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Abstract

Mathematical Models and Control Algorithms for Traffic Automation

by

Yiling You

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor Jon Wilkening, Co-chair

Professor Alexandre M. Bayen, Co-chair

Transportation accounts for 28% of energy consumption in the US, with 75% of that occurring
on highways. Workers spent on aggregate over three million driver-years commuting to their
jobs, contributing significantly to the nation-wide congestion. Based on 2012 estimates, US
commuters experienced an average of 52 hours of delay in 2011, which amounts to $121
billion of fuel costs and opportunity costs due to delay annually. Estimates project that
4.2% of fuel will be wasted in congestion in 2050 with the adoption of autonomous vehicles.
Mixed autonomy, the intermediate regime between a system with no adoption of autonomy
and a system where autonomy is fully employed, is proposed as a potential solution to fuel
consumption reduction and flow capacity improvement.

The mixed autonomy is complicated to characterize and hard to tackle due to the degree
of uncertainty in the system dynamics. The understanding of mixed autonomy is however
crucial to designing automated and intelligent transportation systems, and to overhauling
public policy with autonomous vehicles in the loop.

Approaches to mobile traffic control include machine learning methods, mathematical mod-
eling and optimal control. The machine learning approaches achieve strong empirical results
but in general lack optimality guarantees, theoretical studies of the convergence rate, out-of-
sample performance guanrantees and interpretability. The mathematical approaches, on the
other hand, are supported by highly developed mathematical theory, but suffer from a lack
of attention to the theoretical characterization to the model solutions and the actuations
function space. This is inevitable as mathematical methods trade model complexity for the
tractability of analysis in the optimal control design.

This thesis investigates mathematical models and control algorithms for traffic automation
at multiple levels.
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At the vehicle level, this thesis demonstrates the lack of guarantee of well-posedness for the
solution of the intelligent driver model (IDM) and closes the theoretical gap by proposing
several modifications and rigorously showing the existence and uniqueness of their solutions.

At the mixed autonomy vehicle control level, a systematic way to design the basis-based
feedback controller is introduced, which is defined by the solution of a finite-dimensional
constrained optimization problem. This thesis discusses theoretical characterization of the
actuation function space. An optimal Legendre polynomial basis controller is trained with
field data and has been evaluated with simulation data and compared with a range of other
mobile traffic controllers.

At the full origin-destination demand routing level, this thesis studies the repeated routing
game problem on a parallel network with affine latency functions on each edge, transforming
the dynamic traffic assignment problem into a control-theoretic problem. The impact of
model parameters on the traffic performance is theoretically studied, and an algorithmic
solution based on explicit model predictive control (MPC) is proposed.
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Chapter 1

Introduction

1.1 Mixed Autonomy Traffic

History of the Automated Highway System (AHS)

An Automated Highway System (AHS) is a specially equipped roadway on which vehicles
can be operated automatically. The idea of automated driving dates way back at the 1939
World’s Fairs in New York, when General Motors (GM) presented a vision of automated
controlled vehicle with no driver involved. In the U.S. as well as in many other places, heavy
usage of the larger roads slows most peak-hour travel on freeways to less than 56 kilometers
(35 miles) per hour. Excess traffic not only causes more than five billion hours of delay every
year, but also wastes countless gallons of fuel and multiplies exhaust emissions. The AHS
is proposed as a solution to boost highway capacity instead of constructing new highways,
which is enormously more expensive [115].

Multiple types of the AHS are proposed. Two distinct types are a dedicated lane system
and a mixed traffic system. The former system reserved certain lane for automated vehicles,
and the former system allows the fully automated vehicles and the human driven vehicles to
share the road [115].

Among the early development of control algorithms of road vehicles, [30] reviews the
state of development of Advanced Vehicle Control Systems (AVCS), the subclass of Intel-
ligent Transportation Systems (ITS) that provides the driver with assistance in controlling
their vehicle, including the extension to full control of vehicle motions. The types of control
in AVCS includes lateral, longitudinal and integrated, along with crash warning and collision
avoidance. The authors of [61] developed an adaptive, vision- and machine learning-based
robust driving system to execute tactical driving maneuvers such as lane changing and inter-
section navigation. [57, 56] describe the design of AHS developed at the California Partners
for Advanced Transit and Highways (PATH) programs, detailing the design and safety veri-
fication of the on-board vehicle control system and the link-layer traffic-flow controller.

To demonstrate the technical feasibility of automating highways, the National Automated
Highway System Consortium (NAHSC) initiated a four-day field demonstrations on August
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7, 1997. The demonstrations showed the increase of highway capacity with greater levels of
vehicle cooperation, and the automated vehicles demonstrated adaptive cruise control (ACC)
[115].

Mixed Autonomy

There are two commonly studied regimes in traffic, either where autonomous vehicles (AV)
are few enough as having no affect on the surrounding traffic dynamics [139, 129, 130], or
so ubiquitous as becoming a coordination problem [33, 54, 99]. We refer to these as the
isolated autonomy and full autonomy cases respectively. The intermediate regime is termed
mixed autonomy, which is complicated to characterize and hard to tackle due to the degree
of uncertainty in the system dynamics. The understanding of mixed autonomy is however
crucial to design automated and intelligent transportation systems, and to the corresponding
public policy with AVs in the loop.

Human-robot and multi-robot systems. Recent development in control theory and
computing power made automated and industrial robots possible. Nowadays more digitally
operated and commercial robots are used to perform jobs more cheaply, more accurately and
more reliably. As the application scenarios of robotics problems broaden, robots no longer
act in isolation. Researchers have been formalizing and algorithmically solve the problem of
robot action in coordination with people, i.e., the problem as a human-robot system.

The topics in human-robot and multi-robot system are vast. In [78, 18, 38], the authors
model irrational/suboptimal human behavior and develop algorithms which are robust to
misspecification. The problem of learning the human preference with active interaction to
query for the most informative piece of data are studied in [120, 119]. With the development
of learning algorithms, multiple authors study the intersection of learning and robotics and
develop methods to learn the robots’ act from demonstrations [159, 90, 35]. Designs of
game-theoretic approach for human-robot interaction opens the possibility to characterize
negotiation strategies, as proposed in [41, 79].

Human-vehicle systems. Many of the general human-robot system approaches can be
applied to the specific systems where human interact with automated vehicles. The authors
of [132] propose a vehicle-level controller design framework for autonomous truck platoons
to ensure safe interaction with a human-driven car, where the interaction is modelled as a
hierarchical dynamic game, played between the human driver and the nearest truck in the
platoon. [121, 39] focus on trajectory planning algorithms for autonomous driving when
human-driven vehicles are also present on the road. Finally at the routing policies level, the
authors of [15, 16] develop algorithms to learn the preferences of the users and formulate
a planning optimization that chooses prices to maximize a social objective. On the topic
of gathering accurate traffic information, [51] presents a field experiment nicknamed Mobile
Century, which is a traffic monitoring system based on GPS-enabled smartphones.
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The Machine Learning Approaches to Mobile Traffic Control

Machine learning gained recent popularity in mobile traffic control for fitting control strate-
gies and traffic models. The development in machine learning combined with better opti-
mization algorithms and growing computing power make deep learning methods popular to
fit large and complex models to data. For example, Artificial neural network (ANN) model
is one of the common parametric universal nonlinear function approximators [55], theoreti-
cally expressive enough to approximate any finite dimensional function. Besides their strong
modelling capacity, deep learning methods are capable of integrating real massive data and
automating feature engineering procedure. Specifically, deep learning models are developed
to predict traffic flow [111, 92]. For the general discussion of the uses of deep learning in
transportation, see [63] for a study of differences and similarities between the neural net-
works and statistical approaches. For a comprehensive survey of the traffic state estimation
on highway, we refer to [125].

Reinforcement Learning Approaches

Deep reinforcement learning (deep-RL) provides a formalism for deep learning of sequential
decision making problems with feedback, including continues feedback control. The formula-
tion of deep-RL renders itself as a potentially suitable solution to mobile traffic control. [155,
154, 156] formulate and approach the mixed-autonomy traffic control problem (where both
automated and human-driven vehicles are present) using the framework of deep-RL, with
the benchmarks for multiple traffic scenarios provided in [145]. The authors of [147] derive
novel deep-RL based control policies for autonomous vehicles to improve the throughput of
a bottleneck modeled after the San Francisco-Oakland Bay Bridge. [66] demonstrates the
ability for model-free deep-RL techniques to generate traffic control strategies for connected
and automated vehicles (CAVs) in various network geometries. Deep-RL are also leveraged
to design traffic signal timing [83] and to control ramp metering [12].

Limitations of Machine Learning Approaches

The machine learning approaches to mobile traffic control are limited in several ways.
Lack of optimality guarantees: due to the complexity of the Neural Network (NN)

structures, numerical methods are oftentimes used to approximate the optimal coefficient
given the objective. These empirical studies however lack guarantee of the convergence to
an optimal, especially when the underlying task is difficult due to either sparse feedback
signal or partial observation. And even when an optimal is obtained, it would be hard to
analyze the properties of the reached optimal.

Lack of theoretical studies of the convergence rate: it is not uncommon that online
machine learning is necessary for the traffic control problems, when data becomes available
in a sequential order and is used to update the best model parameters. Hence a theoretical
rate of the convergence to the optimal solution is crucial to guarantee the feasibility of
updating the optimal online. However getting such analytical convergence guarantee results
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are difficult, both due to the fact that the NN are nebulous black boxes, and the complexity
of algorithm design.

Lack of out-of-sample performance guarantees: the benefit of deep learning meth-
ods is to leverage a “use-it-for-all” model structure (i.e., the NN) and to automate feature
engineering by fitting the model with massive data. However the down side of this approach is
that without physics-based modeling or tailoring the model structure to be problem-specific,
the NN has no guarantee of extrapolation performance to the out-of-sample data.

Lack of interpretability: due to the black-boxness of the NN models, model inter-
pretation is difficult for deep learning approaches. However, the capability of interpreting
the modeling results is essential for improving the model architecture and public policy
correspondingly.

Mathematical Approaches to Mobile Traffic Control

Mathematical approaches have historically been essential for the modelling of traffic and
optimal control. This class of approaches are usually physics-based, supported by highly
developed mathematical theory, and tailored to the specific application in an attempt to
balance model accuracy and model complexity.

Mathematical Models

For a comprehensive overview of the modeling of driving behavior, empirical traffic flow
phenomena and its stability analysis, we refer to [142].

The traffic dynamics are described by various mathematical models. A classical theory
of traffic flow is developed by replacing individual vehicles with continuous fluid density and
applying an empirical relation between speed and density. This is termed as a macroscopic
traffic flow model, where individual drivers are negligible with respect to the total number
of drivers present. The partial differential equations (PDE) are commonly used for the
modeling of highway traffic. [87, 114] leverages the kinematic waves or shock waves in PDE
to characterize traffic waves. [110] further describes PDE models in mathematical detail
for basic flow simulation, ramp metering and diversion, surveillance, and representation of
freeway incidents. [5] riches the traffic flow PDE model to a “second order” models, i.e.,
models with two equations (mass and “momentum”), replacing the space derivative with a
convective derivative, and proves the new model nicely predicts instabilities near the vacuum,
i.e., for very light traffic. [152] presents a new scalar hyperbolic PDE model for traffic velocity
evolution on highways, based on the seminal Lighthill-Whitham-Richards (LWR) PDE for
density.

Another class of traffic models is termed microscopic models, which represent individual
vehicle movements. The ordinary differential equations (ODE) are applied for the modelling
of longitudinal dynamics. The authors of [20] assess the range of options available in the
choice of microscopic simulation models with car following models. [44] proposes a car-
following model to predict the response of a vehicle in a stream of traffic to the behaviour of
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its predecessor. The authors of [9, 8] establish ODE to present a dynamical model of traffic
congestion based on the equation of motion of each vehicle. Experimental simulations with a
continuous microscopic single-lane ODE model are conducted in [140], with results compared
to real data, showing consistency with a recently proposed theoretical phase diagram for
traffic near on-ramps.

Queueing systems are leveraged to model the intersections. Queueing models for road
traffic flow are developed and discussed in [101, 49, 151].

Finally, stochastic jump systems are used for the modeling of lateral dynamics. The
authors of [157] propose a stochastic lane changing model based on multi-lane microscopic
traffic model and Markov chain macroscopic model.

Mathematical Methods for Traffic Optimization and Optimal Control

Mathematical methods for traffic optimization and optimal control are ubiquitous in the
classical literature. For an all-inclusive overview of traffic control strategies for three areas
– urban road networks, freeway networks, and route guidance – is provided in [108]. In
response to the ill pattern in traffic, multiple optimal control designs are proposed where the
automated vehicle adjust its motion reactive to the preceding traffic. The authors of [133]
studies two model-based control laws for the mixed autonomy setting, where the models
incorporate the knowledge of the traffic environment. The effect of the two automated vehi-
cle control laws, the Followerstopper controller and the proportional–integral (PI) feedback
controller with saturation, on the dissipation of stop-and-go waves is demonstrated exper-
imentally. [153] studies the ability of small numbers of automated vehicles to stabilize a
single-lane system of human-driven vehicles, by formalizing the problem in terms of linear
string stability and deriving optimality conditions. The adaptive cruise control (ACC) [135,
59, 144] and cooperative ACC (CACC) [128, 112, 91, 127] automatically adapts the cruise
control velocity of a vehicle if there is preceding traffic to a safe following distance, where
CACC further uses control theory and wireless inter-vehicle communication link to simulta-
neously optimize the performance of several adjacent vehicles. [62] presents a vehicle driving
system in a control-theoretic model predictive control (MPC) framework that effectively
improves traffic flow.

Mathematical methods trade model complexity with for the tractability of analysis in
the optimal control design. Under certain circumstances, analytical results can be derived
for the control-theoretic performance bounds. In [3] the authors conduct a comprehensive
analysis on the vehicle string stability by considering a realistic wireless channel under a
mobile reactive jamming attack in the CACC system. [149] analyzes stability using bilateral
control (BCM) by investigating the underlying systems of differential equations. Finally,
[105, 43] theoretically studies the impact of signal delay through wireless vehicle-to-vehicle
connection on the traffic control performance.
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Limitations of the Previous Approaches

The previous mathematical approaches to mobile traffic control are limited in several ways.
Lack of attention to the theoretical characterization to the model solutions:

as the complexity of the mathematical models increases, analytical characterization of the
solutions becomes challenging. For instance, this is the case when researchers attempt to
generalize linear system theory to highly nonlinear systems, or to extend the theoretical
optimality guarantee in isolated/fully-controlled systems to the mixed systems. One example
is with the deterministic time-continuous car-following model, the intelligent driver model
(IDM), where there is a lack of the analysis of the well-posedness and physical feasibility of
the solution.

Lack of characterization of the actuations function space: the design of math-
ematical models for traffic control is usually based on heuristic. There is a lack of the
characterization of a “proper” controller function space as a general guideline to the sys-
tematic development of optimal controllers. One example of such characterization can be
based on the basis functions, where the acceleration controller can be represented as a linear
combination of a set of basis functions.

1.2 Contributions of the Thesis
We breakdown the technical contributions of this thesis as follows.

• At the vehicle level, this thesis focuses on a classical car-following model, the IDM.
The thesis demonstrates the ill-posedness of the model and presents some improvements
to avoid these problems, with solid theoretical foundation built for the well-posedness
and safety guanratee.

• At the mixed autonomy vehicle control level, this thesis develops and studies
performance for basis-based optimal controllers. A rigorous definition of the basis-
based controller is given as the solution of a finite-dimensional constrained optimization
problem.

• At the full origin-destination demand routing level, this thesis designs a control-
theoretic scheme for repeated routing games. The parallel network flow allocation
problem is cast and solved through Linear Quadratic Regulator (LQR) and model
predictive control (MPC) techniques, with the model performance demonstrated with
simulation results.

1.3 Outline of the Thesis
The rest of the thesis is organized as follows:
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Chapter 2: Limitations and Improvements of the Intelligent Driver
Model (IDM)

This chapter introduces a widely used car following model, the IDM, which characterizes the
motion of the vehicle by a second order ordinary differential equation. The modeling of the
autonomy discussed in this chapter is at the vehicle level, i.e., one focuses on the dynamics
of the position and velocities of every vehicle. This chapter points out two mathematical
and modelling drawbacks of the classical IDM, i.e., there is no guarantee of a non-negative
velocity trajectory and the solution of the system of ODEs might cease to exist in finite time.
This chapter theoretically analyzes the existence and uniqueness of a solution for small time
horizons, with lower bound on the distance which can be interpreted as a safety distance.
Analysis and comparison of adjustments to the classical IDM in this chapter shows the
possibility to avoid the problems of the original model. With the modified IDM introduced
in this chapter, the global well-posedness of the solutions is proved.

Chapter 3: Design of a Basis-based Feedback Controller with
Optimal Control

This chapter introduces a systematic design of optimal basis-based feedback controllers.
The modeling of the autonomy discussed in this chapter is at the mixed autonomy level,
i.e., one concerns the problem of driving on highways or negotiating effectively with another
agent. This chapter discusses the typical choices of basis functions of objective functionals.
Numerical results are presented, key metrics and auxiliary visualization are proposed to
explore the performance of the optimal controller, to detect potential flaw in the design,
and to study the robustness of the optimal basis controller regarding the input tuple. With
the approach of this chapter, the feedback controller is trained offline. Trained basis-based
feedback controllers are applied online both to the simulator and the field experiments.

Chapter 4: Parallel Network Flow Allocation in Repeated Routing
Games via LQR Optimal Control

This chapter studies the repeated routing game problem on a parallel network with affine
latency functions on each edge. The modeling of the autonomy discussed in this chapter is
at the full origin-destination demand level, i.e., one considers the traffic assignment problem.
This chapter provides a control theoretic game design scheme for repeated routing games
through the Linear Quadratic Regulator (LQR). The chapter also describes a algorithmic
approach to solve the control routing problem using explicit MPC technique. Numerical
solutions along with a geometric framework for visualizing optimal routing solutions for
every feasible state in the routing game are presented.
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Chapter 2

Limitations and Improvements of the
Intelligent Driver Model (IDM)

2.1 Introduction
The field of car following modeling historically goes back to the early 1950s’ (and proba-
bly before) [24, 42]. Most of the early work in this field focused on establishing the model
equations, without paying much attention to the mathematical framework required to charac-
terize solutions to the resulting ordinary differential equations (ODEs) describing the motion
of the vehicles. The models are mainly classified into acceleration models for longitudinal
movement, lane-changing models for lateral movement and decisional models for discrete-
choice situations. Among all the car-following models introduced so far ([7, 14, 20, 104, 106]
to just name a few) it is worth mentioning the Gazis-Herman-Rothery (GHR) model [24]
which determines the relative velocity between two-lane based vehicles, the Safe Distance
Model [44], the Optimal Velocity Model [8] in which the acceleration of the single vehicle is
controlled according to the velocity of the leading vehicle, and the Intelligent Driver Model
(IDM) which is subject of analysis in the present work. For a comprehensive overview of the
main car-following models we refer to [142, 96, 53].

The IDM has been introduced in [140] and is a deterministic time-continuous model
describing the dynamics of the positions and velocities of every vehicle. Similarly to any
car-following model, the idea behind it is that drivers control their vehicles to react to the
stimulus from preceding vehicles. It aims to balance two different aspects, the necessity to
keep safe separation with the vehicle in front and the desire to achieve “free flow” speed. This
model presents some peculiarities which made it subject of intense research in the last two
decades. Indeed, it is constructed to be collision-free, all the parameters can be interpreted
and empirically measured, the stability of the model can be calibrated to empirical data,
and there exists an equivalent macroscopic counterpart [50]. In literature we find many
extensions of the original IDM, each of which seeks to incorporate new realistic features.
The Enhanced IDM [64] presents an improved heuristic of the IDM useful for multi-lane
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simulations, which prevents the model from “over-reactions” even when the driver of the
leading vehicle suddenly brakes with the maximum possible deceleration.

The Foresighted Driver Model (FDM) starts from the IDM and assumes that a driver
acts in a way that balances predictive risk (due to possible collisions along his route) with
utility (time required to travel, smoothness of the ride) [36].

