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Abstract— This paper proposes three novel distributed al-
gorithms to optimally schedule Plug-in Electric Vehicle (PEV)
charging. We first define the global optimization problem, where
we seek to control large heterogeneous fleets of PEVs to flatten a
net Load Curve. We demonstrate that the aggregated objective
can be distributed, via a new consensus variable. This leads to
a dual maximization problem that can be solved in an iterative
and decentralized manner: at each iteration, PEVs solve their
optimal problem, communicate their response to the aggregator,
which then updates a price signal. We propose three distributed
algorithms to compute the optimal solution, namely a gradient
ascent and two incremental stochastic gradient methods. We
prove their rate of convergence, their precision level and expose
their characteristics in terms of communication and privacy.
Finally, we use the Vehicle-To-Grid simulator (V2Gsim), and
present a set of case studies, with an application to flattening
the “Duck Curve” in California.

I. INTRODUCTION

PEVs provide a compelling opportunity for supplying
demand-side management services in the smart grid. Namely,
a vehicle-to-grid (V2G) capable PEV communicates with
the grid, stores energy, and can return energy to the elec-
tric grid. If properly managed, PEVs can enhance energy
infrastructure resilience, enable renewable integration, and
reduce economic costs for consumers and energy providers
[1]. In addition to these societal-level infrastructure and
environmental benefits, V2G may provide additional revenue
streams to PEV owners [2]. Underscoring this opportunity,
U.S. personal vehicles are parked and un-used 96% of time
[3]. A single PEV can generally provide 5-20 kW, which
is insufficient to participate in power grid markets. How-
ever, populations of PEVs can be aggregated to collectively
provide grid services [4]. The main challenge, however, is
monitoring and managing a large population of distributed
PEV resources without sacrificing their primary function of
personal mobility.

A growing body of literature addresses design of smart
charging algorithms for PEV control, and propose either
centralized or distributed protocols. Centralized algorithms
[5], [6], [7] require a central infrastructure to communicate
with each agent, collect all the information and compute the
optimal load profile of the fleet. However, when the number
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of agents grows, these methods require heavy communica-
tion, high memory and computation time.

On the other hand, in distributed optimization problems,
each PEV solves a local problem and communicates in a peer
to peer fashion. A number of recent studies have focused on
these methods to address coordinated charging of PEVs for
load shaping. Previous related work, e.g. [8], [9] addresses
“valley filling” only, with the objective to fill the overnight
valley of load. In these models, a PEV plugs-in during a long
and known time period (e.g. overnight), and must be fully
charged at the end of this period. This does not encompass
more comprehensive PEV usage schedules and does not
consider V2G capabilities. The authors in [10] propose a high
security and privacy-preserving framework based on Regret
Minimization methods, but this requires constant constraints
from day to day. Reference [11] addresses a richer set of load
shaping, and proposes a framework based on the Alternating
Direction Method of Multipliers (ADMM) to solve several
optimization objectives for heterogeneous PEV populations.

In this paper, we propose a novel dual splitting algorithm
and variants, which adds to existing studies on ADMM, and
is applied to the California energy “Duck Curve”. The Duck
Chart was established by the California Independent System
Operator (CAISO) [12] as a possible future net load curve for
California. Net load is the difference between forecasted load
(consumption) and electricity production from renewables.
High penetration of solar generation is expected to create
a deep valley during the day and steep ramping between
mid afternoon and beginning of evening, which will require
more flexible resources to avoid high ramping and over-
generation. In this paper we study how PEVs can provide
demand response to smooth this Duck Curve.

The main contributions of our work include the following:
• We derive a novel distributed algorithm based on

dual splitting methods. This framework includes battery
degradation costs and is applicable to the most general
driver behavior, where PEVs can either be used in G2V
(can only consume energy) or V 2G mode (can consume
and supply energy).

• We propose three different algorithms, namely a gra-
dient ascent and two stochastic incremental methods.
Contrary to the ADMM in [11], the proposed method
exploits the independence between constraints, which
has strong repercussions on time complexity and privacy
preserving properties.

