4. Space-time diagrams of mainline (row 1) and onramp (row 2) vehicle
count evolution for 12 mile network. Large congestion pockets appearing for
(a) no control case are reduced using coordinated holding of vehicles on
onramps and decreased speed limits during periods of congestion (c). Lack of
communication between subsystems (b) leads to an ineffective control policy.
(a) No Control. (b) No Comm. (c) A-ADMM.

Fig. 5. Total travel time versus computation time for several different control
schemes and subnetwork (SN) partitionings. The no-communication results are
omitted due to poor performance.

• Centralized: A single optimal control problem over the entire
freeway is solved as a convex optimization problem. This
solution gives the theoretical lower bound on total travel time.

• No communication: Individual subnetworks optimize over their
own decomposed total travel time objective, with no exchange of
information between subnetworks.

• Communicative: Subnetworks iteratively optimize over decom-
posed objectives and exchange the resulting predicted boundary
conditions with neighbors until resulting boundary conditions
converge (see [5]). There is no guarantee of convergence of
boundary conditions or of finding the global optimum.

Fig. 4 gives a space-time depiction of the mainline and onramp
vehicle evolution for the no control, no communication, and A-ADMM
controllers.

The convergence results for the 12 mile freeway network are
summarized in Fig. 5. The centralized approach is faster than
the distributed approaches (A-ADMM and communicative) as
the former does not require an outer communication loop. As the num-
ber of network partitions increases, A-ADMM converges faster to the
optimum due to the parallelization of the subnetwork optimizations.
Furthermore, the communicative algorithm degrades in performance
with increasing number of partitions due to the increase in commu-
nication requirements and lack of global objective coordination. If
a decentralized algorithm is required for architectural reasons, then
the A-ADMM approach is shown to be most desirable due to the

Fig. 6. I15 South MPC simulation summary. (a) shows the freeway under
consideration partitioned into 5 subnetworks, while (b) gives a summary of the
performance of the different ramp metering/VSL controllers. (a) Geographical
depiction. (b) Total travel time summary in 1000 vehicle hours.

lower degree of coordination than the centralized approach and better
convergence than the communicative approach.

B. Distributed MPC for I15 Network

MPC simulations were run on a calibrated model of the I15
South freeway in San Diego, CA with boundary flow data taken from
measurements recording during a morning rush hour. The simulation
spans 20 miles (N = 32 cells), contains 9 onramps, 8 offramps and
runs over a 170 minute window (T = 1000 time-steps) with an MPC
update time of 17 minutes and a horizon of 25 minutes. The network
is partitioned into 5 subnetworks and is depicted geographically in
Fig. 6(a).

Travel Time Results: Fig. 6(b) gives a summary of the performance
of the A-ADMM MPC controller along with other controllers. The
results indicate that the A-ADMM controller performs nearly as well
as the centralized MPC controller, which can be viewed as a lower-
bound on the performance of MPC controllers with limited horizons.
The communicative and non-communicative approaches were not able
to improve upon no control. The communicative approach performed
worse than the non-communicative approach because its iterative
terminated after reaching a set number iterations on a highly inefficient
solution, due to its lack of convergence guarantees.

Running Time: The theoretical optimum was allowed to run until
convergence and took approximately 30 minutes to run. For all MPC
controller types, each MPC update (every 17 simulation minutes)
was allowed to run until either convergence was reached, or until
approximately 10 wall-clock minutes was reached to enforce the
constraint that the algorithms should be of real-time use.

VIII. CONCLUSION

We presented a distributed optimization algorithm based on the
multi-agent A-ADMM formulation, applied to systems with both
shared control and shared state. We showed how the technique could
be used for MPC problems on networked dynamical systems to allow
subnetworks to update and communicate in a decentralized and asyn-
chronous manner. We derived a distributed, cooperative freeway ramp
metering and VSL controller based on the technique, and ran simu-
lations on a realistic freeway network, which demonstrated improve-
ments in performance over simpler decentralized MPC approaches.

As future work, we will investigate an accelerated [15] version of
the A-ADMM algorithm and investigate performance improvements.
Additionally, we hope to do sensitivity analysis on models of real
traffic networks using the magnitude of the dual parameters (λ) to
inform traffic control systems designers on which subnetworks have
strong coupling and would benefit from additional coordination.
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