Other extensions of the IDM aim to improve the driver safety and to respect the vehicle
capability [29], to strengthen the power of each vehicle in proportion to the immediately
preceding vehicle [84], and to incorporate the spatially varying velocity profile to account
the variation in different types of maneuvers through intersection [86]. Another natural
extension is given by Multi-anticipative IDM [143] which models the reaction of a driver to
several vehicles ahead just by summing up the corresponding vehicle-vehicle pair interactions
with the same weight coefficients.

More recently, stochastic versions of the IDM have been introduced: to describe a proba-
bilistic motion prediction applicable for long term trajectory planning [52], to study mecha-
nisms behind traffic flow instabilities, indifference regions of finite human perception thresh-
olds and external noise [141], and to incorporate context-dependent upper and lower bounds
on acceleration [124, 123].

Throughout the decades, most of the engineering community worked on improving the
ability of the models to capture specific behavioral phenomena, at the expense of the charac-
terization of the solutions. Thus, to this day, only a few articles use models, and correspond-
ing solutions, that are well characterized in terms of existence, uniqueness, and regularity.
An example of this practice is provided by the double integrator ẍ(t) = u ∈ U , where U is
the input set, used abundantly as a canonical example in numerous control articles. On the
other hand, when models have inherent flaws leading to unbounded or undefined solutions,
as in the case of unbounded acceleration, ad hoc methods have been traditionally applied
post facto by engineering the numerical implementations. For instance, in commonly used
microsimulation tools, such as SUMO [89], Aimsun [1] and others, unbounded quantities are
clipped, leading to “acceptable” numerical solutions. However, in the process, the fidelity
to the original model is compromised, and the numerical simulations may not represent any
instantiation of the model. Consequently, the properties of the considered continuous model
might be lost as well. Finally, the process of clipping can introduce additional issues, not
necessarily present in the original model, and prevent the definition of any theoretical models
corresponding to the obtained numerical simulations. The present article thus attempts to
provide a full pipeline in which the model is first mathematically well defined (including
existence, uniqueness and regularity characterization of the solutions), and then numerically
implemented using appropriate numerical differentiation schemes. The final achievement
is a thorough correspondence between theory and implementation. The well-posedness of
car-following models is also fundamental to model the traffic flow from the mean-field per-
spective, see [40, 46].
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The aim of this contribution

The introduced IDM has two mathematical and modelling drawbacks:

• The velocities of specific vehicles might become negative at specific times, which might
not be desirable from a modelling point of view.

• The velocities of specific vehicles might diverge to −∞ in finite time, so that the
solution of the system of ODE’s ceases to exist.

We will discuss these drawbacks and determine under which conditions on the initial datum
and parameters they can happen. We will present several improvements so that the solutions
exist on every finite time horizon.

Structure of this chapter

The chapter is organized in the following way. In Section 2.2 we review the classical Intelligent
Driver Model (IDM) and describe briefly the physical meaning of the parameters involved.
Well-posedness of the IDM for small time horizon is stated in theorem 2.2.1. In Section 2.3 we
analyze peculiar and possibly pathological behaviors of the model. Specifically, we provide
explicit settings in which it produces negative velocities (example 2.3.1), negative velocities
and blow-up of the solution in finite time (example 2.3.2, example 2.3.3). Section 2.4 collects
some of the main results of this work. Existence and uniqueness of a solution for small times
with lower bound on the distance which can be interpreted as “collision free.” Section 2.5
is devoted to the exploration, analysis and comparison of adjustments to the classic IDM in
order to avoid the problems mentioned in Section 2.3 for general initial data. To this end,
we introduce modified versions of the IDM for which well-posedness is proved: the projected
IDM, the acceleration projected IDM, and the velocity regularized acceleration IDM defined
respectively in definition 2.5.1, definition 2.5.2, definition 2.5.4. A further and more drastic
adjustment to the classic model is proposed in definition 2.5.5 which involves a discontinuous
acceleration, and therefore is denoted as discontinuous improvement. In Section 2.6 we
present some well-posedness results for the many vehicle case (based on the previous analysis
in Section 2.5, and finally, in Section 2.7 we draw conclusions from our work and mention
possible research directions opened by this contribution.

2.2 The intelligent driver model (IDM): Definitions and
basic results

In this section we introduce the intelligent driver model (IDM) as the following system of
ordinary differential equations. To this end, we require to define the acceleration function
as follows:
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Definition 2.2.1 (The IDM acceleration). Let T ∈ R>0 be fixed. For a parameter set
(a, b, vfree, τ, s0, l, δ) ∈ R3

>0 × (0, T ) × R2
>0 × R>1 we define the following IDM car-following

acceleration on the set

A := {(x, v, xℓ, vℓ) ∈ R4 : xℓ − x− l > 0},

Acc :

A → R

(x, v, xℓ, vℓ) 7→ a

(
1−

( |v|
vfree

)δ − (2
√
ab(s0+vτ)+v(v−vℓ)

2
√
ab(xℓ−x−l)

)2)
.

Remark 2.2.1 (Absolute values in the IDM Acceleration). It is worth mentioning that
in most literature the parameter δ is not precisely specified except that it is assumed to
be positive. However, as we will show, velocities can become negative, and this is why we
assumed that the acceleration term in definition 2.2.1 involves the absolute value of the
velocity so that ( |v|

vfree

)δ (2.2.1)

is well defined for all v ∈ R and δ ∈ R>0. Obviously, this is only one choice, and it might be
more reasonable to replace it by

sgn(v)
( |v|
vfree

)δ (2.2.2)

so that this term contributes positive to the acceleration for negative velocities and indeed
counteracts a negative velocity. For δ ∈ 2N≥1 + 1 eq. (2.2.2) can actually be replaced by
the version without the absolute value and the same is true for δ ∈ 2N≥1 with the drawback
that this part of the acceleration will always remain negative as we also assume for now in
definition 2.2.1.

An analysis similar to the one in this paper can then be carried out with mentioning that
although in this case the solution’s velocity can diverge to −∞.

As we will require for the leader a specific acceleration, the “free-flow acceleration,” we
define as follows

Definition 2.2.2 (Free flow acceleration). For (a, vfree, δ) ∈ R2
>0×R>1 the free flow accel-

eration is defined by

Accfront :

{
R2 → R
(x, v) 7→ a

(
1−

( |v|
vfree

)δ)
.

Having defined the acceleration function, we are ready to present definition 2.2.3:

Definition 2.2.3 (The IDM). Given definition 2.2.1, we call the following system of ordinary
differential equations in position x = (xℓ, x) : [0, T ]→ R2 and velocity v = (vℓ, v) : [0, T ]→
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t

Figure 2.1: For t ∈ [0, T ] the leader xℓ(t) with its dynamics determined by the acceleration
ulead(t) and the follower x(t) with its dynamics governed by the classical IDM (acceleration Acc as
in definition 2.2.1). The overall dynamics is stated in definition 2.2.3. The follower approaches the
leader. Will they collide?

R2

ẋℓ(t) = vℓ(t), t ∈ [0, T ],

v̇ℓ(t) = ulead(t), t ∈ [0, T ],

ẋ(t) = v(t), t ∈ [0, T ],

v̇(t) = Acc(x(t), v(t), xℓ(t), vℓ(t)), t ∈ [0, T ],

(xℓ(0), x(0)) = (xℓ,0, x0),

(vℓ(0), v(0)) = (vℓ,0, v0),

(2.2.3)

with leading dynamics ulead : [0, T ]→ R the car-following IDM. (x0, xℓ,0, v0, vℓ,0) ∈ R2×R2
≥0

are initial positions and velocities.

This is schematically illustrated in fig. 2.1. We give a short overview of some of the
meanings of the parameters in the IDM.

Remark 2.2.2 (Meaning of the previously introduced parameters). The parameters a, b,
vfree, τ , s0, l and δ, introduced in definition 2.2.1, are model parameters which have – ac-
cording to [140] – the following meaning:

acceleration a: the maximum vehicle acceleration;

comfortable braking deceleration b: a positive number;

desired velocity vfree: the velocity the vehicle would drive at in free traffic;

desired time headway τ : the minimum possible time to the vehicle in front;

minimum spacing s0: a minimum desired net distance;

the length of the vehicle l;

the acceleration exponent δ: Specifying how the acceleration decreases when approaching
the desired velocity vfree.

table 2.1 shows some suggested values for the parameters already identified in [140].
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Table 2.1: According to [140] typical and physical meaningful variables for the IDM

Parameters Variable Suggested value
Maximum acceleration a 0.73 m/s2

Desired deceleration b 1.67 m/s2

Desired velocity vfree 120 km/h
Desired time headway τ 1.6 s
Minimum spacing s0 2 m
Length of the vehicle l 5 m
Acceleration exponent δ 4

For the system to be physically reasonable we require some additional assumptions on
the order of the initial position and other parameters for the acceleration functions. This is
made precise in the following assumption (1).

Assumption 1 (Assumptions on input datum and more). We assume that

Leading velocity: ulead ∈ Ulead :=
{
u ∈ L∞((0, T )) : vℓ,0 +

∫ t

0
u(s) ds ≥ 0 ∀t ∈ [0, T ]

}
.

Input parameters for Acc: (a, b, vfree, τ, s0, l, δ) ∈ R3
>0 × (0, T )× R2

>0 × R>1.

Physical relevant initial datum: (x0, xℓ,0, v0, vℓ,0) ∈ R2 × R2
≥0 : x0 < xℓ,0 − l.

The previous assumption on the involved datum enables it to prove the well-posedness
on a significantly small time horizon, i.e., that there exists a solution on the time horizon
and that this solution is unique:

Theorem 2.2.1 (Well-posedness of sufficiently small time horizon). Given N ∈ N≥0 and
assumption (1), there exists a small enough time T ∗ ∈ R>0 so that the IDM in definition 2.2.3
admits a unique solution (x, xℓ) ∈ W 2,∞([0, T ∗])2.

Proof. The right hand side of definition 2.2.3 is around the initial datum in assumption (1)
locally Lipschitz-continuous. The existence and uniqueness on a small time horizon then
follows by the Picard-Lindelöf Theorem ([28, Chapter 4] or [27, Thm 1.3]).

2.3 Counterexamples
Given theorem 2.2.1, the next natural questions consist of whether the solution on the small
time horizon can be extended to any finite time horizon and whether the model remains
reasonable. As it turns out, neither points hold if we do not restrict our initial datum beyond
assumption (1). Of course, such unreasonable behavior appears with specific initial datum,
however this may in fact happen frequently when different traffic scenarios are analyzed.
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Especially, such initial datum could happen in the presence of lane-changing, on ramps and
other network components as it is the case for most commonly used micro-simulators. We
present the shortcomings in the following.

Negative velocity

In this subsection, we show that the IDM can develop negative velocities for the following
vehicle, although the leading vehicle might drive with positive speed. The reason for this is
that if the following vehicle is too close to the leading vehicle, it needs to slow down. Assume
now that it actually has already zero velocity, it will need to move backwards to make it to
the “safety” distance s0 it aims for.

Example 2.3.1 (Negative velocity). Assume that x0 = xℓ,0 − l − ε for ε ∈ R>0 yet to be
determined and v0 = 0. Then, we compute the change of velocity for the following vehicle
and have for t ∈ [0, T ] according to definition 2.2.3

v̇(t) = a

(
1−

( |v(t)|
vfree

)δ − (2
√
ab(s0+v(t)τ)+v(t)(v(t)−vℓ(t))

2
√
ab(xℓ(t)−x(t)−l)

)2)
.

Plugging in t = 0 leads to

v̇(0) = a

(
1−

(
2
√
abs0

2
√
abε

)2)
= a
(
1−

(
s0
ε

)2)
.

Thus, whenever ε < s0, the following vehicle has – at least for small time horizon – a negative
speed, although the leading vehicle drives with arbitrary speed vℓ ∈ R. This is also detailed
in the following fig. 2.2 and in fig. 2.3 it is demonstrated that for larger spacing this does
not occur.

A more reasonable approach for avoiding this type of behavior is that the following car
just waits until the leading car has moved farther away. This can be achieved by adjusting
the model accordingly as done in Section 2.5.

Velocity exploding in finite time

In this subsection, we show that the solution can cease to exist in finite time. We first present
an example, with fixed parameters, to explain the reasons behind this phenomenon. Then,
we generalize the example and illustrate how this phenomenon may occur for parameters in
a whole region of the space.

Example 2.3.2 (Negative velocity and a blow-up of the solution in finite time). Assume the
constants and initial data are as in example 2.3.1, with 0 < ε < 1 and non-negative initial
velocity of the leading vehicle vℓ,0 ≥ 0. The leading vehicle’s position is given by

xℓ(t) = xℓ,0 + vℓ,0t+
u
2
t2,
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Figure 2.2: The IDM with parameters a = 1, b = 2, vfree = 1, τ = 1.6, l = 4, s0 = 2, d = 4
and datum x0 = 0, xℓ,0 = l + 1.5 < l + s0, v0 = 0, vℓ,0 = 0. Left: vehicles’ positions, middle:
vehicles’ velocities and right: followers acceleration. The leader follows the free flow acceleration
profile as in definition 2.2.2. As the initial distance between the two vehicles is smaller than s0, the
following vehicle moves backwards to increase the space.
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Figure 2.3: Continuation of fig. 2.2: The IDM with parameters a = 1, b = 2, vfree = 1, τ =
1.6, l = 4, s0 = 2, d = 4 and datum x0 = 0, xℓ,0 = l + 2 = l + s0, v0 = 0, vℓ,0 = 0. The leader
follows the free flow acceleration as in definition 2.2.2. The initial distance between the two vehicles
is large enough so that the following vehicle does not attain negative velocity.

and the leading vehicle’s velocity by

vℓ(t) = vℓ,0 + ut.

Plugging this into the equations for the follower, we obtain the following system of ODEs

ẋ(t) = v(t)

v̇(t) = a

(
1−

(
|v(t)|
vfree

)δ
−
(

2
√
ab(s0+v(t)τ)+v(t)(v(t)−vℓ(t))

2
√
ab·(xℓ(t)−xℓ,0+ε−

∫ t
0 v(s) ds)

)2)
x(0) = xℓ,0 − l − ε

v(0) = 0.
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Now we fix vfree = 1 = a, s0 = 16, b = 1
4a

, τ = 8, vℓ,0 = 0, u = 0, δ = 4 and xℓ,0 = 0, which
gives

ẋ(t) = v(t)

v̇(t) = 1−
(
v(t)

)4 − ( (4+v(t))2

ε−
∫ t
0 v(s) ds

)2
.

We now show that there exists t̄ such that v(t̄) < −1. Assume, by contradiction, that
v(t) ≥ −1 on t ∈ [0, 1], then since ε < 1 for t ∈ [0, 1] we get

v̇(t) ≤ 1−
(

(4+v(t))2

ε−
∫ t
0 v(s) ds

)2
≤ 1−

(
4

ε+1

)2 ≤ 1−
(
2
)2

= −3, (2.3.1)

and by integration and by the previous assumption we have

−1 ≤ v0 +

∫ t

0

v̇(s) ds ≤ v0 − 3t

and therefore – plugging in for instance t = 1

−1 ≤
∫ 1

0

v̇(s) ds ≤ −3,

a contradiction.

Blow-up of the solution in finite time Let t∗ ∈ (0, T ] denote the first time such that
v(t∗) < −1. Then, recalling the semi-group property of ODEs, we can consider the initial
value problem in ṽ : [t∗, T ]→ R

ṽ(t∗) = v(t∗) < −1

˙̃v(t) = 1−
(
ṽ(t)

)4 − ( (4+ṽ(t))2

ε−
∫ t
0 ṽ(s) ds

)2
t ∈ [t∗, T ].

Estimating ˙̃v, we have

˙̃v(t) ≤ 1−
(
ṽ(t)

)4 ∀t ∈ [t∗, T ].

As the initial value ṽ(t∗) < −1 we obtain that ṽ is monotonically decreasing and we can thus
estimate

˙̃v(t) ≤ 1−
(
ṽ(t)

)2 ∀t ∈ [t∗, T ]

which can be solved explicitly to obtain

ṽ(t) ≤ v(t∗) exp(2t)+v(t∗)+exp(2t)−1
exp(2t)+1+v(t∗)(exp(2t)−1)

.

However, the right hand side goes to −∞ when t→ 1
2
ln
(

−1+v(t∗)
1+v(t∗)

)
and thus, also the solution

for v ceases to exist for t ≥ t∗ + 1
2
ln
(

−1−v(t∗)
1+v(t∗)

)
. This is illustrated in fig. 2.4.
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Figure 2.4: Same parameters as in fig. 2.2, but xℓ,0 = l + 1 < l + s0. Left: Positions of the
vehicles; Middle: Velocities of the vehicles, Right: Acceleration of the follower. Velocity of the
follower diverging to −∞ around t ≈ 1.06. The solution ceases to exist for larger t.

In this example, we chose very specific parameters for convenience. However, the same
behavior and divergence of the speed to −∞ in finite time can be shown for a rather general
range of parameters. This is presented in example 2.3.3. To prove this, we start by showing
the following Lemma.

Lemma 2.3.1 (Sufficiently negative velocity in small time). Assume that the initial velocity
of the following vehicle v0 = 0, the initial velocity of the leading vehicle vℓ,0 > 0, and
the initial positions of the two vehicles are separated by l + ε for some ε ∈ (0, s0), i.e.,
xℓ,0 − x0 − l = ε < s0. Choose parameters s0, τ and vfree such that − s0

1.01τ
< −vfree, let δ > 1

and let vmax > 0 be an upper bound for the vehicles’ velocities. Then there exists t∗∗ ∈ [0, T ],
such that v(t∗∗) < −vfree.

Proof. We consider two different cases:

• If there exists t∗ ∈ [0, T ], such that v(t∗) < −vfree, then we chose t∗∗ = t∗.

• Otherwise, we assume that for every t ∈ [0, T ], v(t) ≥ −vfree which implies that
v(t) > − s0

1.01τ
, i.e.,

s0 + v(t)τ > s0
101

> 0. (2.3.2)

By the definition of vmax and vfree, we have for every t ∈ [0, T ], vℓ(t) − v(t) ≤ vmax + vfree.
Furthermore, since vℓ(t) > 0 and v(t) < 0, we have v(t)(v(t)− vℓ(t)) > 0. Then one can find
an upper bound for the distance between the two vehicles. That is, for every t ∈ [0, T ],

xℓ(t)− x(t)− l ≤ ε+ (vmax + vfree)t. (2.3.3)

Therefore, for every t ∈ [0, T ],

v̇(t) = a

(
1−

( |v(t)|
vfree

)δ − (2
√
ab(s0+v(t)τ)+v(t)(v(t)−vℓ(t))

2
√
ab(xℓ(t)−x(t)−l)

)2)
(2.3.4)
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≤ a

(
1−

(
2
√
ab(s0+v(t)τ)+v(t)(v(t)−vℓ(t))

2
√
ab(xℓ(t)−x(t)−l)

)2)
(2.3.5)

≤ a

(
1−

(
s0+v(t)τ

xℓ(t)−x(t)−l

)2)
(2.3.6)

≤ a

(
1−

(
s0+v(t)τ

ε+(vmax+vfree)t

)2)
(2.3.7)

≤ a

(
1−

( s0
101

ε+(vmax+vfree)t

)2)
. (2.3.8)

Note that inequality (2.3.5) is true since |v(t)|
vfree

is non-negative, inequality (2.3.6) is due to the
fact that for every t ∈ [0, T ], v(t)(v(t)− vℓ(t)) > 0, inequality (2.3.7) is because of the upper
bounded for the distance between the two vehicles given by inequality (2.3.3), and inequality
(2.3.8) is due to inequality (2.3.2).

Hence, for every t ∈ [0, T ],

v(t) ≤ a

∫ t

0

(
1−

( s0
101

ε+(vmax+vfree)s

)2)
ds

= a

(
t+

s20
1012(vmax+vfree)

(
1

ε+(vmax+vfree)t
− 1

ε

))
= at

(
1− s20

1012
1

ε(ε+(vmax+vfree)t)

)
.