• We perform theoretical convergence analysis with ex-
plicit convergence bounds. In practice, this is essential to
measure implementation burdens, and assess the cyber-
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security properties of the algorithm.
• We use real data from National Household Travel

Survey (NHTS) [13] to quantify demand response op-
portunities in California for various scenarios of PEV
penetration.

The remainder of the paper is organized as follows. Sec-
tion II formulates the optimal scheduling problem. Section III
establishes a dual splitting method, proposes three distributed
algorithms and analyzes their convergence properties. Sec-
tion IV applies the algorithm to real data in California.

TABLE I
NOMENCLATURE

Symbol Description
N Number of PEVs
T Time horizon
ut

n Charging rate of car n at time t
ct

n Discharging rate of PEV n at time t due to driving
xt

n State Of Charge (SOC) of PEV n at time t
Dt External loads at time t (consumption - solar generation)
Bn Battery capacity of PEV n
xmin

n Minimum State Of Charge (SOC) of PEV n
xmax

n Maximum State Of Charge (SOC) of PEV n
Pt

n Maximum charging power of PEV n at time t
Pt

n Minimum charging power of PEV n at time t

II. PROBLEM FORMULATION

In this section, we use the notation in Table I and develop
an optimization program to design optimal PEV charging
schedules. We use double brackets to denote a discrete set,
e.g. [[1,T ]] = {1,2, · · · ,T −1,T}.

A. Electric Vehicle Charging Model

For each vehicle, we consider linear battery dynamics. Let
xt

n denote the State of Charge (SOC) of vehicle n at time t,
ut

n the charging rate when vehicle n is plugged-in, and ct
n

the driving discharging rate when vehicle n is on road. The
battery dynamics are described by a linear model, with a
power conversion efficiency η ≤ 1.

xt+1
n = xt

n +
ηmut

n

Bn
∆t− ct

n

ηBn
∆t. (1)

m =

 1 if ut
n ≥ 0,

−1 if ut
n < 0,

(2)

xmin
n ≤ xt

n ≤ xmax
n (3)

B. Charging constraints

The variable ut
n can be non zero if and only if PEV n is

plugged-in at time t. We denote Rn the indicator vector:

Rt
n =

{
1, if PEV n is plugged in at time t
0, otherwise (4)

From this definition, we can derive the equality constraint:

(1−Rn)
T un = 0 (5)

Equations (1), (2) and (3) define a constraint set, which is
more binding as η increases, and attains the most binding
case when η = 1 (in practice, η = 1 models a perfect battery
efficiency). Therefore, satisfying the constraints associated
with a perfect efficiency ensures that the constraints (1), (2),
(3) are true at every time step t ∈ J1,T K, for any value of
η ≤ 1. For simplicity, and similar to previous work ([14],
[15]), we will use η = 1 to determine PEV energy storage
and power constraints:

Bn
∆t (x

min
n - xinit

n )+
t
∑

τ=1
cτ

n ≤
t
∑

τ=1
uτ

n ≤ Bn
∆t (x

max
n - xinit

n )+
t
∑

τ=1
cτ

n(6)

Pt
n ≤ ut

n ≤ Pt
n (7)

C. Finite Time Horizon constraints

The above problem has a fixed time horizon T . In practice,
no terminal constraint could cause total depletion of energy
at the end of the period T . For simplicity, we impose that
every PEV attains at least SOC x f inal

n at the end of the period.

T

∑
τ=1

uτ
n ≥

Bn

∆t
(x f inal

n − xinit
n )+

T

∑
τ=1

cτ
n (8)

This is a conservative constraint, which can be improved in
future formulations of the problem.

D. Objective

We denote Dt the aggregate electric loads combined with
the uncontrollable renewable generation. Variable Dt is the
net load and does not include PEV loads [12].