Setting t = ε, we have,

v(ε) ≤ aε

(
1− s20

1012
1

ε(ε+(vmax+vfree)ε)

)
= a

1012ε(ε+(vmax+vfree)ε)−s20
1012(ε+(vmax+vfree)ε)

→ −∞ as ε→ 0.

Note that the upper bound for the velocity at time t = ε goes to negative infinity as ε goes
to zero. Therefore, for ε > 0 small enough, we have,

v(ε) ≤ −vfree.

Hence, there exists t∗∗ = ε ∈ [0, T ], such that v(t∗∗) < −vfree.

The previous Lemma guarantees that for properly chosen initial datum and velocity the
follower’s velocity can become more negative than −v0, the negative free-flow velocity. This
enables us to prove that the solution ceases to exist in finite time. This result is related to
the famous example of a blow-up of solutions to the Riccati ODEs for specific initial datum
in finite time:

Example 2.3.3 (Negative velocity and a blow-“down” of the velocity in finite time). Again,
we assume the parameters and initial data as in lemma 2.3.1. Then by lemma 2.3.1, there
exists t∗∗ ∈ [0, T ], such that v(t∗∗) < −vfree. Recall that δ > 1. For any time t such that
v(t) < −vfree,

v̇(t) ≤ a
(
1−

( |v(t)|
vfree

)δ)
< 0
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Thus v is strictly decreasing on the time interval [t∗∗, T ]. In addition, we are going to show
that v ceases to exist in finite time and that there exists t1 > 0 such that lim

t→t1
v(t) = −∞.

Assume by contradiction that this is not the case. Then as v(T ) < −v0 the solution remains
strictly decreasing as long as it exists and as it does not reach −∞ in finite time it can be
extended on [0,+∞) and is strictly decreasing on [T,+∞). Therefore we have the following∫ t

T

v̇(s)

1−
(

|v(s)|
vfree

)δ ds ≥ a(t− T ), ∀t ∈ [T,+∞). (2.3.9)

As v is strictly decreasing we can perform a change of variable in the integral by setting
y = −v(s) to get ∫ −v(t)

−v(T )

1(
y

vfree

)δ
−1

dy ≥ a(t− T ), ∀t ∈ [T,∞). (2.3.10)

Note that −v(T ) > v0. We denote η := −v(T )− vfree > 0, eq. (2.3.10) implies∫ +∞

vfree+η

1(
y

vfree

)δ
−1

dy ≥ a(t− T ), ∀t ∈ [T,∞). (2.3.11)

Letting t→ +∞ this implies that∫ +∞

vfree+η

1(
y

vfree

)δ
−1

dy =∞, (2.3.12)

but because δ > 1 we have
∫ +∞
vfree+η

1(
y

vfree

)δ
−1

dy ∈ R, which gives a contradiction. Therefore,

v ceases to exist and diverges to −∞ in finite time.
As we have seen from the previous example 2.3.3 the velocity can blow-up in finite time.

However, what is not clear is whether the position of the car can consequently also explode.
Thanks to the relation between position and velocity, i.e., x′(t) = v(t), t ∈ [0, T ] this is
a matter of whether v ∈ L1((0, t∗)) if t∗ is the time where the velocity goes to −∞. And
indeed, it can be shown that this holds true and the position remains bounded:

Corollary 2.3.1 (Boundedness of the position in the case of a blow-up of velocity). Let
assumption (1), δ ∈ R>2) and assume that – as investigated in example 2.3.3 – there exists
a time horizon t∗ ∈ R>0 so that

lim
t↗t∗

v(t) = lim
t↗t∗

ẋ(t) = −∞.

Then, the position at the time of the blow-up remains finite, i.e.

∃c ∈ R : lim
t↗t∗

x(t) = c

or equivalently stated
v ∈ L1((0, t∗)).
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Proof. The proof consists of showing that the L1 mass of the velocity remains bounded. To
this end, we estimate the acceleration from above. Choose t1 ∈ [0, t∗] so that(

v(s)2 − v(s)vℓ(s) + 2
√
ab
(
s0 + v(s)τ

))2
> 0 ∧ v(s) ≤ −max

{
2vfree, 1

}
∀s ∈ [t1, t

∗).

Such a t1 always exists as v diverges to −∞ so that for s close enough to t∗ the quadratic term
in the previous estimate will always outnumber the affine linear term and vℓ is essentially
bounded. Then, recalling definition 2.2.1 of the IDM we have for s ∈ [t1, t

∗)

v̇(t) ≤ −a
2

(
|v(t)|
vfree

)δ
.

Assuming δ ∈ R>2 divide by |v(t)|δ−1 (this is possible because v is strictly decreasing and
v(t1) < −1), and integrating between t1 and t ∈ [t1, t

∗), one has∫ t

t1

v̇(τ)
|v(τ)|δ−1dτ ≤ − a

2vδfree

∫ t

t1

|v(τ)| dτ,

(−v)2−δ(t)
δ−2

− (−v)2−δ(t1)
δ−2

≤ − a
2vδfree

∫ t

t1

|v(τ)| dτ.
(2.3.13)

Dividing by −a/2vδfree < 0 and letting t→ t∗, this gives(
a

2vδfree

)−1
(−v)2−δ(t1)

δ−2
≥ ∥v∥L1((t1,t∗)). (2.3.14)

Hence, ∥v∥L1((t1,t∗)) < +∞.

The previous estimate is particularly interesting as it illustrates that the model behaves
still “somehwat” reasonable (even in the case of a diverge of the velocity to −∞) and under-
lines the fact that a change in the acceleration to prevent the velocity to diverge might be
enough to “improve” the model (compare Section 2.5).

2.4 Lower bounds on the distance in specific cases
In this section we state results guaranteeing the minimal distance between leader and follower
for the IDM.

Theorem 2.4.1 (Minimal “safety distance” for the IDM). Let assumption (1) hold and
particularly vℓ ≧ 0. Assume that for an arbitrary time T ∈ R>0 the solution to the IDM
exists. Then, the IDM as in definition 2.2.3 satisfies the following lower bound on the distance

• if the initial relative velocity is positive, i.e., vℓ,0 − v0 ≥ 0

xℓ(t)− x(t)− l ≥ min

{
xℓ,0 − x0 − l,

√
as20
−B

}
> 0 ∀t ∈ [0, T ] (2.4.1)
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• if the initial relative velocity is negative, i.e., vℓ,0 − v0 < 0

xℓ(t)− x(t)− l ≥ min

{
−A+
√

A2+4aBs20
2B

,

√
as20
−B

}
> 0 ∀t ∈ [0, T ] (2.4.2)

with the constants A,B given as

A := −B · (xℓ,0 − x0 − l) + a
s20

xℓ,0−x0−l
+ 1

2

(
vℓ,0 − v0)

2 > 0

B := ess- inf
s∈[0,T ]

ulead(s)− a.
(2.4.3)

Proof. We start with considering the difference of the change between leader’s acceleration
and follower’s acceleration to obtain for t ∈ [0, T ]

ẍℓ(t)− ẍ(t) ≥ ulead(t)− a+ a
(

|v(t)|
vfree

)δ
+ a
(

2
√
ab(s0+v(t)τ)+v(t)(v(t)−vℓ(t))

2
√
ab
(
xℓ(t)−x(t)−l

) )2
≥ ulead(t)− a+ a

(
2
√
ab(s0+v(t)τ)+v(t)(v(t)−vℓ(t))

2
√
ab
(
xℓ(t)−x(t)−l

) )2
.

Let us first assume that vℓ,0 − v0 < 0. Then, we know that on a time horizon [0, t1),
vℓ(t) − v(t) < 0 and the distance of follower and leader decreases but there is still no over-
taking, i.e., xℓ(t) − x(t) − l > 0. Thus, we can continue the previous estimate to arrive at
(recall that vℓ(t) ≧ 0 so that v(t) > 0 as v(t) > vℓ(t) for t ∈ [0, t1))

ẍℓ(t)− ẍ(t) ≥ ess- inf
s∈[0,T ]

ulead(s)− a+ as20
1

(xℓ(t)−x(t)−l)2
.

Multiplying with ẋℓ(t)− ẋ(t) < 0 leads to(
ẍℓ(t)− ẍ(t)

)(
ẋℓ(t)− ẋ(t)

)
≤
(
ess- inf
s∈[0,T ]

ulead(s)− a
)(

ẋℓ(t)− ẋ(t)
)
+ as20

ẋℓ(t)−ẋ(t)
(xℓ(t)−x(t)−l)2

and integrating over t ∈ [0, t1] gives

1
2
(vℓ(t)− v(t))2 ≤ 1

2
(vℓ,0 − v0)

2 +
(
ess- inf
s∈[0,T ]

ulead(s)− a
)(

xℓ(t)− x(t)− xℓ,0 + x0

)
− as20

(
1

xℓ(t)−x(t)−l
− 1

xℓ,0−x0−l

)
Defining A := −B · (xℓ,0 − x0 − l) + a

s20
xℓ,0−x0−l

+ 1
2

(
vℓ,0 − v0)

2 > 0 and g(t) := xℓ(t)− x(t)− l

with B := ess- inf
s∈[0,T ]

ulead(s)− a. we have

1
2

(
g′(t)

)2 ≤ A+Bg(t)− as20
g(t)

.
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However, as the left hand side is quadratic, the following inequality needs to hold (recall
that g(t) > 0 on [0, t1))

0 ≤ Ag(t) +Bg(t)2 − as20.

Recalling that B < 0, we thus obtain as lower bound

g∗ :=
−A+
√

A2+4aBs20
2B

> 0

which is greater zero as A > 0 and aBs20 < 0 by assumption.
However, this is only a lower bound for the first time the relative velocity is negative

as we needed to address the case where the initial relative velocity is negative. In the case
where vℓ,0 > v0 we will derive in the following a uniform lower bound. In both cases, assume
that there is another time t2, t3 ∈ (t1, T ) so that vℓ(t)− v(t) < 0∀t ∈ (t2, t3), we can assume
that vℓ(t2) = v(t2). Applying then the previous estimates once more, we obtain this time as
lower bound

xℓ(t)− x(t)− l ≥ −A2+
√

A2
2+4aBs20

2B
∀t ∈ (t2, t3)

with A2 := −B · (xℓ(t2) − x(t2) − l) + a
s20

xℓ(t2)−x(t2)−l
> 0. Looking into the discriminant we

find that
A2

2 + 4aBs20 =
(

as20
xℓ(t2)−x(t2)−l

+B(xℓ(t2)− x(t2)− l)
)2

so that we obtain for t ∈ (t2, t3)

xℓ(t)− x(t)− l ≥


xℓ(t2)− x(t2)− l if xℓ(t2)− x(t2)− l ≤

√
as20
−B

−a
s20

xℓ(t2)−x(t2)−l
B

if xℓ(t2)− x(t2)− l ≥
√

as20
−B

.

Recalling that we can estimate from the previous (first) step and the fact that xℓ(t)−x(t)− l
is non-decreasing between t1 and t2

xℓ(t2)− x(t2)− l ≥ min
{
g∗, xℓ,0 − x0 − l

}
we obtain with the previous estimate that for any t ∈ [0, t3]

xℓ(t)− x(t)− l ≥ min
{
g∗, xℓ,0 − x0 − l,

√
as20
−B

}
.

However, this lower bound is independent of xℓ(t2)− x(t2)− l and we can thus iterated the
procedure by going to the next time where vℓ(t)− v(t) < 0 for some t ∈ (t3, T ]. However, in
these cases the previously derived bound remains as is.

Looking into the derived lower bound in more details, one can actually distinguish the
two cases vℓ,0 − v0 ≤ (≥ 0) and obtain the same bounds. This concludes the proof.
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Remark 2.4.1 (Comments on the derived “safety distance” and the “extreme” case B = 0).
We have not commented about the sign of A and B in eq. (2.4.3). Clearly, assuming that
B ≤ 0 is reasonable as otherwise it holds

ess- inf
t∈[0,T ]

ulead(s) ≥ a,

meaning that the leader speeds up all the time at least with the maximal acceleration of the
follower, implying that the distance will always increase. Thus, assuming B ≤ 0 the term
−A
2B

is positive and
√

A2+4aBs20
2B

negative but its absolute values is smaller than −A
2B

so that the
obtained lower bound in eq. (2.4.2) is still positive.

The lower bound together with the corresponding simulations is illustrated for a specific
experimental setup in fig. 2.7. As the lower bound is not well-defined for B = 0, we compute
the limes of the lower bound. Recalling that A is also a function of B namely, A(B) =

−B · (xℓ,0 − x0 − l) + a
s20

xℓ,0−x0−l
+ 1

2
(vℓ,0 − v0)

2 we have

lim
B→0

−A(B)+
√

A(B)2+4aBs20
2B

= lim
B→0

−A′(B)
2

+
A(B)A′(B)+2as20

2
√

A(B)2+4aBs20

=
as20

as20
xℓ,0−x0−l

+
1
2
(vℓ,0−v0)2

.

Note that the obtained lower bound is always less or equal to the initial space headway,
xℓ,0−x0− l. Furthermore, negative relative initial velocity leads to smaller lower bound. But
in the case of positive initial relative velocity, the given lower bound is very conservative and
could be replaced by a stricter one. Altogether, even for B = 0 the obtained lower bound is
reasonable.

2.5 Improvements for the IDM
In this section, we present several improvements of the IDM to fix the problems illustrated
in Section 2.3 for general initial data. Before doing this, however, we present some other
numerics on how the classical IDM behaves for specific data. This will serve as a comparison
to the proposed improvements later:

Example 2.5.1 (Some additional numerical results for the classical IDM). All examples –
except those which are physically unreasonable (compare Section 2.5) – will be tested on
three different scenarios:

1. As the set of parameters where one can observe a negative velocity of the follower in the
original IDM – see example 2.3.1 and fig. 2.2.

2. As the set of parameters where one can observe that the velocity of the follower diverges
to −∞ in finite time in the original IDM – see example 2.3.2 and fig. 2.4.
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Figure 2.5: The acceleration profile ulead of the leader. This is intended to specify a leader that
repeats the pattern “accelerate, constant velocity, decelerate, constant velocity”.
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Figure 2.6: The original IDM, with parameters x0 = 0, xℓ,0 = l + 1 < l + s0, v0 = 0 = vℓ,0 = 0.
Both vehicles start with 0 velocity, and the leader follows the acceleration profile in fig. 2.5. Left:
the position of both leader and follower, middle: the velocity of the follower and right: the
acceleration of the follower. We leave the velocity and acceleration profile of the leader out as it is
fully determined by the given ulead.

3. A heavy stop and go wave traffic situation with the leader’s acceleration satisfying ulead ≡
a·1{t∈[0,T ]: sin(t/4)≥0.8}−a·1{t∈[0,T ]: sin(t/4)≤−0.8}, a = 0.73, b = 1.67, vfree =

120
36
, τ = 1.6, l =

4, s0 = 2, d = 4 illustrated in fig. 2.5. The results for the original IDM are then illustrated
in fig. 2.6 and can serve as comparison.

Projection on nonnegative velocities and restricting the maximal
deceleration

A straightforward improvement consists of projecting the velocity to nonnegative values.
This is detailed in the following definition 2.5.1:

Definition 2.5.1 (IDM with projection to nonnegative velocities). Given assumption (1), we
replace the acceleration in definition 2.2.1 and velocity for the IDM model in definition 2.2.3
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Figure 2.7: The original IDM with the same parameters as in fig. 2.6. Headway (in magenta)
xℓ(t) − x(t) − l is illustrated together with the lower “a priori” bound as derived in eq. (2.4.1) in
theorem 2.4.1. Computing this headway, we have for the numbers A,B as in eq. (2.4.3) B = −0.73−
0.73 = −1.46, A = 1.46 · 1+ 0.734

1 = 4.38 and s0 = 2, and thus as lower bound on the headway is –

following eq. (2.4.1) (recall that vℓ,0−v0 = 0 so that this case applied) min

{
xℓ,0−x0−l,

√
as20
−B

}
= 1

which is pictured in dotted yellow. As can be seen the lower bound is always valid and for t = 0
even sharp.

by

ẋ(t) = max{v(t), 0}, t ∈ [0, T ] (2.5.1)
v̇(t) = Acc

(
x(t),max{v(t), 0}, xℓ(t), vℓ(t)

)
, t ∈ [0, T ] (2.5.2)

and call the model the velocity projected IDM.

Theorem 2.5.1 (Existence and uniqueness of solutions for small times). Given assumption
(1) the velocity projected IDM in definition 2.5.1 admits on a sufficiently small time horizon
T ∗ ∈ R>0 a unique solution (x, v) ∈ W 1,∞((0, T ∗))2.

Proof. The proof is almost identical to the proof of theorem 2.2.1 when recalling that the
right hand side is still locally Lipschitz-continuous. We do not go into details.

However, as we will see the model has some drawbacks:

Example 2.5.2 (The following vehicle waits for too long to start driving). Assume that the
constants and initial data as in example 2.3.1 with ε < s0. Then, the leading vehicle’s
trajectory can be computed as

xℓ(t) = xℓ,0 + vℓ,0t+
u
2
t2, t ∈ [0, T ],

and the leading vehicle’s velocity can be computed as

vℓ(t) = vℓ,0 + ut, t ∈ [0, T ].



CHAPTER 2. LIMITATIONS AND IMPROVEMENTS OF THE INTELLIGENT
DRIVER MODEL (IDM) 26

Plugging this into the change of the vehicle’s velocity we obtain the following system of
ODEs

ẋ(t) = max{v(t), 0}

v̇(t) = a

(
1−

(
max{v(t),0}

vfree

)δ
−
(

2
√
ab(s0+max{v(t),0}τ)+max{v(t),0}(max{v(t),0}−vℓ(t))

2
√
ab(xℓ(t)−xℓ,0+ε−

∫ t
0 max{v(s),0}ds)

)2)
x(0) = xℓ,0 − l − ε

v(0) = 0.

Note that

v̇(0) = a
(
1−

(
s0
ε

)2)
< 0,

therefore, there exists some small time interval [0, t1] such that for every t ∈ [0, t1], v(t) < 0.
During the time interval [0, t1], the distance between the two vehicles is

l + ε+ xℓ(t)− xℓ,0 = l + ε+ vℓ,0t+
u
2
t2, t ∈ [0, t1].

Thus, for every t ∈ [0, t1],

v̇(t) = a

(
1−

(
s0

ε+vℓ,0t+
u
2
t2

)2)
.

Note that v̇ : [0, t1] 7→ R is strictly increasing. Without loss of generality, we assume that the
initial velocity of the leading vehicle is vℓ,0 = 0 and the acceleration of the leading vehicle is
u = 2. Then for every t ∈ [0, t1],

v(t) =

∫ t

0

a
(
1−

(
s0

ε+s2

)2)
ds = at− 4as20

∫ t

0

(
1

s2+ε

)2
ds = at− 4as20

( √
εt

ε+t2
+arctan

(
t√
ε

)
2ε

3
2

)
.

In particular, as illustrated in fig. 2.8, we have that t1 increases as ε decreases. That is,
the smaller the initial distance between the two vehicles, the longer it takes the following
vehicle to recover its positive velocity. Another example illustrates the projected velocity
model numerically with regard to other scenarios:
Example 2.5.3 (Velocity projected IDM). As can be observed the actual velocity in all the
three different scenarios is bounded from below by zero and the solution exists on the entire
time horizon considered. However, the projection operator leads to the problem that the
follower waits too long until they speed up. This can be observed in particular in figs. 2.9
and 2.10 where the distance of the two vehicles after both have started speeding up (t ≈ 5)
is approximately around 8.5 which is quite far from the comfortable vehicle distance s0 and
thus leading to a too large distance. Here we use the free-flow acceleration as following

v̇(t) = a− a
(

max{v(t),0}
vfree

)δ
∀t ∈ [0, T ]. (2.5.3)

Same can be observed in fig. 2.11 for smaller time.
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Figure 2.8: Velocity dependent on epsilon and time. The dark blue indicates values less or equal
−5 and the white area positive function values, so that the red curve separating the white and
colored region can be seen as the values where the velocity is actually zero. In particular, as the
initial distance between two vehicles ε increases, the time t1 when the following vehicle recovers its
positive velocity decreases.
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Figure 2.9: The IDM with projection as in definition 2.5.1 and same parameters as in fig. 2.2 with
x0 = 0, xℓ,0 = l + 1.5 < l + s0. Left: the positions of the vehicles, middle: the velocity of the
follower, and right: the acceleration of the follower. The leader follows the free-flow acceleration
as in eq. (2.5.3). The follower stays still and waits until there is a safe space to speed up.
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Figure 2.10: The IDM with projection, with the same parameters as in fig. 2.2 and x0 = 0, xℓ,0 =
l + 0.5 < l + s0, v0 = 0 = vℓ,0 = 0. Left: vehicles’ positions, middle: the follower’s velocity and
right: the follower’s acceleration. The leader follows the free flow acceleration as in eq. (2.5.3).
The follower stays still and waits until there is a safe space to speed up.
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Figure 2.11: The IDM with projection as in definition 2.5.1 and initial data x0 = 0, xℓ,0 = l+1 <
l + s0, v0 = vℓ,0 = 0. Left: the position of the vehicles, middle: the velocity of the follower and
right: the acceleration of the follower. The leader follows the acceleration profile in fig. 2.5. The
velocities remain positive, however the waiting time for the follower until speeding up is large.

Projection to nonnegative velocities with bounded deceleration

Another improvement for this is projecting the acceleration to prevent it from becoming too
negative. Then, the corresponding model reads as

Definition 2.5.2 (IDM with projection to nonnegative velocities and bounded deceleration).
Given assumption (1), we replace the acceleration in definition 2.2.1 and velocity for the IDM
model in definition 2.2.3 by

ẋ(t) = max{v(t), 0}, t ∈ [0, T ]

v̇(t) = max{Acc(x(t),max{v(t), 0}, xℓ(t), vℓ(t)),−amin}, t ∈ [0, T ]

with a parameter amin ∈ R>0 be given and call the model the acceleration projected IDM.
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Theorem 2.5.2 (Global existence and uniqueness of solutions). Given assumption (1) the
acceleration projected IDM in definition 2.5.2 admits for every T ∈ R>0 a unique solution
(x, v) ∈ W 1,∞((0, T )).

Proof. The proof of existence and uniqueness for small time is almost identical to the proof
of theorem 2.2.1 when recalling that the right hand side is still locally Lipschitz-continuous.
We do not go into details.

So it remains to show that we can find uniform estimates for (x(t), v(t)), t ∈ [0, T ].
Obviously,

v(t) ≥ v0 − amint ∀t ∈ [0, T ].

Thanks to the structure of Acc (see definition 2.2.1) we also obtain as a bound from above

v(t) ≤ v0 + at ∀t ∈ [0, T ].

As v is uniformly bounded on every finite time horizon, so is x and we are done.

However, although the previous change of the acceleration profile in definition 2.5.2 looks
promising as according to theorem 2.5.2 a solution exists on every finite time horizon, the
physical representation, the model itself is unreasonable as the car behind can overtake the
leading car – or differently put, the car behind can bump into the leading car without the
model noticing it. This is detailed in the following example 2.5.4.

Example 2.5.4 (Physical unreasonability). As the deceleration of the following vehicle is
bounded from below by −amin, we can always chose an initial velocity of the follower which
leads to the fact that xℓ(t)− x(t)− l→ 0 in finite time.

In formulae, assume for simplicity that the leading vehicle has the following trajectory

xℓ(t) = xℓ0 + vℓ0t+
1
2
uleadt

2, t ∈ [0, T ].

with ulead ∈ R≥0 and (xℓ0, vℓ0) ∈ R × R>0. Then, we take the difference of the vehicles
position with car length l ∈ R>0 and have for t ∈ [0, T ]

xℓ(t)− x(t)− l

≤ xℓ0 + vℓ0t− l + 1
2
uleadt

2 − x0 −
∫ t

0

max{v(s), 0} ds

≤ xℓ0 + vℓ0t− l + 1
2
uleadt

2 − x0 −
∫ t

0

v(s) ds

≤ xℓ0 + vℓ0t− l + 1
2
uleadt

2 − x0

−
∫ t

0

v0 +

∫ s

0

max{Acc(x(τ),max{0, v(τ)}, xℓ(τ), vℓ(τ)),−amin} dτ ds

≤ xℓ0 + vℓ0t− l + 1
2
uleadt

2 − x0 − tv0 +

∫ t

0

∫ s

0

amin dτ ds
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Figure 2.12: Illustration of the improvement in definition 2.5.2 and its physical unreasonability
as shown in example 2.5.4. The parameters are a = amin = 1, b = 2, vfree = 1, τ = 1.6, l =
4, s0 = 2, d = 4 and datum x0 = 0, xℓ,0 = l + 1.5, v0 = 5, vℓ,0 = 0. Left Vehicles’ positions,
middle vehicles’ velocities, right vehicles’ acceleration. The follower overtakes the leader in finite
time, although the follower breaks constantly.

≤ xℓ0 − x0 − l + (vℓ0 − v0)t+
1
2
(ulead + amin)t

2.

Obviously, for v0 sufficiently large, we obtain for small time that xℓ(t)−x(t) < l. An extreme
case for this is illustrated in fig. 2.12 where not only the vehicles get closer than l but the
follower (in blue) entirely overtakes the leader (in red).

Another velocity projection improvement

Another improvement which had been mentioned in the literature in [100] (however, it goes
back to a website of Martin Treiber which is not available anymore, is shortly investigated in
this section. Not the entire third part in the IDM acceleration definition 2.2.1 is projected,
but only a specific part. This is detailed as follows:

Definition 2.5.3 (Partially projected acceleration). Let assumption (1) and Acc as in def-
inition 2.2.1 be given. Then, replacing in definition 2.2.3 the acceleration of the follower in
the following way

Accppa :


A → R

(x, v, xℓ, vℓ) 7→ a− a
(

|v|
v0

)δ
− a

(
s0+max

{
0,vτ+

v(vℓ−v)

2
√
ab

}
xℓ−x−l

)2

we call the resulting car following model the IDM with partially projected acceleration.

However, as can be seen it does not prevent negative velocity in the case that xℓ−x−l < s0
as the acceleration then becomes negative if the current follower’s speed is zero, i.e., v = 0.
Thus, we do not study it further.
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Velocity regularized acceleration

Another improvement of the IDM is to add a regularization term which will make the third
term in the acceleration function definition 2.2.1 of the IDM in definition 2.2.3 become zero
if the corresponding velocity approaches zero.

Definition 2.5.4 (IDM with velocity regularized acceleration). Given assumption (1), we
replace acceleration in definition 2.2.1 in definition 2.2.3 by

Accvra :

A → R

(x, v, xℓ, vℓ) 7→ a

(
1−

( |v|
vfree

)δ − h(v)
(

2
√
ab(s0+vτ)+v(v−vℓ)

2
√
ab(xℓ−x−l)

)2)
with A as in definition 2.2.1 and regularization h ∈ W 1,∞(R;R≥0) be a monotonically in-
creasing function satisfying h(0) = 0 and – for a given ε ∈ R>0 – h(v) = 1 ∀v ∈ R≥ε. We
call this the velocity regularized acceleration IDM.

Theorem 2.5.3 (Existence and Uniqueness of solutions on arbitrary time horizon ). Given
assumption (1) and in addition assume that

∃vmin ∈ R>0 : vℓ(t) ≥ vmin ∀t ∈ [0, T ] ∧ h(vmin) > 0

the velocity regularized IDM in definition 2.5.4 admits on every finite time horizon T ∈ R≥0

a unique solution satisfying x ∈ W 2,∞((0, T ))

xℓ(t)− x(t)− l ≥ min
{
xℓ,0 − x0 − l,

√
as20h(vmin)

−B
,
−A+
√

A2+4aBh(vmin)s
2
0

2B

}
∀t ∈ [0, T ]

with

A := 1
2
(vℓ,0 − v0)

2 −B(xℓ,0 − x0 − l) + a
h(vmin)s

2
0

xℓ,0−x0−l

B := ess- inf
t∈[0,T ]

ulead(t)− a
(2.5.4)

and additionally
max{vfree, v0} ≧ ẋ ≡ v ≧ 0 on [0, T ].

If v0 > 0, it even holds
v(t) > 0 ∀t ∈ [0, T ].

Proof. To show the well-posedness it suffices to make sure that

• ∃C ∈ R>0 : xℓ,0 − x0 − l > 0 implies that xℓ(t) − x(t) − l ≥ C, ∀t ∈ [0, T ]. Take the
difference of the change of the leader’s acceleration and the follower’s to obtain and mimic
somewhat the proof of theorem 2.4.1

ẍℓ(t)− ẍ(t) ≥ ulead(t)− a+ ah(v(t))
(

2
√
ab(s0+v(t)τ)+v(t)(v(t)−vℓ(t))

2
√
ab
(
xℓ(t)−x(t)−l

) )2
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assuming without loss of generality vℓ(t) − v(t) ≤ 0, i.e., v(t) ≥ vℓ(t) on a certain time
interval and as we have inft vℓ(t) ≥ vmin > 0, h ≧ 0

≥ ess- inf
s∈[0,t]

ulead(s)− a+ as20h
(
vmin

)(
1

xℓ(t)−x(t)−l

)2
and multiplying with vℓ(t)− v(t) = ẋℓ(t)− ẋ(t) ≤ 0(

ẍℓ(t)− ẍ(t)
)
(ẋℓ(t)− ẋ(t)) ≤ ess- inf

s∈[0,t]
ulead(s)(ẋℓ(t)− ẋ(t)) (2.5.5)

− a(ẋℓ(t)− ẋ(t)) + ah
(
vmin

)
s20

ẋℓ(t)−ẋ(t)(
xℓ(t)−x(t)−l

)2 . (2.5.6)

Integrating over (0, t) leads to

1
2
(ẋℓ(t)− ẋ(t))2 ≤

(
ess- inf
s∈[0,t]

ulead(s)− a
)((

xℓ(t)− x(t)− l
)
−
(
xℓ,0 − x0 − l

))
+ 1

2
(vℓ,0 − v0)

2 − ah
(
vmin

)
s20

(
1

xℓ(t)−x(t)−l
− 1

xℓ,0−x0−l

)
or in shorter notation g :≡ xℓ − x− l

1
2

(
g′(t)

)2 ≤ A+Bg(t)− a
h(vmin)s

2
0

g(t)

with A,B as in eq. (2.5.4). Following the identical steps as in the proof of theorem 2.4.1,
particularly noticing that the left hand side is always nonnegative while the right hand
side would go to −∞ if g → 0 we obtain the claimed lower bound on the distance.

• ẋ(t) ≥ 0 ∀t ∈ [0, T ]. We know by the Picard-Lindelöf theorem ([28, Chapter 4] or [27,
Thm 1.3]) that there exists a solution on a significantly small time horizon [0, T ∗] with
T ∗ ∈ R>0. Assume that the velocity of a given vehicle ẋ becomes zero at a given time
T ∗∗ ∈ R>0. Then, by continuity of the velocity and due to the nonnegativity of the initial
velocity there exists a first time t ∈ [0, T ∗∗) so that v(t) = ẋ(t) = 0. Plugging this into
the corresponding acceleration we obtain at that time

ẍ(t) = v̇(t) = Accvra
(
x(t), ẋ(t), xℓ(t), ẋℓ(t)

)
= Accvra

(
x(t), 0, xℓ(t), ẋℓ(t)

)
= a > 0,

thanks to the assumption on h in definition 2.5.4, namely h(0) = 0. This means that
whenever the velocity approaches zero, the derivative is strictly positive so that the veloc-
ity can never become zero. Assume that for some t ∈ [0, T ] we have v(t) ≥ vfree. Then, by
the velocity regularized acceleration in definition 2.5.4, we have v̇(t) < 0 and can conclude

v(t) ≤ max{vfree, v0} ∀t ∈ [0, T ].

This gives the claim.
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Figure 2.13: Different choices of the “saturation” function hε for ε ∈ {1, 0.5, 0.1} as suggested in
eq. (2.5.7).

Remark 2.5.1 (Proper choice of the regularization h). A proper choice for h consists for
ε ∈ R>0 of

hε :

{
R → [0, 1]

v 7→ v
ε
1R≥0

(v) · 1R≤ε
(v) + 1R>ε(v).

(2.5.7)

This is illustrated in the following fig. 2.13. As can be seen this “saturation” function is only
continuous, resulting in an acceleration function which is not differentiable. Obviously, this
could be changed by smoothing hε. We do not go into details.

We illustrate the model in the following

Example 2.5.5 (Velocity regularized acceleration). As can be seen in figs. 2.14 to 2.16, with
this fix the spacing between the two vehicles is not getting large as had been observed in
figs. 2.9 to 2.11 but the follower speeds up immediately when there is enough safe distance to
do so. The clipping due to the function hε can be observed in particular in the acceleration
profile which is nonsmooth. In all figs. 2.14 to 2.16 we choose ε = 0.1.

A discontinuous improvement to prevent negative velocity

Our last potential improvement for the IDM which had also been suggested a lot (see for
instance [88]) is an improvement which will become active only if the velocity becomes zero
and the corresponding acceleration at the time where the velocity is zero is negative. In
this way, the following improvement is the most natural one. We state it in the following
definition 2.5.5.

Definition 2.5.5 (IDM with discontinuous acceleration). Let assumption (1) and Acc as in
definition 2.2.1 be given. Then, replacing in definition 2.2.3 the acceleration of the follower
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Figure 2.14: The IDM with velocity regularized acceleration as in definition 2.5.4 and parameters
as in fig. 2.2. Initial data are x0 = 0, xℓ,0 = l + 1.5 < l + s0, v0 = vℓ,0 = 0. Left: the vehicles’
position, middle: the vehicles’ velicities, and right: the vehicles acceleration. The leader follows
the free flow acceleration. The follower stays still and waits until there is a safe space to speed up.
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Figure 2.15: The IDM with velocity regularized acceleration, with initial gap equal 0.5 and same
parameters as in fig. 2.2. Both vehicles start with 0 velocity, and the leader follows the free flow
IDM dynamics. Left: x0 = 0, xℓ,0 = l+0.5 < l+s0, v0 = 0 = vℓ,0 = 0. The follower stays still and
waits until there is a safe space to speed up. Right: the follower remains still in the initial phase.

0 20 40 60 80 100

0

50

100

150

200

t

(x
(t
),
x
ℓ(
t)
)

leader
follower

0 20 40 60 80 100

0

1

2

3

t

v
(t
)

0 20 40 60 80 100

−0.5

0

0.5

t

a
(t
)

Figure 2.16: The IDM with velocity regularized acceleration, with initial gap equal 1. Both
vehicles start with 0 velocity, and the leader follows the acceleration profile in figure fig. 2.5. Left:
x0 = 0, xℓ,0 = l+1 < l+s0, v0 = 0 = vℓ,0 = 0. Right: again, the velocity always stays nonnegative.



CHAPTER 2. LIMITATIONS AND IMPROVEMENTS OF THE INTELLIGENT
DRIVER MODEL (IDM) 35

in the following discontinuous way as

v̇(t) =


Acc(x(t), v(t), xℓ(t), vℓ(t)) if v(t) > 0

Acc(x(t), v(t), xℓ(t), vℓ(t)) if v(t) = 0 ∧ xℓ(t)− x(t)− l ≥ s0

0 if v(t) = 0 ∧ xℓ(t)− x(t)− l < s0

, (2.5.8)

we call this the discontinuous IDM.

Although one might expect that the introduction of the discontinuity in eq. (2.5.8) might
prohibit a solution to exist for all times or also might destroy uniqueness, it actually does
not as the following theorem 2.5.4 states:

Theorem 2.5.4 (Well-posedness of the discontinuously fixed IDM in definition 2.5.5). Given
assumption (1) and assuming that the velocity of the leader is only zero at finitely many
intervals, the discontinuous improvement of the IDM as in definition 2.5.5 admits a unique
solution on every finite time horizon T ∈ R>0 and satisfies

x ∈ W 2,∞((0, T )) : ẋ ≧ 0.

In addition, the lower bound on the distance between follower and leader as in theo-
rem 2.4.1 holds.

Proof. We consider several different cases:

• Assume that at t = 0 we have v(0) = c > 0. Obviously, for small time the solution of the
system is unique as the right hand side is locally Lipschitz-continuous then. Either, v(t) >
0 ∀t ∈ [0, T ]. Then, there is nothing more to do as we never run into the discontinuity or
∃t∗ ∈ (0, T ] : v(t∗) = 0. We distinguish two cases:

xℓ(t
∗)− x(t∗)− l ≥ s0: However, in this case the right hand side has not changed so
that the solution still exists and is unique. As at that time, the velocity is zero
and as the leading car never moves backwards (by the assumption on the leader’s
velocity/acceleration, we can never go into the third case where it would hold xℓ(t)−
x(t)− l < s0 but only back into the first case with strictly positive velocity. In this
case, the solution exists and is unique.

xℓ(t
∗)− x(t∗)− l < s0: Then, the velocity of the follower is zero and we can only switch
into the second case when the leader’s position xℓ increases, we are automatically
left with the case that either we stay in the third case or that we move back to the
second case. The second case, however, was already treated previously.

• Assume that we have v(0) = 0. Then, we are either in item one or two of the previous
case and are done.
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Figure 2.17: The discontinuous improvement of the IDM, with initial gap equal 1.5 and same
parameters as in fig. 2.2. Both vehicles start with 0 velocity, and the leader follows the acceleration
profile in figure fig. 2.5. Left: x0 = 0, xℓ,0 = l+1.5 < l+ s0, v0 = 0 = vℓ,0 = 0. Right: again, the
velocity always stays nonnegative.
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Figure 2.18: The discontinuous improvement of the IDM, with initial gap equal 0.5 and same
parameters as in fig. 2.2. Both vehicles start with 0 velocity, and the leader follows the acceleration
profile in figure fig. 2.5. Left: x0 = 0, xℓ,0 = l + 0.5 < l + s0, v0 = vℓ,0 = 0. Right: again, the
velocity always stays nonnegative.

As all of these changes only depend on the leader’s trajectory xℓ and velocity vℓ which is
given independent on the status of the follower, and we can conclude the existence and
uniqueness of a solution.

The lower bound on the distance follows by the argument that the distance between
follower and leader can only decrease if the followers velocity is not zero. However, then,
we are in the “classical” IDM model and can apply exactly the reasoning of the proof of
theorem 2.4.1.

Example 2.5.6 (Discontinuous improvement). In figs. 2.17 to 2.19 we illustrate the dynamics
of leader and follower for the discontinuous improvement proposed in theorem 2.5.4. Here,
the velocity can become zero and stay zero for an amount of time dependent on the leaders
velocity/position, but remains nonnegative. If the spacing between the two cars is large
enough, the follower immediately speeds up and does not let the gap increase too much.
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Figure 2.19: The discontinuous improvement of the IDM, with initial gap equal 1. Both vehicles
start with 0 velocity, and the leader follows the acceleration profile in figure fig. 2.5. Left: x0 =
0, xℓ,0 = l + 1 < l + s0, v0 = vℓ,0 = 0. Middle: again, the velocity always stays nonnegative.
Right: acceleration

Comparisons among modifications

We herein summarize the strength and weakness of each modification.

• The acceleration projected IDM in definition 2.5.2 is the most straightforward modifi-
cation to fix the negative velocities. However as shown in figs. 2.9 and 2.10, it suffers
from the fact that the follower waits too long to start driving. It may also lead to phys-
ical unreasonability issue with certain initial datum as we point out in example 2.5.4.

• The velocity regularized IDM in definition 2.5.4 is capable of preventing negative ve-
locity, and the follower speeds up immediately when it observes safe distance. However
in this modification one needs to specify the regularization functions h, which might
require extra parameter tuning.

• The discontinuous improvement of the IDM as in definition 2.5.5 prohibits negative
velocities, without the need to introduce extra saturation functions.

In order to quantitatively compare the modifications, we compute the average distance (as
well as the variance) between the leader and follower over time in table 2.2 on three different
scenarios we tested. As it turns out the differences between the latter two modifications
are minimal in all scenarios and both mean/variance. On the other hand, the acceleration
projected IDM has greater average distance and variance, verifying the potential issue that
with the modification, the following vehicle waits for too long to start driving, and reacts to
the leader’s velocity change in a slower manner.