The objective of the control algorithm is to flatten the total
load curve Dt +∑

N
n=1 ut

n. We seek to minimize peaks and
variance of the total energy needs. This can be formulated
in the following objective:

min
u

T

∑
t=1

(Dt +
N

∑
n=1

ut
n)

2 (9)

The optimization program is a Quadratic Program with
T × N linear equality constraints and 1 + 4T × N linear
inequality constraints, summarized as follows:

min
u

T

∑
t=1

(Dt +
N

∑
n=1

ut
n)

2 (10a)

st ∀n ∈ J1,NK,∀t ∈ J1,T K (1−Rn)
T un = 0 (10b)

∀n ∈ J1,NK,∀t ∈ J1,T K Pt
n ≤ ut

n ≤ Pt
n (10c)

∀n ∈ J1,NK,∀t ∈ J1,T K (6), (8) (10d)

III. DUAL DECOMPOSITION

In this section we develop a Dual splitting method and pro-
vide a distributed protocol to solve problem (10). We show
that, provided we add a regularization term, both problems
are equivalent and the distributed protocol converges to the
optimal solution.
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A. Dual splitting

In the remainder of this paper, we will study the reg-
ularized version of problem (10). The objective function
(9) is augmented with a penalization term σ ∑

N
n=1 ||un||2.

This L2 norm term penalizes the sum of power squared
and can be physically interpreted as a battery degradation
penalty. Battery degradation depends on a multitude of
factors, including solid electrolyte interphase film forma-
tion, electrolyte decomposition, particle fracture, electrode
delamination, etc. [16]. Experimental aging studies [17] have
shown that aging is highly correlated to the integral of power
transferred through the battery. For this reason, we refer
to the regularization term as the “Degradation cost” in the
rest of this paper. Now, the problem can be rewritten in the
compact form:

min
u

T

∑
t=1

(Dt +
N

∑
1

ut
n)

2 +σ

N

∑
n=1
||un||2 (11a)

st Ln ≤ Bun ≤Mn ∀n (11b)
Anun = 0 ∀n (11c)

We define the consensus variable zt = Dt +∑
N
n=1 ut

n; then
the problem becomes:

min
u,z

T

∑
t=1

(zt)2 +σ

N

∑
n=1
||un||2 (12a)

st zt = Dt +
N

∑
n=1

ut
n (12b)

Ln ≤ Bun ≤Mn ∀n (12c)
Anun = 0 ∀n (12d)

The above problem is a quadratic minimization problem
with linear constraints, therefore it is convex. We can dualize
the equality constraint (12b) and form the Lagrangian with
dual variable λ . Moreover, we suppose there exists a feasible
point u in the convex set formed by the constraints (12c) and
(12d). Since (12b) is affine and always feasible, problem (12)
is convex and admits a feasible point. Slater’s condition holds
[18] and strong duality gives the equivalent problem:

max
λ t∈ℜ

min
u,z

T

∑
t=1

(zt)2 +
T

∑
t=1

λ
t(zt −Dt −

N

∑
n=1

ut
n)+σ

N

∑
n=1
||un||2

st Ln ≤ Bun ≤Mn ∀n. (13)
Anun = 0 ∀n.

We first perform the minimization with respect to z:

∀t ∈ J1,T K zt∗ = argmin [ ft(zt) = zt 2
+λ

tzt ]

zt∗ =−λ t

2
and ft(zt∗) =− (λ t)2

4

Now, we define µ t = −λ t and plug the value of zt∗ into
problem (13). Then, the problem is equivalent to:

max
µ∈ℜT

−||µ||2

4
+µ

T D+
N

∑
n=1

min
un

µ
T un +σ ||un||2(14a)

st Ln ≤ Bun ≤Mn.(14b)
Anun = 0 . (14c)

In the first term of (11), the PEV power is coupled by
the cross terms ut

n × ut
m for all n,m, t. It is remarkable

that the contributions of un in the objective function (14a)
are decoupled along n ∈ J1,NK. Problem (14) can now be
solved in a distributed manner. Unlike the ADMM, the
approach above has leveraged the independence between
PEV constraints. In the next sections we will show that this
allows us to perform a precise convergence rate analysis, and
study the performance of the Gradient Ascent Method and
the Incremental Stochastic Gradient Method.