2.6 Generalization to many cars
In the proposed framework, we have only studied the case where we have one leader and one
follower and the leader (in most cases) satisfies an acceleration profile where their velocity is
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Table 2.2: The average distance between the leader and follower (and the variance reported in the
parenthesis)

Average distance (variance) item 1 item 2 item 3
acceleration projected IDM definition 2.5.2 7.99 (1.19) 8.09 (3.55) 14.94 (54.99)
velocity regularized IDM definition 2.5.4 7.76 (1.00) 7.24 (1.70) 12.81 (25.51)
discontinuous IDM definition 2.5.5 7.75 (1.01) 7.31 (1.75) 12.39 (25.18)

nonnegative. However, as this is somewhat arbitrary, all proposed results and all “improve-
ments” remain valid as long as the velocity of the follower remains non-negative when we
generalize this to more than two cars. We make this precise in the following definition 2.6.1
but first introduce the number of cars as well as some physical reasonable assumption on the
input datum:

Assumption 2 (Input datum for multiple cars). Let N ∈ N≥1 be given. We assume that the
parameters of the Acc satisfy what we have assumed in assumption (1) as well as the leaders
acceleration ulead. Additionally, we assume for the initial datum (position and velocity)

x0 ∈ RN : x0,i − x0,i+1 > l ∀i ∈ {1, . . . , N − 1} ∧ v0 ∈ RN
≥0.

Definition 2.6.1 (The car-following model for many cars). Given assumption (2), defini-
tion 2.2.1 and assumption (1). Then, for ulead ∈ Ulead the dynamics for the IDM with many
vehicles N ∈ N≥1 read in (x,v) : [0, T ]→ RN × RN as

ẋ1(t) = v1(t), t ∈ [0, T ]

v̇1(t) = ulead(t), t ∈ [0, T ]

ẋi(t) = vi(t), i ∈ {2, . . . , N} t ∈ [0, T ]

v̇i(t) = Acc(xi(t),vi(t),xi−1(t),vi−1(t)), i ∈ {2, . . . , N} t ∈ [0, T ]

x(0) = x0,

v(0) = v0.

(2.6.1)

The system for many cars is illustrated in fig. 2.20. Having the definition, we obtain
the following general result on the well-posedness when applying the proper acceleration
functions – IDM improvements – introduced before:

Theorem 2.6.1 (Well-posedness of some of the previously discussed models). Let assump-
tion (2) hold and consider as “improvement” of the IDM either the

• the velocity regularized acceleration in definition 2.5.4 with the additional assumption
that there exists vmin ∈ R>0 such that vℓ ≧ vmin on [0, T ] and v0 ∈ RN

>0

• the discontinuous improvement in definition 2.5.5.
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Figure 2.20: The leader x1(t) with its dynamics determined by the acceleration ulead(t) and the
following cars x2(t), x3(t), x4(t), x5(t) with its dynamics governed by the classical IDM defini-
tion 2.2.3. The overall dynamics is stated in definition 2.6.1.

Then, the system of 2N coupled initial value problems (N ∈ N≥1) admits a unique solution
on every given time horizon T ∈ R>0 and the solution satisfies for the velocity regularized
acceleration

x ∈ W 2,∞((0, T );RN
)
: ẋ :≡ v > 0 on [0, T ]

and for the discontinuous improvement

x ∈ W 2,∞((0, T );RN
)
: ẋ :≡ v ≧ 0 on [0, T ].

Proof. The proof consists of recalling that the proofs of the corresponding improvements
all work for any leaders acceleration proposed in assumption (2) as long as the correspond-
ing velocity would remain nonnegative/strictly positive. As the dynamics are only “one-
directionally” coupled, i.e. the dynamics of the follower depend on the leader but not vice
versa, we can use an inductive argument and first look on the dynamics for x1,x2. Accord-
ing to theorem 2.5.3 and theorem 2.5.4 we obtain the well-posedness. However, additionally
also that the velocity v2 is nonnegative/strictly greater than zero. As a next step, we can
thus consider the dynamics of x2,x3. As x2 satisfies the non-negativity/strict positivity
of the velocity we can again apply the stated well-posedness results for two vehicles as in
theorem 2.5.3 and theorem 2.5.4. This procedure can be iterated until we have reached xN

and we conclude with the existence and uniqueness of solutions and the nonnegativity/strict
positivity of the velocities.

2.7 Conclusions and future work
In this contribution, we have demonstrated the ill-posedness of the rather often used intelli-
gent driver model (IDM) for specific initial datum and have presented some improvements
to avoid these problems. The proposed work builds a solid foundation for future work on
1) Multi-lane traffic with lane-changing. The lane-changing requires to know under which
condition a car can change lane and how the well-posedness is affected by the lane change.
For optimizing lane-changing to smooth traffic and avoid stop and go waves (thus saving
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energy) we will next consider a suitable hybrid optimal control problem based on the pro-
posed dynamics. 2) Signalized junctions/intersection modelled with a form of the IDM also
requires the proposed well-posedness in particular as a red traffic light necessitates the ve-
hicles in front of it to stop (velocity becomes zero). 3) Stability of solutions with regard
to the model parameters and comparison of stability for the different suggested improve-
ments. 4) Implementations of the models presented in this article. While the numerical
work presented above results from matlab [97] implementations and the use of ODE45 and
similar routines, it would be interesting to also theoretically study the discretization of these
equations with standard finite difference schemes to see what guarantees can be provided
for the numerical solutions (for example order of the numerical schemes, error bounds on
the numerical solution etc.). 5) It would also be of great interest for the improvements of
the IDM model presented here to validate them against field data, or to see if the resulting
microsimulation implementations (SUMO [89], Aimsun [1], etc.) match experimental data
for specific choices of numerical parameters. In particular, it would be interesting to measure
discrepancies with the prior IDM improvements in their implementation, and compare their
respective performances. 6) Finally, obtaining a general well-posedness result for the original
IDM when restricting specific parameters and input data would be important and will be
subject to further study to justify many already available simulation results a posteriori.
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Chapter 3

Design of a Basis-based Feedback
Controller with Optimal Control

3.1 Introduction
The development in technology and concepts in terms of vehicle on-board sensors and ac-
tuators, as well as for infrastructures, open an unprecedented research direction for the
management of vehicular traffic. Researchers are granted with the capability of collecting
real-time traffic data with on-board electronic devices with high accuracy in position and ve-
locity measurements [51], the solution to data fidelity and timeliness through interfacing the
optimized software and off-the-shelf hardware for data acquisition in real-time [21], and the
availability of testbeds evaluating modern Close-Circuit Television (CCTV) camera systems
for possible deployment on roadside poles for traffic observation and fast vehicle tracking
computer vision algorithms [45]. Those made possible controlling the overall traffic with
automated vehicles immersed in the bulk traffic stream.

The mixed autonomy system considered has both controlled- and human-driven-vehicles
in the loop. To understand the impact of human driving behavior on the traffic, we refer
to [134] for an illustration of the instability of traffic state caused by the enhancement of
fluctuations, exhibiting “phantom jams” in which a traffic jam emerges from the collective
behavior of drivers. The inclusion of automated vehicles can potentially dissipate the traffic
waves, and in fact in [133] the authors show traffic jams could be effectively smoothed out
with a single automated vehicle on a ring of more than 20 other human drivers, improving
the throughput and energy efficiency.

Both deep learning based and mathematical approaches are proposed in the effort of
alleviating ill traffic conditions and reduce fuel consumption. In the realm of machine learn-
ing methods, [66, 147, 156] leverage deep-RL policies to decongest stop-and-go waves and
validate metrics to quantify the reduction in fuel consumption with the employment of au-
tomated vehicle. [146] studies the ability of autonomous vehicles to improve the throughput
of a bottleneck using a fully decentralized control scheme in a mixed autonomy setting.
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[85] demonstrates optimization of fuel economy in a large, calibrated model using a low
penetration rate of decentralized controlled autonomous vehicles.

In the domain of mathematical approaches, PDE models are developed to characterize
the traffic waves and simulate highway traffic under a variant of scenarios in [142, 87, 114,
5]. The authors of [137] study the initial-boundary value problem for a scalar nonlinear
conservation law to determine the minimum time control problem of how to control the
upstream vehicular flow appropriately to regulate the downstream traffic into a constant
free flow state in minimum time. [136] investigates the well-posedness networked scalar
semilinear balance laws with appropriate design of nonlinear boundary control operators.
[81] introduces a model dealing with conservation laws on networks and coupled boundary
conditions at the junctions. At the microscopic level, the authors of [140, 20, 8, 9] leverage
ODE to model the car-following longitudinal dynamics. For the modeling of lateral dynamics,
stochastic jump systems are used in [157] to model the lane-changing behavior. Queueing
models for road traffic flow at intersections are developed and discussed in [101, 49, 151].
In order to smooth out the ill pattern in traffic, optimal control designs are advised in [133]
where model-based control laws incorporating the knowledge of the traffic environment.
Other common optimal control approaches include ACC [135, 59, 144], CACC [128, 112, 91,
127] and MPC [62]. In [82] the authors integrate vehicle dynamics and energy modeling into
a single framework, and also develop a high fidelity simulator that allows users to quickly
implement and test automated vehicle control schemes in complex traffic environments to
assess their capacity to smooth waves and improve energy consumption.

Researchers also propose hybrid control scheme. In [158] the authors introduce a triple-
mode hybrid control scheme by combining an efficient linear quadratic regulator, an efficient
deep learning neural network, and a costly, fail-safe MPC.

Most of the modeling and optimal control effort, however, lack a theoretical study of the
performance bound, due to the complexity of the model structure.

The aim of this contribution

The previous efforts in mathematical approaches to mobile traffic control lack a theoretical
characterization to the actuations function space. This characterization is, however, essential
as a guideline to the systematic design of traffic controllers. This chapter aims to attempt a
primitive understanding of the actuation function space from an approximation theory point
of view, where the acceleration functions can be characterized by a linear combination of
well-chosen feedback basis coupled with a nonlinear transformation function.

Structure of this chapter

The chapter is organized in the following way. In section (3.2) we introduce the design of
basis-based feedback controllers and define the optimal basis-based feedback controller as
the solution of a finite dimensional constrained optimization problem. We discuss the choice
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of basis functions in section (3.3). Section (3.4) collects a list of typical choices of the ob-
jective function. In the subsection (3.4) we also describe the multi-objective optimization
problem and the linear scalarization. The setup of the numerical experiments and the nu-
merical results are provided in section (3.5, where we define the Legendre polynomial basis in
subsection (3.5) and specify the objective function in the numerics in subsection (3.5). The
test trajectories analysis is conducted in subsection (3.5), and we study the equal velocities
plots and phase plots in subsection (3.5). Finally in section (3.6) we conclude our work and
mention future research directions opened by this contribution.

3.2 Problem Formulation: Optimal Basis-based
Feedback Controller

Assume that we have a time-dependent leader vehicle trajectory xℓ ∈ C2([0, T ]) be given for
a considered finite time horizon T ∈ R>0. For the vehicle trajectory to be physically feasible
and for the well-posedness of the ODE system we will define in the optimization problems
(3.2.2), (3.5.5), (3.5.6), we make some additional assumptions on the trajectory.

Assumption 3 (Assumptions on the leader vehicle trajectory). We assume that for the
leader vehicle trajectory xℓ ∈ C2([0, T ])
Physical feasibility of the velocity: ẋℓ ≧ 0.
Boundness of position and velocity: (xℓ, ẋℓ) ∈ L∞([0, T ])2

We want to determine the best feedback controller (for the ego vehicle’s position abbre-
viated here with x, ego vehicle’s velocity abbreviated here with v) to optimize an objective
function.

In order to address the problem stated above, we make a fundamental assumption on the
function space of the ego vehicle’s acceleration profile.

Assumption 4 (Controlled vehicle acceleration function space). We assume the function
space of the ego vehicle’s acceleration profile is a subspace of the Banach space

(
W 1,∞(R3;R), ∥·

∥1,∞
)
, with a Schauder basis sequence

{
φi ∈ W 1,∞

loc (R3;R), i ∈ N
}

and a non-decreasing func-
tion A ∈ W 1,∞(R) ⋐ L∞(R) such that for every element φ in the acceleration function space
there exists a unique sequence

{
bi ∈ R, i ∈ N

}
so that

φ = A

(
∞∑
i=0

biφi

)
(3.2.1)

where the convergence is understood with respect to the ∥ · ∥1,∞ topology.

For a review of the Schauder basis approximation theory and results, we refer to [98].
In reality, however, it is barely possible to implement the function characterization with a
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countably infinite Schauder basis. A common alternative is to approximate the function
based on a finite basis truncation. As our feedback controller is intended for real-world
applications, we define the basis-based feedback controller with the finite truncation approx-
imation, and we use the word basis functions to refer to the corresponding finitely truncated
basis functions set. More specifically, we define the basis-based feedback controller as follows.

Definition 3.2.1 (Basis-based Feedback Controller). For a given set of basis functions
{
φi ∈

W 1,∞
loc (R3;R), i ∈ {1, . . . , N}

}
, a given coefficient vector b ∈ RN , and a given non-decreasing

function A ∈ W 1,∞(R), the basis-based feedback controller is defined as the acceleration
profile

Acc[b] :

{
R≥0 × R× R≥0 → R
(xℓ − x, ẋℓ − v, v) 7→ A

(∑
i∈{1,...,N} biφi

(
xℓ − x, ẋℓ − v, v

))
.

Remark 3.2.1 (The inclusion of the non-decreasing function A ∈ W 1,∞(R) ⋐ L∞(R)). In
real-world applications, it is desirable that the controlled vehicle has a bounded acceleration
considering passenger comfort and hardware limitation. Therefore it is reasonable to use a
monotonically non-decreasing and bounded transform function A to guarantee the boundness
of the basis-based feedback controller, as well as to preserve the monotonicity property of the
linear combination of basis functions.

Having defined the acceleration function of our controller, we are ready to present the
optimal basis-based feedback controller.

Definition 3.2.2 (Optimal Basis-based feedback controller). Let T ∈ R>0 be fixed. For a
given trajectory xℓ ∈ C2([0, T ]) satisfying assumption (3), a given objective functional J :(
C2([0, T ])× C1([0, T ])× C0([0, T ])× RN

)
7→ R, a non-decreasing function A ∈ W 1,∞(R),

and a set of basis functions
{
φi ∈ W 1,∞

loc (R3;R), i ∈ {1, . . . , N}
}
, an optimal basis-based

feedback controller is defined as the basis-based feedback controller where the coefficient
vector b ∈ RN is an optimal solution of the following finite dimensional optimization problem

min
bi∈R, i∈{1,...,N}

J(x[b], v[b], v̇[b], b)

ẋ(t) = v(t) ∀t ∈ [0, T ]

v̇(t) = Acc[b]
(
xℓ(t)− x(t), ẋℓ(t)− v(t), v(t)

)
∀t ∈ [0, T ]

x(0) = x0

v(0) = v0

xℓ(t)− x(t)− l ≥ 0 ∀t ∈ [0, T ]

v(t) ≥ 0 ∀t ∈ [0, T ]

(3.2.2)

with (x0, v0) ∈ R× R≥0 being the initial position and velocity of the ego vehicle and l ∈ R>0

being the car length.
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For the optimization problem to be feasible, we make the following assumption on the
initial datum.

Assumption 5 (Physical relevant initial datum). We assume the initial position and velocity
provided in the definition (3.2.2) satisfies

xℓ(0)− x0 − l ≥ 0, v0 ≥ 0. (3.2.3)

Theorem 3.2.1 (Well-posedness of the ODE system). Assuming (3), given the Acc in
definition (3.2.1) and a finite time horizon T ∈ R>0, the ODE system

ẋ(t) = v(t) ∀t ∈ [0, T ]

v̇(t) = Acc[b]
(
xℓ(t)− x(t), ẋℓ(t)− v(t), v(t)

)
∀t ∈ [0, T ]

x(0) = x0

v(0) = v0

(3.2.4)

admits a unique solution x ∈ W 2,∞([0, T ]) for each choice of the coefficient vector b ∈ RN .

Proof. We aim to prove the map Acc[b] ∈ W 1,∞(I;R) where I =
{
(xℓ − x, ẋℓ − v, v)

}
⊆ R3

is the input space, under the assumption (3). First, A ∈ W 1,∞(R) ⋐ L∞(R) implies there
exists a constant B0 ∈ R>0 such that

∣∣A∣∣ ≦ B0. Hence the |v| can be upper bounded by the
estimate∣∣v(t)∣∣ = ∣∣∣∣v(0) + ∫ t

0

Acc[b]
(
xℓ(τ)− x(τ), ẋℓ(τ)− v(τ), v(τ)

)
dτ

∣∣∣∣
≤
∣∣v0∣∣+ ∫ t

0

∣∣∣∣∣A
( ∑

i∈{1,...,N}

biφi

(
xℓ − x, ẋℓ − v, v

))∣∣∣∣∣ dτ
≤
∣∣v0∣∣+ ∫ T

0

B0 dτ (3.2.5)

≤
∣∣v0∣∣+B0 T ∀t ∈ [0, T ]

where inequality (3.2.5) is due to the global upper bound for |A|. A global upper bound for
|x| can be derived by

∣∣x(t)∣∣ = ∣∣∣∣x(0) + ∫ t

0

v(τ) dτ

∣∣∣∣
≤
∣∣x(0)∣∣+ ∫ t

0

∣∣v(τ)∣∣ dτ
≤
∣∣x(0)∣∣+ ∫ T

0

(∣∣v0∣∣+B0 T
)
dτ (3.2.6)

≤
∣∣x(0)∣∣+ (∣∣v0∣∣+B0 T

)
T ∀t ∈ [0, T ]
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where inequality (3.2.6) is because of the global bound for |v| derived before.
Combined with assumption (3), which implies the existence of a constant B1 ∈ R>0 such

that
∣∣xℓ

∣∣ ≦ B1 and
∣∣ẋℓ

∣∣ ≦ B1, we now show the compactness of the input space I of basis
functions φi as below,∣∣xℓ − x

∣∣ ≤ ∣∣xℓ

∣∣+ ∣∣x∣∣ ≤ B1 +
∣∣x(0)∣∣+ (∣∣v0∣∣+B0 T

)
T,∣∣ẋℓ − v

∣∣ ≤ ∣∣ẋℓ

∣∣+ ∣∣v∣∣ ≤ B1 +
∣∣v0∣∣+B0 T,∣∣v∣∣ ≤ ∣∣v0∣∣+B0 T,

hence the input space I is bounded in R3. The input space I is also closed in terms
of the typical R3 topology. We therefore conclude the compactness of the input space
I of basis functions φi in R3. The compactness of I and φi ∈ W 1,∞

loc (R3;R) implies
φi ∈ W 1,∞(I;R). Finally as the map Acc[b] is the composition of A ∈ W 1,∞(R;R) and∑

i∈{1,...,N} biφi

(
xℓ−x, ẋℓ−v, v

)
∈ W 1,∞(I;R) for each choice of the coefficient vector b ∈ RN ,

Acc[b] ∈ W 1,∞(I;R). Therefore the right hand sides of the ODE system are lipschitz contin-
uous, and the existence and uniqueness of a global solution on the time interval [0, T ] follows
by the Picard-Lindelöf Theorem ([[28], Chapter 4] or [[27], Thm 1.3).

Note that we do not incorporate the impact of our controller on cars behind. However,
this could also be done by specifying the dynamics model of the follower vehicles. The
generalization to more than 2 cars does not add more complexity to the problem formulation,
as we can characterize the human-driven vehicles’ dynamics by some specific car-following
model, and we can characterize the controlled vehicles’ dynamics by basis-based optimal
controllers. The system dynamics can then be obtained by solving the ODEs sequentially
from the leader to the followers.

3.3 Basis Functions
We now discuss the choices for basis functions

{
φi ∈ W 1,∞

loc (R3;R), i ∈ {1, . . . , N}
}

. Some
typical choices for basis functions include

• Polynomial basis functions: {1, x1, x2, x3, x1x2, x1x3, x2x3, x
2
1, x

2
2, x

2
3, . . . }.

• Sinusoidal basis functions:
{
cos(2π n

P
xj), sin(2π

n
P
xj) : n ∈ Z, P ∈ R>0, j = 1, 2, 3

}
,

where n
P

is the frequency of the harmonic.

• Radial basis functions:
{
exp(−1

r
∥x− µi∥22) : i ∈ N,µi ∈ RN , r ∈ R>0

}
where N is

the dimension of the input space (i.e., the dimension of x), µi are the bump centers of
the basis functions, and r determines the rate of decay.

• Hyperbolic tangent functions: {tanh (ai(xj − bi)) : i ∈ N, ai, bi ∈ R, j = 1, 2, 3}.
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• Splines: piecewise polynomial functions satisfying smoothing conditions on the knots.

All basis functions above are plausible options and we do not know a priori how such basis
functions for the acceleration function space should look like.

3.4 Objective Functional

Definition of objective functions

In this section we discuss potential choices of objective functions. To simplify the notation
in this section, we denote x := x[b], v := v[b], v̇ := v̇[b] but one should keep in mind they are
really b dependent. In general functions J : (C2([0, T ])×C1([0, T ])×C0([0, T ])×RN) 7→ R
are candidates for the objective functions. In order to improve energy consumption or smooth
the stop-and-go waves, some typical choices for the objective functional include

• Cumulative fuel consumption function: as devised in [82], we consider the in-
stantaneous fuel consumption function E : R≥0 × R 7→ R

E(v, v̇) := C0 + C1v + C2v
2 + C3v

3

+ p0v̇ + p1v̇ · v + p2v̇ · v2

+ q0max(v̇, 0)2 + q1max(v̇, 0)2v

(3.4.1)

where v, v̇ denotes the velocity and acceleration respectively, (C0, C1, C2, C3, p0, p1, p2, q0, q1) ∈
R9 are vehicle-specific model parameters. The cumulative fuel consumption cost is
computed as

JE(x, v, v̇, b) :=

∫ T

0

E(v(t), v̇(t)) dt. (3.4.2)

The inclusion of (3.4.2) in the cost function of (3.2.2) encourages the controlled vehicle
to drive in a fuel-consumption-minimization way.

• Miles-per-gallon (MPG): the negative MPG cost is defined as

JMPG(x, v, v̇, b) := −
x(T )− x(0)∫ T

0
E(v(t), v̇(t)) dt

. (3.4.3)

The inclusion of (3.4.3) in the cost function of (3.2.2) induces a fuel-consumption-
efficient driving behavior of the controlled vehicle, i.e., maximizing the travel distance
for unit fuel consumption.

• Two-second-rule: the two-second-rule cost is defined as

J2-sec-rule(x, v, v̇, b) :=

∫ T

0

|xℓ(t)− x(t)− l − 2 · v(t)|2 dt (3.4.4)
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where l ∈ R>0 is the car length.
The two-second-rule can be generalized in two ways. We can generalize to the n-
second-rule where n ∈ R>0, and we can generalize the L2-norm penalization to Lp-norm
penalization where p ∈ [1,∞), i.e. we define the general n-second-rule as

Jn-sec-rule(x, v, v̇, b) :=

(∫ T

0

|xℓ(t)− x(t)− l − 2 · v(t)|p dt

) 1
p

. (3.4.5)

The inclusion of (3.4.5) in the cost function of (3.2.2) encourages the controlled vehicle
to keep a n seconds time headway.

• Acceleration: the acceleration cost is defined as

Jacceleration(x, v, v̇, b) :=

(∫ T

0

|v̇(t)|p dt

) 1
p

(3.4.6)

where p ∈ [1,∞). The inclusion of (3.4.6) in the cost function of (3.2.2) penalizes rapid
changes in the velocity of the controlled vehicle.

• Travel distance: the negative total distance travelled is defined as

Jdistance(x, v, v̇, b) := − (x(T )− x(0)) = −
∫ T

0

v(t) dt, (3.4.7)

which can be generalized to

Jdistance(x, v, v̇, b) :=

(∫ T

0

v(t)p dt

) 1
p

(3.4.8)

where p ∈ [1,∞). The inclusion of (3.4.8) in the cost function of (3.2.2) encourages
the controlled vehicle to drive with a large feasible velocity.

• Regularization: the regularization penalty cost is defined as

Jregularization(x, v, v̇, b) := ∥b∥p =

(
N∑
i=1

|bi|p
) 1

p

(3.4.9)

where b ∈ RN is the coefficient vector, p ∈ [1,∞). The inclusion of (3.4.9) in the
cost function of (3.2.2) improves the test performance by balancing the bias-variance
trade-off and alleviating over-fitting.
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The multi-objective optimization problem

In practice we would like to consider an optimization problem involving multiple objective
functions to be optimized simultaneously. For example, we want to maximize the total
distance travelled whilst to minimize the cumulative fuel consumption. Oftentimes we need
to make a balance among conflicting objective functions. One a priori method to deal
with the multi-objective optimization problem is scalarizing the objective functions.
Specifically we consider the linear scalarization of the multiple objective functions.

Definition 3.4.1 (Linear scalarization). Given a set of objectives
{
Ji :, i ∈ {1, . . . ,M}

}
and the weights of the objectives

{
w ∈ RM

≥0 :
∑M

i=1wi = 1
}
, the linear scalarization of the

multi-objective function on the set of objectives is defined as

J :=
M∑
i=1

wiJi. (3.4.10)

In the numerics section (3.5) we will experiment with specific choices of the weights in
the linear scalarization of multi-objective optimization problem. Note that with different
weights for the scalarization, different optimal solutions of (3.2.2) are produced. One needs
to choose the weights with the goal of the specific problem in mind, weighting more the main
metrics.

3.5 Numerical Results
In this section we provide numerical results and discuss differences in controlled vehicle’s
driving behavior with

• different choice of basis functions, and

• different choice of the weights for linear scalarization in the multi-objective optimization
problem.

Choice of basis functions

For the numerical experiments we choose the polynomial functions as the basis functions for
the acceleration function space. Specifically we define the Legendre polynomial basis below.

Definition 3.5.1 (Legendre polynomial basis). Consider the Legendre polynomials where
the degree n ∈ N polynomial Pn(x) is defined as

Pn(x) :=
1

2n n!

dn

dxn
(x2 − 1)n.
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The Legendre polynomial basis up to degree D ∈ N is defined as the set of functions
φijk ∈ C∞(R3;R) such that

φijk

(
xℓ− x, vℓ− v, v

)
:= Pi

(xℓ − x

L

)
Pj

(vℓ − v

L

)
Pk

( v
L

)
, i+ j + k ≤ D, i, j, k ∈ N (3.5.1)

where L ∈ R>0 is a scaling factor.

Note that one motivation of choosing Legendre polynomials over monomials is because
the Legendre polynomials are mutually orthogonal in the Hilbert space W 2,2([−1, 1];R) ⊆
W 1,∞([−1, 1];R).
Example 3.5.1 (Legendre polynomial basis with D = 2, L = 1). For D = 2, the Legendre
polynomials up to degree 2 are

P0(x) = 1,

P1(x) = x,

P2(x) =
1
2

(
3x2 − 1

)
,

and the set of Legendre polynomial basis consists of 10 functions{
P0(xℓ − x), P1(xℓ − x), P2(xℓ − x), P1(vℓ − v), P2(vℓ − v), P1(v), P2(v),

P1(xℓ − x)P1(vℓ − v), P1(xℓ − x)P1(v), P1(vℓ − v)P1(v)
}
.

Choice of objective functions

We experiment and compare two linear scalarizations of the multi-objective optimization
problem (3.2.2), which both aim to maximize MPG whilst minimize the two-second-rule.

Definition 3.5.2 (Objective functions with and without regularization). Consider a set of
objectives {

JMPG, J2-sec-rule, Jregularization

}
where the objective functional are defined in (3.4). The linear scalarization of the multi-
objective function on the set of objectives without regularization is defined as

Jun-regularized := w1JMPG + w2J2-sec-rule (3.5.2)

and the linear scalarization of the multi-objective function on the set of objectives with
regularization is defined as

Jregularized := w1JMPG + w2J2-sec-rule + w3Jregularization, (3.5.3)

where w1, w2, w3 ∈ R>0.
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Training trajectory data and choice of hyperparameters

• Training data for the leader trajectories: we take the real-world vehicle trajec-
tories from I-24 dataset [102] as the data for leader trajectories xℓ. We divide the
dataset into training data and test data, where we use the 61 training trajectories
xℓ

train
i , i ∈ {1, . . . , 61} to train the optimal controller coefficient, and we use the 4 test

trajectories xℓ
test
i , i ∈ {1, . . . , 4} to evaluate the performance of the optimal controller.

• Hyperparameters: in the experiments we let D = 3 and L = 500 in the Legendre
polynomial basis (3.5.1), which results in a set of 35 basis functions. We choose w1 ∝
103, w2 ∝ 10−1, w3 ∝ 10−6 for the weights in the objective functions in (3.5.2). We use
T = 200 as the time horizon, l = 1 as the car length in the objective functions (3.4.3)
and (3.4.4).

• Non-decreasing function A: for the function A in (3.2.1), we let

A(x) := 6
π
arctan(x). (3.5.4)

Note that A(x) ∈ [−3, 3], therefore the controlled vehicle’s acceleration is bounded
between −3 and 3.

• Optimization involving multiple training trajectories: we train the optimal
controller coefficient b on multiple training trajectories xℓ

train
i , i ∈ {1, . . . , N train} as

the solution of the following optimization problem

Ntrain∑
i=1

min
bj∈R, j∈{1,...,N}

J(xi[b], vi[b], v̇i[b], b)

ẋi(t) = vi(t) i ∈ {1, . . . , N train},∀t ∈ [0, T ]

v̇i(t) = Acc[b]
(
xℓ

train
i (t)− xi(t), ẋℓ

train
i (t)− vi(t), vi(t)

)
i ∈ {1, . . . , N train},∀t ∈ [0, T ]

xi(0) = xi,0 i ∈ {1, . . . , N train}
vi(0) = vi,0 i ∈ {1, . . . , N train}

0 ≤ xℓ
train
i (t)− xi(t)− l i ∈ {1, . . . , N train},∀t ∈ [0, T ]

vi(t) ≥ 0 i ∈ {1, . . . , N train},∀t ∈ [0, T ]
(3.5.5)

where initial datum are xi,0 := xℓ
train
i (0) − l − 2 · ẋℓ

train
i (0) and vi,0 := ẋℓ

train
i (0), i.e.,

initially at t = 0 the controlled vehicle drive at the same speed as the leader, and start
with a exact 2 second time headway.

• Constraints in the optimization function: the two constraints in the optimization
problem (3.2.2) are essential to guarantee the feasibility of the controlled vehicle’s
trajectory, i.e., the controlled follower vehicle must not overtake the leader vehicle,
and must not have negative speed. The constraints are potentially nonlinear in the
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parameter vector b due to the nonlinearity of A(·), therefore we use the method of
Lagrange multipliers to enforce the nonlinear constraints.

Definition 3.5.3 (Optimization problem with Lagrange function). Let the barrier

function hε(y) :=
(
log
(
max

(
ε,min(1, y + 1)

)))2
, with a small constant ε ∈ R>0.

Let g1(xℓ, x) := hε(xℓ − x − l) and g2(v) := hε(v). The optimal feedback controller
with optimization problem in Lagrange function bLagrange ∈ RN is defined as an
optimal solution of the following optimization problem

min
bi∈R

i∈{1,...,N}

J(x[b], v[b], v̇[b], b) + µ1

∫ T

0

g1(xℓ(t), x(t))dt+ µ2

∫ T

0

g2(v(t))dt

ẋ(t) = v(t) ∀t ∈ [0, T ]

v̇(t) = Acc[b]
(
xℓ(t)− x(t), ẋℓ(t)− v(t), v(t)

)
∀t ∈ [0, T ]

x(0) = x0

v(0) = v0
(3.5.6)

where µ1, µ2 ∈ R>0.

Remark 3.5.1 (Nonconvexity of the optimization problem). There is no guarantee of
the convexity of the optimization problem (3.5.3), due to our generic choice of objective
function J and the non-linear traffic dynamics. Therefore one can only expect local
optimum when optimizing using gradient decent methods.

Remark 3.5.2 (Theoretical and numerical methods to compute gradient directions).
We discuss the optimization routines with both the time-continuous optimization system
(3.5.3) and the corresponding fully discretized system.

– Time-continuous optimization system. To resolve optimal control problems,
i.e. optimization problems involving dynamic constraints, classical approaches
such as Pontryagin’s Maximum Principle [65] provide necessary conditions from
the calculus of variations. The gradient directions can be obtained and updated by
solving a coupled forward-backward ODE system.

– Fully discretized optimization system. For the fully discretized system, the
gradient descent direction can be estimated by finite difference approximations.

Finally, note that since we aim to keep a moderate size of the dimension of our coef-
ficient vector b, numerical finite difference approximations of the gradient direction is
computationally efficient. The PMP solution to our problem is not as efficient since
the optimization coefficient b is not time-dependent while the computation of gradient
directions requires solving the backward equations.
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Figure (3.1) shows the plots of the barrier functions hε(·) for multiple ε. The barrier
only penalizes negative values, and the more negative the more penalization incurred.
Also we see the smaller the ε, the larger the penalty. In the numerical experiments,
we take µ1 = µ2 ∝ 106 and ε = 10−15.

Figure 3.1: The barrier functions hε(y) for different ε.

• Matlab solvers and time discretization: in order to solve the optimization problem
with Lagrange function in (3.5.3), we use the nonlinear optimization solver fmincon(·)
to find the minimum of constrained nonlinear multi-variable function. In order to
numerically solve the ODEs in (3.5.3), we use the Runge–Kutta method with order 5
and non-adaptive time discretization, with time size chosen as 0.25.

Numerical results on test trajectories

We first look at the test results both with and without regularization. For the optimization
problem (3.5.6), let bun-regularized denote the optimal solution with J = Jun-regularized and let
bregularized denote the optimal solution with J = Jregularized.

• Norm of the optimal coefficient vector: we first compare the L2-norm of the
optimal coefficient vectors,

∥bun-regularized∥2 = 496.53, ∥bregularized∥2 = 133.15,

where we see the inclusion of regularization cost in the objective function indeed reduces
the norm of the coefficient vector.
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• Comparison between metrics: we compute and compare the values of MPG and
2-second-rule with the two optimal coefficient vectors. The results are summarized in
the table (3.1).

– The MPG metric: the MPG metric is computed as −JMPG(x, v, v̇) where the
negative MPG cost is defined in (3.4.3). For the MPG metric, the larger the
value the better the performance (the controlled vehicle drives more miles with
unit gallon of fuel consumption). One can observe that the MPG metrics of
the two optimal controllers are close, with the regularized controller bregularized

performing moderately better and obtaining a slightly larger MPG compared to
the unregularized controller bun-regularized with 3 out of the 4 test trajectories.

– The 2-second-rule metric: the 2-second-rule metric is computed as J2-sec-rule(x, v, v̇)
where the 2-second-rule cost is defined in (3.4.4).In terms of the 2-second-rule met-
ric, the smaller the value the more closely the controlled vehicle keeps a 2-second
time headway from the leader vehicle. We see the regularized controller bregularized

obtains a uniformly smaller 2-second-rule cost compared to the ones obtained by
the unregularized controller bun-regularized with all 4 test trajectories.

Metrics MPG,
bun-regularized

MPG,
bregularized

2-sec-rule,
bun-regularized

2-sec-rule,
bregularized

Trajectory #1 5.1102 5.1008 8798.1 3512.8
Trajectory #2 6.5066 6.5712 3007.8 1946.6
Trajectory #3 6.1075 6.1257 302.4 189.13
Trajectory #4 5.2975 5.2984 1666.9 803.1

Table 3.1: The comparison between MPG and 2-second-rule with and without regularization on
the 4 test trajectories.

• Optimal controlled trajectories: In figure (3.2) and (3.3), we take a closer look at
the optimal controlled trajectories generated by the two optimal controllers. Specifi-
cally, we compute

– the position trajectories of the leader vehicle {xℓ(t) : t ∈ [0, T ]} and the
follower/controlled vehicle {x(t) : t ∈ [0, T ]}

– the velocity trajectories of the leader vehicle {ẋℓ(t) : t ∈ [0, T ]} and the fol-
lower/controlled vehicle {v(t) : t ∈ [0, T ]}

– the headway trajectory {xℓ(t)− x(t) : t ∈ [0, T ]}
– the instantaneous energy consumption trajectory of the controlled ve-

hicle {E(v(t), v̇(t)) : t ∈ [0, T ]} with the function E(·, ·) defined in (3.4.1)

– the 2-second-rule trajectory {xℓ(t)− x(t)− l − 2 · v(t) : t ∈ [0, T ]}
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– the acceleration trajectories of the leader vehicle {ẍℓ(t) : t ∈ [0, T ]} and the
follower/controlled vehicle {v̇(t) : t ∈ [0, T ]}

Key observations include

– Both optimal controllers smooth the leader’s acceleration trajectories:
in the acceleration trajectories plots, we see the controllers stabilize the oscillations
in the leader vehicles’ acceleration, leading to smoother controlled acceleration tra-
jectories. This is a desired behavior as smoother acceleration and braking implies
less energy consumption and can potentially smooth the stop-and-go waves.

– Both optimal controllers track the leader’s velocity trajectories: in the
velocity trajectories plots, we see the controlled vehicle’s velocity trajectories tend
to imitate the one’s of its leader’s.

– No violation of the feasibility of the controlled vehicles’ trajectories:
in the velocity and the headway trajectories plots, we see there is no negative
velocity or negative headway. This is a desired behavior of our controller and the
barrier penalties are deactivated.

– Extreme initial acceleration for the un-regularized optimal controller:
although in general the un-regularized controller determined by the bun-regularized

smooths the leaders’ acceleration trajectories, we observe near t = 0 the controlled
vehicle can have extreme acceleration or braking close to the maximal/minimal
allowed acceleration. This is an undesired property of the optimal controller
as this might lead to large instantaneous energy consumption near t = 0, and
since we initialize the controlled vehicle with equal speed as the leader’s speed
and a 2-second headway, the extreme acceleration/braking seems unnecessary. In
comparison, the regularized controller determined by the bregularized manages to
alleviate the initial extreme acceleration.

The results listed above are remarkable as the number of basis functions is relatively
low. We observe the potential of polynomials up to degree three to capture the general
trend of complex traffic trajectories.

Equal velocities plot and phase plots

In this section we study the acceleration profile generated by both controllers, i.e., the map
Acc : R≥0 × R × R≥0 7→ R as defined in (3.2.1). This map takes in a 3-dimensional input
tuple consists of the headway xℓ− x, the relative velocity vℓ− v and the controlled vehicle’s
velocity v. In order to visualize this map, we generate two types of plots fixing one of the
elements in the input tuple,

• Acceleration at and near equal velocities: let the relative velocity be 0, i.e., let
vℓ = v. We generate the heatmap where the horizontal-axis is the controlled vehicle’s
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Figure 3.2: The test data result with Jun-regularized as defined in (3.5.2). In the position, velocity
and acceleration subplots, the red trajectories denote the controlled/follower vehicle’s values and
blue trajectories denote the leader vehicle’s values. The energy subplot is the controlled/follower
vehicle’s instantaneous energy.

speed v, the vertical-axis is the headway xℓ − x, and the color represents the value of
the acceleration Acc(xℓ − x, 0, v).

• Acceleration as function of phase space: let the speed of the controlled vehicle v
be fixed. We generate the the heatmap where the horizontal-axis is the leader vehicle’s
speed vℓ, the vertical-axis is the headway xℓ − x, and the color represents the value of
the acceleration Acc(xℓ − x, vℓ − v, v) for a range of choice of v.
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Figure 3.3: The test data result with Jregularized as defined in (3.5.3). In the position, velocity
and acceleration subplots, the red trajectories denote the controlled/follower vehicle’s values and
blue trajectories denote the leader vehicle’s values. The energy subplot is the controlled/follower
vehicle’s instantaneous energy.