In the remainder of this paper, Ωn denotes the non-empty
convex set given by (14b), (14c).

B. Gradient ascent method

Algorithm 1 Gradient ascent
Initialization µ = µ0 ; Choose α ≥ 0, β ≥ 0
1) Find local optimal solution uk

n
for n=1 to N do

Solve uk
n = argmin

un

µkT un +σ ||un||2 st un ∈Ωn

end for
2) Update µ

Compute Gradient Ascent step
µk+1 = µk + α

kβ
(− µk

2 +D+∑uk
n)

if Stopping criteria not reached then
k← k+1, Go to 1)

end if

Algorithm 1 gives the gradient ascent protocol to solve
the optimization program. In this section, we prove that
Algorithm 1 converges to the optimal solution and we give
complexity bounds. Let g : ℜT →ℜ denote the dual function:

g(µ) =
−||µ||2

4
+µ

T D+
N

∑
n=1

min
un

(µT un +σ ||un||2)

st un ∈Ωn

Theorem 1 (Gradient Ascent with constant step-size):
The dual problem (14) has a unique solution µ∗ and the
gradient ascent with step-size α = 2σ

σ+N converges with

g(µ∗)−g(µk)≤
( N

σ +N

)k
(g(µ∗)−g(µ0))

Proof: We will prove Theorem 1 in two steps: first
show strong concavity, then show that the function admits
Lipschitz gradients.

Step 1: Show the function g : ℜT →ℜ is strongly concave
with constant m = 1

2 .
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We refer to [18] for generic results about convex functions.
Function g is a sum of a strongly concave quadratic function
and N functions ψn defined by:

ψn(µ) = min
un

µ
T un +σ ||un||2

st un ∈Ωn.

Ωn is a non-empty convex set. For each µ , ψn(µ) appears as
a minimum of a strongly convex function over a convex set,
thus it has a unique solution u∗n(µ). Let τ ∈ [0,1], µ1,µ2 ∈ℜ.

τψn(µ1)+(1− τ)ψn(µ2)

= τ min
un∈Ωn

µ
T
1 un +σ ||un||2 +(1− τ)min

un∈Ωn
µ

T
2 un +σ ||un||2

≤ min
un∈Ωn

τ(µT
1 un +σ ||un||2)+(1− τ)(µT

2 un +σ ||un||2)

= ψn(τµ1 +(1− τ)µ2) (15)

Therefore, ψn is concave. Now, g(µ) = −||µ||2
4 + µT D +

N
∑

n=1
ψn. The quadratic part is strongly concave with constant

1
2 , therefore g is at least 1

2 strongly concave .

Step 2: Show the function g : ℜT → ℜ admits Lipschitz
gradients with constant Lg =

1
2 (1+

N
σ
).

Because ψn(µ) admits a unique minimum and the function
is linear in µ , ψn is differentiable and ∇ψn(µ) = u∗n(µ)
(see [19]). Using the characterization of minimum of convex
functions with u∗1n = u∗n(µ1) and u∗2n = u∗n(µ2), we have:

〈µ1 +2σu∗1n ,un−u∗1n 〉 ≥ 0 ∀un ∈Ωn

〈µ2 +2σu∗2n ,un−u∗2n 〉 ≥ 0 ∀un ∈Ωn (16)

Applying these relations to u∗2n and u∗1n respectively we get:

〈µ1 +2σu∗1n ,u∗2n −u∗1n 〉 ≥ 0

〈µ2 +2σu∗2n ,u∗1n −u∗2n 〉 ≥ 0 (17)

Adding these lines, and using Cauchy Schwarz yields :

〈(µ1−µ2)+2σ(u∗1n −u∗2n ),u∗2n −u∗1n 〉 ≥ 0
〈(µ1−µ2),u∗1n −u∗2n 〉−2σ ||u∗1n −u∗2n ||2 ≥ 0
||µ1−µ2||||u∗2n −u∗1n || ≥ 2σ ||u∗1n −u∗2n ||2 (18)

We conclude ||u∗1n −u∗2n || ≤ 1
2σ
||µ1−µ2||.