Acceleration at and near equal velocities

In figure (3.4) we show the equal velocities plots for both optimal controllers, where on the
left is the plot with the un-regularized optimal controller and on the right is the plot with
the regularized optimal controller. Key observations include

• Both optimal controllers prescribe a roughly 2 second time headway, along
with an added safety distance: we see in both equal velocities plots, the equilibrium
gap is unique for each v ∈ [0, 30]. The slope of the equilibrium curve (the sets of points
generating zero acceleration) indicates the time headway kept by the controlled vehicle,
which roughly equal to 2 seconds and increases slightly at higher speed for both optimal
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controllers. The intercept of the equilibrium curve indicates the safe distance kept by
the controlled vehicle, which roughly equal to 10 miles for both optimal controllers.
This is a reasonable performance of a good optimal controller.

• Both optimal controllers exhibit reasonable acceleration and braking be-
havior given the speed-headway pairs: the controlled vehicle heavily brakes with
large speed and small headway, and heavily accelerates with small speed and large
headway. The acceleration transits between those two regions.

• Sharp transition for the un-regularized optimal controller: in the equal veloc-
ities plot for the un-regularized controller determined by bun-regularized, there is only a
very slim transition region between maximum acceleration to maximum braking. This
is an undesired property for the optimal controller as the controller might be too sensi-
tive to the change in its inputs, posing difficulty to the hardware implementation and
diminishing driving comfort. In comparison, with the regularized controller determined
by bregularized, the transition in acceleration is smoother.

Figure 3.4: The equal velocity plot for both objective functions. Left: un-regularized. Right:
regularized. The black curve in the plot is the equilibrium curve, i.e., the points of zero acceleration.

Acceleration as function of phase space

In figure (3.5) we show the phase plots for both optimal controllers, where the upper plots
are generated with the un-regularized optimal controller and the lower plots are generated
with the regularized optimal controller. Key observations includes

• Both optimal controllers exhibit reasonable acceleration and braking be-
havior given the leader speed and headway pairs: we see in both phase plots,
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the equilibrium gap is unique for each vℓ ∈ [0, 30], where with fixed controlled ve-
hicle speed v, the equilibrium headway decreases with larger leader speed vℓ. With
fixed controlled vehicle speed v, the acceleration is negative with small leader speed
and small headway, and the acceleration is positive with large leader speed and large
headway. The braking region enlarges with larger controlled vehicle speed.

• Sharp transition for the un-regularized optimal controller: Again we see a
sharp transition in the acceleration with the un-regularized controller determined by
bun-regularized. This is an undesired property for the optimal controller for the same
reason described in the section (3.5). Again with the regularized controller determined
by bregularized, the transition in acceleration becomes smoother.

3.6 Conclusion and Future Work
In this chapter, we introduce the design of optimal basis-based feedback controllers. We
demonstrate a systematic way to characterize the controlled vehicle’s acceleration function
space by a linear combination of basis functions and a (nonlinear) transformation function.
We define the optimal basis-based feedback controller as the optimal solution of an opti-
mization problem. We discuss the choice of basis functions and objective functions, and
show the numerical results with Legendre polynomial basis optimal feedback controllers. We
use the equal velocities plot and the phase plot to explore the performance of the optimal
controller, to detect potential flaw in the design, and to study the robustness of the optimal
basis controller regarding the input tuple.

Future work includes 1) numerical experiments with basis functions other than polyno-
mials and a systematic comparison among the performance of the optimal controllers with
different choices of basis functions, 2) a study of the impact of the choice of the transfor-
mation function A(·), 3) experimenting and studying the impact of potential inclusion of
existing car-following models into the basis functions, 4) exploring the robustness of the
optimal controller regarding the initial datum (x0, v0) in the optimization problem (3.2.2).
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Figure 3.5: The phase plots for both objective functions. Upper: un-regularized. Lower: regular-
ized. The black curve in the plot is the equilibrium curve, i.e., the points of zero acceleration. The
dotted vertical line indicates vℓ = v.
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Chapter 4

Parallel Network Flow Allocation in
Repeated Routing Games via LQR
Optimal Control

4.1 Introduction
The routing problem – a problem in which trip-makers route traffic between an origin and
destination – is a central and essential component in the study of urban transportation plan-
ning. Emerging as an enabler to this problem over the last decade, navigational apps have
used solution from the routing problem to provide shortest paths from origin to destination,
or identify the paths with the shortest travel time [22]. Due to ubiquitous adoption of naviga-
tional apps by motorists (commuters, travelers), TNCs (Lyft/Uber), delivery fleets [58], and
many others, these apps are playing even bigger roles in transportation and the significance
of their roles are growing [4]. With increased penetration routing app users, navigational
apps are starting to “act” as flow allocation mechanisms – having positive effects on some
cities travels and negative on others when users use local neighborhood routes to avoid traffic
[138]. Thus, it is becoming ever for important to understand the routing game problem, its
solutions, and how flow allocation mechanisms (and traffic assignment) are being used in
transportation.

The traffic assignment problem is a model framework for aggregated flows of motorists
routed through a network from their origins to their destinations. To address the traffic
assignment problem, this process has initially been modeled in a static way using notions
such as static traffic assignment, for which specific solutions exist like User equilibrium and
system optimal [19, 109]. In this static model, we assume the network being studied is
close to “steady state”, and that the current network capacity is the capacity over the entire
analysis period. However, in hopes to move away from this assumption and better model
traffic in urban areas, researchers have moved toward dynamic traffic assignment models,
which aim to model time-varying networks and demand interactions and changes [26, 126,
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93, 19]. Additionally, within the field of traffic control, researchers have used simulation based
approaches [107] and some are starting to use big data to further analyze travel behavior
[25].

The traffic assignment problem has been modeled using game theory among many other
techniques. Specifically, it has been posed in a game theoretic framework called routing game.
A routing game is a game in which the players (non-cooperatively) route traffic between an
origin and a destination of a proposed network, where the network models a system of roads.
After each player chooses routing strategies, each player will incur a cost on the route they
choose [103]. One specific kind of game is called “the one-shot” game. The one-shot routing
game is a static game1, where the players make their decision simultaneously and therefore
no time history is involved. Within the one-shot game framework, multiple equilibrium
models and the corresponding equilibria have played an important role in understanding the
inefficiencies of networks (e.g. the price of anarchy [118]), for example the user equilibrium
or Nash equilibrium [109]. Properties and the characterizations of the equilibrium solutions
are also well-studied, for example, the Nash equilibria are known to be the solution set of
the convex Rosenthal potential function [116]. Closely related works include [77, 76], where
the authors present a game theoretic framework for studying Nash and Stackelberg routing
games on parallel networks with horizontal queues, and in [60] the authors futher study the
Stackelberg thresholds with the same problem setup. [37] proposes a heterogeneous routing
game in which each driver or vehicle belongs to a certain type, and investigates the existence
of a Nash equilibrium in this heterogeneous routing game.

Within routing games, one can also study a dynamic game, where the environment is time
varying. The analysis of such games is more difficult from a theoretic standpoint: the notion
of dynamic equilibria has to be introduced, and extra ingredients like information acquisition
and time ordering of the execution of the actions need to be specified [11]. Therefore, moving
towards more dynamical games, we consider repeated games, i.e. a static game iterated over
time, as a model of the evolution of the traffic situation. The iteration here can be naturally
interpreted as time discretization (e.g. sometimes where traffic conditions are steady over
time intervals). In the case of the present work, we follow previous approaches in which the
repeated nature of the game encompasses the process of a routing entity (Google, Waze,
etc) to learn from day to day from their previous performances. Oftentimes (and it is the
case in our formulation), the repeated version is essentially the sequential appreciation of a
static game. A natural question to study is the behavior of the dynamics, when the players
repeat a static game using past information. Dynamics in a repeated routing game might
not converge, and even if it does, convergence might not be quantifiable (e.g. convergence
almost everywhere, convergence in the sense of Cesaro means or of the time-averages, etc.).
Even when the dynamics sequence converges itself, the equilibria to which it converges to
(Nash equilibrium or social optimum) might not be unique [80]. Approaching this question,
Krichene et al. estimates the learning dynamics within an online learning model of player
dynamics [71] and studies the traffic dynamics under partial control [72]. Discussions of

1A static game is played only once with one iteration.
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optimization algorithms and the convergence of the learning algorithms to an equilibrium
are conducted in [6, 70, 75, 73]. The authors of [34] study the stability property of the
optimal in the congestion game under Replicator dynamics. [31] investigates the privacy in
the routing game, where the origins and destinations of drivers are considered private.

To better understand the routing game in these systems and provide bigger impacts in
transportation, we might also want to leverage concepts from other areas of engineering.
Modeling and analysis of conflict, the study of systems, and the study of their equilibria
are not unique to the routing game. In fact, very similar concepts and analysis shows up
in control theory, which oftentimes, similarly to game theory, models interactions between
a system of controllers (the “decision-makers”) and their environment [113]. Unsurprisingly,
many influences within game theory show up in many areas of controls (differential games,
teams games, and distributed control) [94], and many connections can be made between
the two. Even though there exists many similarities and influences between game theory
and controls, there are many useful control design techniques that exists separate from game
theory [47, 2, 10], but are conceptually similar/applicable to designing decision-makers within
routing games, especially for routing systems like google.

Therefore, in this chapter, we contribute to the literature of routing games and draw from
other areas of engineering to make deeper connections and make use of control techniques
for routing. We specifically introduce a new game design framework for routing games using
the linear-quadratic regulator (LQR).

Key Contributions

The present chapter focuses on transforming the repeated game problem into a control
theoretic problem, and studying the convergence of the game dynamics in this framework.
The key contributions of the chapter include the following:

• We provide a game design scheme for repeated routing games through the Linear
Quadratic Regulator (LQR).

• We design control dynamics with specific choices of system parameters to respect the
conservation of flow and achieve specific convergence results.

• We provide a method for producing piecewise affine optimal routing strategies using
explicit model predictive control (MPC) techniques.

• We derive new theoretical results for specific cases of the new design scheme.

• We illustrate a geometric framework for visualizing optimal routing solutions for every
feasible state in the routing game.

• We extend the comparison literature between game theory and controls.
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Structure of this chapter

This chapter, first, explains the new control theoretic game design scheme in section 4.3,
under which we also build up the intuition and understanding of the framework by illustrating
an evolution of the game from a one-shot framing (see section 4.3) to a repeated game framing
(see section 4.3), and finally to the new control framing (see section 4.3). We further present
analogies between the new framework and a classical algorithmic game theory model of
routing games within this section (see section 4.3); then, we finally talk about how to design
the game (see section 4.3) and its interpretation (see section 4.3). Next, we run through
the system analysis and its properties in section 4.4, where we additionally describe a few
requirements for the system. In section 4.5, we describe a algorithmic approach to solve
the control routing problem using explicit MPC techniques. Finally, in section 4.6 we run
through a few numerical simulations and present its results with associated discussions.

4.2 Preliminary

Notation Description Type
G = (V, E) A parallel network for the routing game

made of a set of edges E (as roads) and a
set of vertices V (one origin and one desti-
nation)

A directed graph

e ∈ E An edge in the edge set An element of E
le(·) Affine latency function on edge e R≥0 7→ R≥0 : le(fe) = aefe+be, ae, be ≥ 0
ne Number of parallel edges N
T Time horizon (total number of rounds in

game)
N (discrete time)

∆ Probability Simplex ∆ := {f :
∑

e∈E fe = 1, fe ≥ 0}
f Flow allocation vector on the network ∆, f = (fe)e∈E
l Latency vector incurred on the network Rne

≥0, l = (le(fe))e∈E
xt System state vector at time t ∆,xt = (xt

1, . . . , x
t
ne
)⊤

ut System input vector at time t ∆,ut = (ut
1, . . . , u

t
ne
)⊤

x∗ Steady state of the system ∆
x0 Initial state of the system ∆
Qf Terminal cost matrix Rne×ne positive semi-definite
R Running cost matrix for inputs Rne×ne positive semi-definite
Q Running cost matrix for states Rne×ne positive semi-definite
γ Weight parameter in the dynamics γ ∈ [0, 1]
A Mapping from the memory to decision Rne×ne left stochastic matrix
B Mapping from suggested routing to decision Rne×ne left stochastic matrix
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4.3 LQR Repeated Game Framework for Routing in
Parallel Networks

We consider a specific routing game design problem where the routing game is posed with a
parallel network, G. G is modeled as a directed graph G = (V , E), where V is a set containing
two nodes (an origin o and a destination d), and E is an edge set containing ne edges between
each vertex.

One-shot Game Framework

We start by introducing the flow allocation problem, which we will use later as a potential
equilibrium point for our repeated game. We will also refer to it as a one-shot game (i.e. a
repeated game converging in one iteration).

Definition 4.3.1 (Edge flows). For each edge e ∈ E, the edge flow, fe ∈ R≥0, represents
a large collection of non-atomic drivers using edge e on the network. Each edge flow, fe,
represents a portion of traffic in the game (and thus has “mass”), while individual drivers
themselves do not. They are negligible with respect to the total number of drivers present
(i.e. the non-atomic framework).

In the flow allocation problem, all drivers are allocated along the network’s edges, and
each allocation incurs a latency (i.e., loss), l (this latency is usually labeled as the average
travel time each driver took). Each edge’s latency l is modeled in the present work as an
affine function associated with each edge.

Definition 4.3.2 (Latency function). Each edge e ∈ E has an affine latency function le(·) :
R≥0 7→ R≥0, le(fe) = aefe + be, ae, be ≥ 0 that converts the edge flow fe into the edge latency.
The latency functions are nonnegative, nondecreasing and Lipschitz-continuous functions.

Normally, in the allocation problem, drivers at the origin, o, are allocated strategically
to reduce the total travel time the system will incur. The resulting allocation for all of the
drivers of total mass 1 in G, is represented as a stochastic vector f = (fe)e∈E ∈ Rne

≥0, where
each fe tells us the proportion of flow being allocated on edge e. Specifically,

f ∈ ∆, where ∆ := {f :
∑
e∈E

fe = 1, fe ≥ 0} (4.3.1)

Nash Equilibrium

If we assume that all drivers act rationally and has access to perfect information, we can
describe an equilibrium of the game, known as the Nash equilibrium.
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Definition 4.3.3 (Nash equilibrium). A flow allocation f ∈ ∆ is a Nash equilibrium (user
equilibrium [109], non-atomic equilibrium flow [103], or Wardrop equilibrium [150]) if and
only if:

∀e ∈ E such that fe > 0, le(fe) = min
e′∈E

le′(fe′). (4.3.2)

Repeated Game Framework

In order to encompass time-varying changes in the system, one can use “repeated play”
or learning models [23]. In this framework, a flow allocator (i.e. Gooogle maps) makes a
decision iteratively, as opposed to one time in the one-shot game, and uses the outcome
of each iteration to adjust their next decision. Adding a t dependency for time to the
aforementioned notation, ft ∈ ∆ becomes the flow allocation at time t, lt ∈ Rne

≥0 becomes a
vector of latencies produced from functions le(·) at time t, and throughout the game, the flow
allocator iteratively chooses ft and then observes lt. In this framework, designing learning
models of player decisions and whether the resulting dynamics asymptotically converges to
equilibrium is one of the objectives of our article. Furthermore, we are also interested in
situations in which convergence happens in one shot. Previous research has been done to
characterize classes of learning algorithms that converge to different sets of equilibria [17,
94, 48]. Specifically, different models of learning algorithms and their associated convergence
guarantees has been studied for the routing game [71, 72, 74].

LQR Framework

Table (4.1) sets the framework for the proposed work. The right column defines the re-
peated game framework previously described (using example designs from previous work
[69]), while the left column defines the classical control framework used later for LQR con-
trol. Both frameworks present obvious mathematical analogies [94, 95].

We re-frame the routing problem under the repeated game framework into the LQR
framework and solve for/analyze player strategies using existing control techniques. We will
essentially aim to do the same game theoretical analysis within linear/nonlinear controls. In
the right column of the table, we list the setup under the repeated game framework. The
goal of the routing problem there is to design algorithms that dictate strategies for players
(the flow allocator). At each time step t, the algorithm updates the flow allocation ft+1

based on the players’ memory ft and the loss on the edge lt induced by the traffic [74, 72,
68, 117]. The goal is to guarantee a sub-linear regret and a convergence to the set of Nash
equilibria.

We start from the repeated games setup, and cast the repeated game problem in a con-
trol theoretic framework. We keep the authoritative central decision maker u as the flow
allocator, but we differentiate between the “player” and the “decision-maker” as coined in
the original game theoretic setup. Here, the “players” will refer to the drivers in the network
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Control problem Repeated game (online learning)
Notation xt state, ut control at time t ft flow allocation, lt loss at time t
Entities involved

• Central decision maker: flow al-
locator

• Players: drivers

• Central decision maker: flow al-
locator

• Players: flow allocator

Design ut(·) s.t. xt+1 = g(xt,ut) is stable,
where g(·, ·) is the recurrence relation
defining the dynamics.

h(·, ·) s.t. ft+1 = h(ft, lt) defines the
dynamics for the routing game.

Example designs ut(xt) = Kxt and g(xt,ut) = Axt +
But =⇒ xt+1 = (A + BK)xt, where
(A,B) is stabilizable, and A + BK is
asymptotically stable.

h(ft, lt) = argminf∈∆l
⊤
t (f − ft) +

1
ηt
DΨ(f, ft), where ηt is the learning

rate at time t, DΨ(·, ·) is the Bregman
divergence induced by a strongly con-
vex function Ψ defined as DΨ(x, y) =
Ψ(x) − Ψ(y) − ∇Ψ(y)⊤(x − y). This is
called the mirror descent algorithm
with Bregman divergence DΨ.

Objective function
(to minimize)

Cumulative cost,
∑T−1

t=0 c1(xt,ut) +
c1,T (xT )

Cumulative regret,
∑T

t=0 c2(ft, lt) −
minf∈∆

∑T
t=0 c2(f, lt)

Example objective
functions

c1(xt,ut) = x⊤
t Qxt+u⊤

t Rut, c1,T (xt) =
x⊤
t Qfxt, Q,Qf ⪰ 0, R ≻ 0

c2(ft, lt) = f⊤
t lt

Table 4.1: The framework for the proposed work.

flow being routed. In our framework, the “players” do not play; they are only considered by
the routing system and the model. The central decision maker is what we want to design
in this framework. It has full access to the flow allocation x on the network, and aims to
achieve a certain routing goal (e.g., steer the network flow to a target flow distribution, or
minimize the average travel time). The central decision maker embeds the routing goal in
the cumulative cost function

∑T−1
t=0 c1(xt,ut) + c1,T (xT ). The players now update their rout-

ing decision xt+1 by leveraging their memory xt and the central decision maker’s suggested
routing distribution ut at each time step. The target flow allocations x∗ are characterized
as the steady states of the controlled system, and the central decision maker chooses the
optimal controls {ut} to minimize the cumulative cost function and stabilizes the system to
its steady states.

The choice of LQR is motivated by the observation that a potential game with affine
latency and a parallel network can be naturally framed as a quadratic cost and linear
dynamic problem, leveraging the convex formulation of the Rosenthal potential:

minimize
ut,t=0,...,T−1

T−1∑
t=0

(
x⊤
t Qxt + u⊤

t Rut

)
+ x⊤

TQfxT (4.3.3)
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subject to xt+1 = Axt +But, t = 0, 1, . . . , T − 1 (4.3.4)
x0 = x(0) (4.3.5)

where xt ∈ Rnx is the state of the system at time t and ut ∈ Rnu is the action of the
decision-maker at time t, with appropriate matrices A,B,Q,R,Qf . Within this framework,
we can leverage known optimal control techniques to formulate optimal strategies and in-
herent known properties for the system. Furthermore, definition (4.3.3) for the context here
becomes:

Nash Equilibrium

Definition 4.3.4 (Nash equilibrium). A state of the system x ∈ ∆ is a Nash equilibrium if
and only if:

∀e ∈ E such that xe > 0, le(xe) = min
e′∈E

le′(xe′). (4.3.6)

We reiterate the key differences between the repeated game framework and our control
theoretic framework:

1. In repeated games for parallel networks, the two entities involved, the player and the
central decision maker are the same (a flow allocator). However, in our control theoretic
framework, the two entities are different – players being the drivers (in the present
case aggregated as non-atomic along the edges) and the central decision-maker
being the flow allocator.