∇g(µ1)−∇g(µ2) = −µ1−µ2

2
+∑

n
(u∗1n −u∗2n )

||∇g(µ1)−∇g(µ2)|| ≤
σ +N

2σ
||µ1−µ2|| (19)

Therefore, g has Lipschitz gradients with constant Lg =
σ+N

2σ
.

Now, from[18, Ch. 9, p. 466], the gradient ascent method
with stepsize 1

Lg
converges and gives

g(µ∗)−g(µk) ≤
(
1− m

Lg

)k
(g(µ∗)−g(µ0)) (20)

≤
( N

σ +N

)k
(g(µ∗)−g(µ0)) �
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Fig. 1. Impact of σ on convergence rate and results

Remark 1: Algorithm 1 with constant step-size converges
to accuracy ε in O

(
(1+ N

σ
)log( 1

ε
)
)

iterations, and complexity
O
(
(N + N2

σ
)log( 1

ε
)
)
. Hence, it is important to tune the

parameter σ

N to accelerate the convergence. On the other
hand, σ

N measures how selfish the agents are: as σ

N increases,
the penalization for battery degradation increases and the
result looses optimality in terms of variance minimization.
Figure 1 illustrates this tradeoff for 200 agents with µ0 = D,
where D is the initial load curve. We stop the algorithm
when we reach a relative duality gap of 10−5. We note that
for σ

N ≥ 1, 10 iterations are enough to reach this precision.
Remark 2: The above derivations and proof remain true

for any feasible convex set of constraints Ωn. Then, the
algorithm can be adapted to any similar problem where
each agent has an independent set of convex constraints. In
particular, this derivation remains true when we want to study
uncertainties and introduce a robust convex set of constraints.

C. Incremental Stochastic Gradient Method
In this section, we show that we can use an Incremental

Stochastic Gradient Method (ISGM) to solve problem (14a).
We keep the same notations and remark that g can be
expressed as:

g(µ) =
1
N

N

∑
n=1

−||µ||2

4
+µ

T D+ Nmin
un

µ
T un +σ ||un||2

st un ∈Ωn.

=
1
N

N

∑
n=1

gn(µ) (21)

The incremental gradient method is a version of Stochastic
Gradient Method where we pick i ∈ J1,NK uniformly at
random, and choose the iterate direction ∇gi. We note µ∗
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Algorithm 2 Incremental Stochastic Gradient Method
Initialization µ = µ0 , Choose α , γ , β ≥ 0
1) Find local optimal solution uk

i
Select i at random in J1,NK Solve uk

i = argmin
ui

µkT ui +

σ ||ui||2st ui ∈Ωi
2) Update µ

Compute Gradient update step
µk+1 = µk + α

γ+kβ
(− µk

2N + D
N +uk

n)

if Stopping criteria not reached then
k← k+1, Go to 1)

end if

the optimum for g and µ∗n the optimum for gn.

Theorem 2 (ISGM with constant step-size): ISGM with
constant step-size α ∈ [0, 1

(1+N/σ)2 ] reaches the ball B(µ∗,r)

with precision ε where r = 1
1+2αL2

g

2α

N L3
g

N
∑

i=1
||µ∗i − µ∗||2 in

1
α(1−2αL2

g)
ln( ||µ0−µ∗||

ε
) iterations.

Theorem 3 (ISGM with decreasing step-size): ISGM
with decreasing step-size αk =

1
(1+N/σ)2+k converges to the

optimal solution µ∗ and

E(g(µ∗)−g(µk))≤ 1
N

N
∑

i=1
||µ∗i −µ∗||2 1

(1+N/σ)2+k

Proof of Theorems: We prove Theorem 2 and 3 by showing
that we can find L and B such that E

(
||∇g(µ)||2

)
≤ L2||µ−

µ∗||2 +B2.
Step 1: Show the function gn : ℜT →ℜ admits Lipschitz

gradients with constant Ln = Lg =
1
2 (1+

N
σ
).

This is shown by following the same proof as step 2 of
Theorem 1 .

Step 2: Show E
(
||∇gi(µ)||2

)
≤ 2L2

g||µ−µ∗||2 +B2

with Lg =
1
2 (1+

N
σ
) and B2 = 1

2N (1+
N
σ
)2

N
∑

i=1
||µ∗i −µ∗||2.

Using Cauchy Schwarz inequality and the Lispchitz condi-
tion, we obtain:

E
(
||∇gi(µ)||2

)
≤ E

(
L2

i ||µ−µ
∗
i ||2
)

≤ E
(
2L2

i ||µ−µ
∗||2 +2L2

i ||µ∗i −µ
∗||2
)

=
2
N

N

∑
i=1

L2
g||µ - µ

∗||2+
2
N

N

∑
i=1

L2
g||µ∗i - µ

∗||2

= 2L2
g||µ−µ

∗||2 +B2 (22)

This is the condition E
(
||∇g(µ)||2

)
≤ L2||µ − µ∗||2 + B2.

With these particular values of L and B, results in [20] can
be used to establish the step-sizes and convergence rates of
Theorem 2 and 3. �

Remark 3: The convergence rates of Algorithm 1 and
Algorithm 2 with constant step size are linear, whereas the
convergence rate of Algorithm 2 with decreasing step size is
as 1

k , which is much slower. An Incremental Method iteration
involves only one agent and is N times faster than a Gradient
Ascent iteration. Thus the convergence speed of Algorithm 2
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with constant step-size is usually faster, but converges only to
a certain precision r. This algorithm should be used when the
aggregator needs a fast convergence and is satisfied with an
approximate solution. In this stochastic configuration, only
one random PEV at a time needs to communicate with the
aggregator. This usually reduces the amount of messages
that one agent needs to send to the aggregator, improves
the resistance to hacking attacks [21], and has better cyber-
security performance (see a companion paper [22], which
specifically addresses the privacy preserving properties of
the algorithm). Thus, Algorithm 2 with decreasing step-size
should be used when the aggregator is concerned about
cyber security. Figure 2 and 3 show the values of the primal
and dual objectives of the function for each of the three
methods. We stop Algorithm 1 and 2 when the number of
iteration exceeds 2×105 or the relative duality gap reaches
10−3; Nit denotes the number of iterations to converge to
the precision ε = 10−3 with the starting point µ0 = D, where
D is the load curve (“Duck Curve” ). This shows that all
the algorithms converge faster as the parameter σ

N increases.
For σ = 200, Algorithm 1 and Algorithm 2 with constant
step-size converge to the required precision:
• Algorithm 1 needs 5 full-gradient iterations.
• Algorithm 2 needs 6193 stochastic iterations, which

corresponds to 6193
200 ' 31 full-gradient iterations.

IV. RESULTS, APPLICATION TO THE DUCK CURVE

In this section, we use the Vehicle-to-Grid Simulator
(V2G-Sim) developed by the Grid Integration Group at
Lawrence Berkeley National Laboratory [23]. V2G-Sim is an
agent-based simulator that models the driving and charging
behavior of individual PEVs and their grid impact. Reference
[24] gives more details about the V2G-Sim methodology.

A. Impact of charging infrastructure

NHTS gives a choice of representative location types for
trip departures and arrivals (eg: Home, Work, Restaurant,
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TABLE II
DESCRIPTION OF CASE STUDIES

Case Study Home Work Other
L1 L2 L1 L2 L1 L2

L1 Home 100% 0 0 0 0 0
L1 Home, Work 100% 0 100% 0 0 0
Mix 50% 50% 20% 20% 15% 5%

Time (h)
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L
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Fig. 4. Impact of the charging infrastructure

School/Church, Medical/Dental). Based on this information,
we simulate different infrastructure levels and generate cor-
responding charging constraints for the algorithm. Level 1
(L1) chargers correspond to P = 1400W , and Level 2 (L2)
chargers correspond to P = 7200W . We study two different
cases: in the V 2G case PEVs can either charge or supply
energy when they are plugged-in, and in the G2V case PEVs
can only charge. Table II presents 3 different infrastructure
scenarios and Fig. 4 shows how it impacts the loads for 100
PEVs, depending on their V2G capability. This case study
shows that the charging infrastructure significantly impacts
the demand response opportunities of PEVs. In particular,
L2 chargers with V2G capabilities facilitate peak reduction.

B. Impact of PEV penetration

In this section, we fix the scale Number of cars
Maximum Peak Load . We

assume that the total peak load in California is 26000 MW
and the total number of cars in California is 13.3×106. This
ratio is kept constant to simulate areas of different size and
study the impact of PEV penetration in California. Figure 5
shows the impact of PEV penetration on a 3MW peak area,
which approximately corresponds to 1600 cars. We consider
the only available charging infrastructure is L1 chargers at
home. It is remarkable to see that 20% penetration (315
PEVs) suffices to reduce the evening ramping by a factor
of 2.
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C. Impact of driver mobility

In this section, we analyze the effect of driving schedule
variability on the results. We use a simultaneous activity-
based approach to generate different realistic mobility pro-
files, based on NHTS data. More particularly, a simultaneous
model first deconstructs a person’s day into a set of activities,
and independently simulates each of them [25]. The driving
schedule generation includes two major steps:
• Identify ‘tour profiles’. In this first step, we divide the

dataset into 20 different day-profiles, which represent
typical trip and activity day schedules (for example
“Home / Trip 1 / Work / Trip 2 / Home”). We compute
the percentage of people that fall into each profile.

• Statistical analysis of activity duration and trip distance.
By using distribution inference and parameter fitting, we
assess the most representative probabilistic distribution
of each schedule element.

Eventually, the NHTS dataset is modeled by 20 different
activity profiles, which can be used to simulate any repre-
sentative population and travel demand [25], [24].

Figures 6 and 7 show the result for different fleets of 200
cars and 180 cars respectively. Figure 6c and 7c show the
number of plugged-in cars during the time period and Fig. 6a,
7a and 6b, 7b show the result of the control algorithm. Figure
6 features a case where fleets have pretty similar driving
patterns (mostly commuters). In this case, the price signal
slightly varies across fleets. On the contrary Fig. 7 features
two different fleets: Fleet 1 is a mix of night and day workers
with chargers at work, and Fleet 2 is a population of day-
workers with no charger at work. In this case, the price signal
noticeably differs.

This price signal has an intuitive meaning: when the
system is over-utilized (evening peak loads), the price signal
is high, whereas when the system is under-utilized (day
valley), the price signal is low. This pattern is independent
from driving behaviors and can be compared to a marginal-
price-type of signal [9]. However, contrary to a marginal
price, the case study shows that the optimal price signal also
depends on driving behaviors (Fig. 7b). This shows that a
good forecast of trip schedules will improve the efficiency
of the control algorithm.

V. CONCLUSION

This paper describes distributed load shaping strategies to
control PEV charging schedules via dual splitting. We define
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a global optimization problem, which aims at coordinating
PEVs to minimize the load variance. We show that this
objective can be distributed and solved in a decentralized
framework. In the first step each PEV solves a local optimal
program based on a broadcast price signal, and communi-
cates their response to the aggregator. In the second step,
the aggregator updates the price signal to reach minimal load
variance. We propose three methods to compute this iterative
process and prove their characteristics. First, the gradient
ascent method converges in a linear rate but needs an update
from every agent at each iteration. Second, the Stochastic
Incremental Method with constant step-size converges in a
linear rate, needs the update from only one agent at each
iteration but converges to an approximate solution. Third, the
the Stochastic Incremental Method with decreasing step-size
converges to the optimal solution as 1

k and needs the update
from only one agent at each iteration. Finally, we compute
several case studies based on real data, and demonstrate
that PEVs provide a compelling opportunity to integrate
renewable energy sources in the electricity mix.
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