2. In repeated games, the players update their flow allocation based on their memory ft
and the incurred loss lt on the network. In our control theoretic framework, the players
update their flow allocation based on their memory xt and the central decision
maker’s suggested routing decision ut.

3. In repeated games, one possible goal of the non-atomic player, the flow allocator, (see
for example [68, 67]) is to update their flow allocation in order to converge to the set
of Nash equilibria and to achieve sub-linear regret. In our control theoretic framework,
the goal of the central decision maker is to steer the flow allocation to a
target flow distribution, by inputting suggestions to the system’s players
(drivers).

Designing Games with LQR

We now describe our control routing model.

1. States and controls: the state of the LQR at time t is the flow vector xt, consisting
of the flow on each edge at time t, and the control at time t is the flow allocation ut
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given by the decision maker, i.e.,

xt = (xt
1, . . . , x

t
ne
)⊤, t = 0, . . . , T (4.3.7)

ut = (ut
1, . . . , u

t
ne
)⊤, t = 0, . . . , T − 1. (4.3.8)

We model both xt,ut ∈ ∆ at each time step t.

2. Equation for the dynamics: we assume the dynamics of the flow update is described
using a linear time invariant difference equation

xt+1 = γAxt + (1− γ)But, t = 0, 1, . . . , T − 1 (4.3.9)

where γ ∈ [0, 1] is a design parameter that weights the contribution of xt and ut in
the update rule, and A,B ∈ Rne×ne are two design matrices deciding how the flow
vectors xt and ut will affect the drivers’ routing decision in the subsequent time step
respectively.

3. Cost function: the cost function of our control problem is a summation of quadratic
functions

T−1∑
t=0

(
x⊤
t Qxt + u⊤

t Rut

)
+ x⊤

TQfxT (4.3.10)

where Q,Qf , R ⪰ 0.

The resulting control problem is

minimize
ut,t=0,...,T−1

T−1∑
t=0

(
x⊤
t Qxt + u⊤

t Rut

)
+ x⊤

TQfxT (4.3.11)

subject to xt+1 = γAxt + (1− γ)But, t = 0, 1, . . . , T − 1 (4.3.12)
xt ∈ ∆, t = 0, . . . , T (4.3.13)
ut ∈ ∆, t = 0, . . . , T − 1 (4.3.14)

Interpretation of the Framework

We now provide interpretations for the design of the control system.

1. States xt: the interpretation of the state xt is twofold: (1) one could interpret it as the
routing decision made by the drivers from one day to another, and (2) it is also the
actual flow distribution on the network, incurred by the drivers. We assume all drivers
comply with a routing decision which depends at the same time on the past state, and
the control.
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2. Controls ut: One could interpret the control ut as the recommended routing decision
from the central decision maker.

3. The Axt term in the dynamics represents the mapping from the drivers’ memory (past
state inherited from the day before) to their flow allocation decision.

4. The But term in the dynamics represents the mapping from the central decision maker’s
suggested routing distribution to the players’ flow allocation decision.

5. When updating their flow allocation decision, the drivers leverage their memory xt and
the suggested routing distribution ut from the decision maker. γ ∈ [0, 1] is the design
parameter that characterizes the trade-off between the two contributions.

6. (Quadratic) Cost function: the design of the quadratic cost function x⊤
t Qxt + u⊤

t Rut

is motivated by the observation that the Rosenthal potential function and the cost
function associated to social welfare in a potential game are both quadratic for linear
latency functions [116].

Definition 4.3.5 (Rosenthal potential). The Rosenthal potential function of a poten-
tial game, with a flow vector x, is defined as

J1(x) =
∑
e∈E

∫ xe

0

le(y) dy. (4.3.15)

Definition 4.3.6 (Social Welfare). The cost function associated to social welfare is
defined as

J2(x) =
∑
e∈E

xe · le(xe),

The importance of the Rosenthal potential and the social welfare is that the Nash
equilibrium and social optimal of the routing game can be characterized as the local
minimizers of these functions respectively, respecting the conservation of flow. With
linear latency parallel networks,

J1(x) =
ne∑
i=1

∫ xi

0

(aiy + bi) dy =
ne∑
i=1

aix
2
i

2
+ bixi = x⊤Q̃x+ b⊤x, (4.3.16)

where Q̃ = diag(a1
2
, . . . , ane

2
),b = (b1, . . . , bne)

⊤ and

J2(x) =
ne∑
i=1

xi(aixi + bi) =
ne∑
i=1

aix
2
i + bixi = 2x⊤Q̃x+ b⊤x, (4.3.17)

with the Q̃,b defined as the same as above. Note that Q̃ and b are used to construct
Q and Qf of the cost function.
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7. Design of the matrix A in the dynamics: since the Axt is the mapping from the memory
to the flow allocation decision, the matrix A should reflect how the drivers take the
memory into account when updating their routing decisions.

8. Design of the matrix B in the dynamics: since the But is the mapping from the
suggested routing distribution to the flow allocation decision, the matrix B should
reflect how the drivers take the central decision maker’s suggested flow into account
when updating their routing decisions.

4.4 System Analysis and System Properties
One of the contributions of the work is about how to design specific A and B matrices to
produce various convergence results.

1. Construction of A,B: when designing the matrices A,B in the dynamics, we need to
take the conservation of flow into account. More specifically, A,B have to be chosen
such that the following property holds

xt,ut ∈ ∆ =⇒ γAxt + (1− γ)But = xt+1 ∈ ∆. (4.4.1)

One way to ensure the conservation of flow on the network is to construct left stochastic
A,B.

Definition 4.4.1. A matrix P = (p1, . . . ,pne) ∈ Rne×ne is left stochastic if pi ∈ ∆, i =
1, . . . , ne.

Remark 4.4.1 (The notation I). Throughout this chapter, we use the notation I to
denote all-ones vectors with proper dimensions, i.e., I = (1, 1, . . . , 1)⊤.

Lemma 4.4.1. If A,B ∈ Rne×ne are left stochastic, and x0,ut ∈ ∆, t = 0, . . . , T − 1,
then γAxt + (1− γ)But = xt+1 ∈ ∆, t = 0, . . . , T − 1.

Proof. We will show that if xt,ut ∈ ∆, then γAxt+(1−γ)But = xt+1 ∈ ∆. The proof
is then complete by induction on t.
First observe that xt+1 has non-negative entries due to the non-negativity of the entries
in A,B,xt,ut. Furthermore,

I⊤xt+1 = γI⊤Axt + (1− γ)I⊤But (4.4.2)
= γI⊤xt + (1− γ)I⊤ut (4.4.3)
= γ + (1− γ) = 1. (4.4.4)
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2. Examples: the analysis of the LQR problem with probability simplex constraints is in
general not tractable. In other words, we are not aware of a way to solve the discrete-
time algebraic Ricatti equation in a way that preserves (4.4.1). We therefore provide
the important special cases where either (1) exact calculations of the steady state and
optimal controls are allowed, or (2) interesting behavioral interpretation of the players
can be given.

Example 4.4.1. We first consider the special case where

B =


1
ne

1
ne

. . . 1
ne

1
ne

1
ne

. . . 1
ne...

... . . . ...
1
ne

1
ne

. . . 1
ne

 ∈ Rne×ne . (4.4.5)

This choice of B matrix in the dynamics can be interpreted as follows: when the
players (drivers) leverage the central decision maker’s suggested routing distribution
ut to update their flow allocation on each edge, they simply average the suggested flow
at each time step t, and take only the average 1

ne

∑ne

i=1 u
t
i into account.

We show that when the players (drivers) update their flow allocation in this way, the
controller ut is essentially “muted”, and therefore a target state may not be controllable.
The state xt will converge to the same equilibrium that is independent of the choice of
the cost function.

Property 4.4.1. Consider the control problem (4.3.11)-(4.3.14) with

B =


1
ne

1
ne

. . . 1
ne

1
ne

1
ne

. . . 1
ne...

... . . . ...
1
ne

1
ne

. . . 1
ne

 , γ ∈ [0, 1), and any left stochastic matrix A, (4.4.6)

then the unique steady state of the system is given by

x∗ =
1− γ

ne

(Ine − γA)−1I, (4.4.7)

where Ine is the ne-dimensional identity matrix, and I = (1, 1, . . . , 1)⊤ ∈ Rne is the
all-ones vector.

Proof. The key observation is, with equation (4.4.6), since we have ut ∈ ∆, t =
0, . . . , T − 1,

But =
1

ne

I, (4.4.8)
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therefore

xt+1 = γAxt + (1− γ)
1

ne

I, (4.4.9)

and the steady state should satisfy

x∗ = γAx∗ + (1− γ)
1

ne

I, =⇒ x∗ =
1− γ

ne

(Ine − γA)−1I, (4.4.10)

with the invertibility of Ine−γA guaranteed by the fact that the spectral radius of any
left stochastic matrix is at most 1, and γ < 1.

The foregoing property suggests that in the case of equation (4.4.6), the flow allocation
on the network does converge to an equilibrium, but the equilibrium depends only on
the design parameters A, γ and the number of edges ne, which can be different from
the Nash equilibrium.

Example 4.4.2. We next consider the special case where

A =


1
ne

1
ne

. . . 1
ne

1
ne

1
ne

. . . 1
ne...

... . . . ...
1
ne

1
ne

. . . 1
ne

 ∈ Rne×ne . (4.4.11)

This choice of A matrix in the dynamics can be interpreted as follows: when the players
(drivers) leverage their memory xt to update their flow allocation on each edge, they
simply average the past flow at each time step t, and take only this average 1

ne

∑ne

i=1 x
t
i

into account.
We similarly show that when the players (drivers) update their flow allocation in this
way, their memory has no impact in the update rule.

Property 4.4.2. Consider the control problem (4.3.11)-(4.3.14) with

A =


1
ne

1
ne

. . . 1
ne

1
ne

1
ne

. . . 1
ne...

... . . . ...
1
ne

1
ne

. . . 1
ne

 and any left stochastic matrix B, (4.4.12)

then the optimal controller ut, t = 0, . . . , T − 2 is the solution set of the optimization
problem

minimize
u

(
γ

ne

I+ (1− γ)Bu

)⊤

Q

(
γ

ne

I+ (1− γ)Bu

)
+ u⊤Ru (4.4.13)
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subject to u ∈ ∆, (4.4.14)

and the optimal uT−1 is the solution set of the optimization problem

minimize
u

(
γ

ne

I+ (1− γ)Bu

)⊤

Qf

(
γ

ne

I+ (1− γ)Bu

)
+ u⊤Ru (4.4.15)

subject to u ∈ ∆. (4.4.16)

Proof. The key observation is, with equation (4.4.12), since we have xt ∈ ∆, t =
0, . . . , T − 1,

Axt =
1

ne

I, (4.4.17)

therefore

xt+1 = γ
1

ne

I+ (1− γ)But. (4.4.18)

Therefore, the optimal control of problem (4.3.11)-(4.3.14) can be explicitly solved by
the optimization problem

minimize
ut,t=0,...T−1

x⊤
0 Qx0 +

T−2∑
t=0

((
γ

ne

I+ (1− γ)But

)⊤

Q

(
γ

ne

I+ (1− γ)But

)
+ u⊤

t Rut

)
+((

γ

ne

I+ (1− γ)BuT−1

)⊤

Qf

(
γ

ne

I+ (1− γ)BuT−1

)
+ u⊤

T−1RuT−1

)
(4.4.19)

subject to ut ∈ ∆, t = 0, . . . , T − 1, (4.4.20)

which is further equivalent to solving the constrained optimization problems

minimize
u

(
γ

ne

I+ (1− γ)Bu

)⊤

Q

(
γ

ne

I+ (1− γ)Bu

)
+ u⊤Ru (4.4.21)

subject to u ∈ ∆ (4.4.22)

and

minimize
u

(
γ

ne

I+ (1− γ)Bu

)⊤

Qf

(
γ

ne

I+ (1− γ)Bu

)
+ u⊤Ru (4.4.23)

subject to u ∈ ∆. (4.4.24)

If Qf = Q and the solution of the above optimization problem exists, the minimizer
u∗ characterizes the steady state x∗ = γ

ne
I+ (1− γ)Bu∗.
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Note that in the very specific case where R = 0 and Q,Qf are defined by the Rosenthal
potential function, the minimizer of the above optimization problem and steady state
of the system x∗ is the Nash equilibrium. If the linear equation system x∗ = γ

ne
I +

(1− γ)Bu has at least one solution u∗ (e.g., when B is invertible and γ ̸= 1), then the
optimal controllers are ut = u∗, t = 0, . . . , T − 1.

Example 4.4.3. The third special case we would like to analyze is A = B = Ine . The
players update their flow allocation with xt+1 = γxt + (1 − γ)ut at each time step t,
which is the same as the element-wise update xt+1

i = γxt
i + (1− γ)ut

i, i = 1, . . . , N, t =
0, . . . , T − 1.
The interpretation of this choice of A,B is that the players update the flow on each
edge independently : to update the flow on edge i, the players leverage their memory
and the suggested routing decision on the edge i only.

4.5 Solutions via Explicit MPC: A Multiparametric
Quadratic Programming Approach

Figure 4.1: Here, the optimal strategy for our player is space-varying and we visualize solutions
with respect to the feasible state space of the routing game. Each colored region of the graph
represents a unique affine strategy that is optimal for those points in space. For example, region 1

(in green) has the solution u∗
t (xt) =

−2
3

1
3

1
3

1
3 −2

3
1
3

1
3

1
3 −2

3

xt +

1
3
1
3
1
3

.
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At first glance, one might consider using the discrete-time algebraic Ricatti equation to
obtain solutions for system (4.3.11)-(4.3.14).

Definition 4.5.1 (Discrete-time Algebraic Ricatti Equation). The discrete-time algebraic
Ricatti equation is a nonlinear equation that gives a solution to the LQR problem presented
in equation (4.3.3), described as Pt evolving backwards in time from PT = Qf according to

Pt−1 = Q+ A⊤PtA− A⊤PtB(R +B⊤QfB)−1B⊤PtA. (4.5.1)

However, using the algebraic Riccati equation is not possible in the presence of our
flow conservation constraints, as specified in equation (4.4.1). According to lemma (4.4.1),
in order to design a flow preserving scheme and guarantee flow conservation, we must be
able to guarantee that each xt and ut vector given by a chosen controller remains on the
probability simplex ∆, while the optimal controller given by the algebraic Riccati equation
drives the system to the steady state x∗ = 0. Therefore, we turn to multiparametric quadratic
programming (mpQP), a technique used in explicit MPC to generate explicit piecewise affine
controllers. To generate these explicit strategies, we will formulate the LQR problem into a
mpQP problem, utilize an mpQP solver proposed in [13] to generate piecewise affine functions
for ut (the player needs to execute different affine controllers depending on the state), and
use (within the solver) a geometric algorithm to plot regions, known as critical regions,
on the state space to visualize when players should use which specific optimal strategies.
Optimal strategies produced by this technique will be piecewisely-affine with respect to the
state of the game, hence, optimal strategies in this context are space-varying (see figure (4.1)
for an example).

Algorithm (2) defines the process by which we use mpQP to generate solutions for routing
games. Specifically, we consider the optimal control formulation in problem (4.3.11)-(4.3.14).
We take the linear flow and input constraints in (4.4.1) and construct them in the form

Auut ≤ bu, Axxt ≤ bx. (4.5.2)

To solve for the optimal controls u0, . . . ,uT−1, first we condense the problem into a strictly
convex quadratic programming problem

V ∗(x) ≜ minimize
1

2
z⊤Pz + (Fx+ c)⊤z +

1

2
x⊤Y x (4.5.3)

subject to Gz ≤ W + Sx (4.5.4)

and then use the mpQP algorithm from reference [13] to solve for z where z :=
(
u⊤
0 . . .u⊤

T−1

)⊤ ∈
RneT is the decision variable.

P = P⊤ ∈ RneTyneT , F ∈ RneTyne , c ∈ RneT , Y ∈ Rneyne are defined by the cost
matrices, and G ∈ RneTyq, W ∈ Rq, S ∈ Rqyne define the constraints imposed by (4.3.11)-
(4.3.14) in compact form. The following property guarantees the existence of a (piecewise
affine) solution of the condensed problem (4.5.3)-(4.5.4).
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Property 4.5.1 (Existence of a piecewise affine solution [13]). Consider (4.5.3)-(4.5.4) with
P = P⊤ ≻ 0 and let x ∈ X = Rn.

1. The set Xf of states for which the problem is feasible is a polyhedron.

2. The optimizer function z∗ : Xf → Rn is piecewise affine and continuous over Xf .

3. If
(
P F⊤

F Y

)
⪰ 0 and symmetric, then the value function V ∗ is continuous, convex,

and piecewise quadratic over Xf .

Definition 4.5.2 (Critical Region [131]). A critical region is a polyhedron in X for which
there exists an optimal solution z∗(·) that is affine and optimal for the entire region. Each
critical region is defined by a unique set of active constraints A that is common for all points
in the region.

Algorithm 2: mpQP algorithm

Input : Q,R,Qf ,Nc,A,B,Au,bu,Ax,bx
Output: Optimal strategy solutions: F , G

Critical Regions to apply solutions: R, H, K,

1 P, F, c, Y,G,W, S ← Condense(Q,R,Qf ,Nc,A,B,Au,bu,Ax,bx);
2 return MPQPSolver(P, F, c, Y,G,W, S);

As explained in ([13]), MPQPSolver(·) uses a geometrical algorithm (see [131]) to find the
critical regions of the feasible state space by understanding when sets of active constraints
differs from point to point in the state space. Once it has identified a critical region, the
algorithm is able to uncover the optimal solution defined within the region by using KKT
conditions (or similar methods) to obtain the piecewise affine solution z∗. Algorithm (2)
produces (1) the critical regions R, (2) the matrices to check if a state is in specific critical
region, H = {Hr} and K = {Kr}, and (3) the matrices that characterizes the affine solution
F = {Fr} and G = {Gr}. Therefore, during the routing game, to recover the optimal
strategies, the central decision maker executes

if Hrxt ≤ Kr , then u∗
t = Frxt + Gr (4.5.5)

and xt belongs to critical region r.

4.6 Illustration via Simple Numerics
In this section, we plan to provide numerical results and discuss

1. differences in varying A matrices in the dynamics, and the interpretations,
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2. changes in γ and its effect on the converging rate,

3. different initial states and its effect on the converging rate,

4. different cost functions to drive the system towards different stable equilibrium.

More specifically, we will compare between

1. A =

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

 and A = I3, with all the other parameters fixed as B = I3, Q = Qf =

I3, R = 0, γ = 0.5,x0 = (0.3, 0.5, 0.2)⊤. This means we investigate the differences
between the players’ routing decision process when they “mute” their memory, and
when they leverage their memory on each edge independently (i.e., when xt+1

i depends
only on xt

i in the past state xt for i = 1, . . . , ne).

2. γ = 0.5 and γ = 0.7: with all the other parameters fixed as A = B = I3, Q = Qf =1 0 0
0 2 0
0 0 4

 , R =

0 0 0
0 0 0
0 0 0

 ,x0 = (0.3, 0.5, 0.2)⊤. This means we investigate the

differences between the players’ routing decision process when they weight equally the
their memory and the suggested flow, and when they weight more their memory (and
less the suggestions).

3. x0 = (0.3, 0.5, 0.2)⊤ and x0 = (0, 1, 0)⊤: with all the other parameters fixed as A = B =

I3, Q = Qf =

1 0 0
0 2 0
0 0 4

 , R =

0 0 0
0 0 0
0 0 0

 , γ = 0.5. This means we investigate the

differences between the players’ routing decision process when they start with putting
partial flow on each edge, and when they start with putting all flow on the second
edge.

4. Q = Qf = I3 and Q = Qf =

1 0 0
0 2 0
0 0 4

: with all the other parameters fixed as

A = B = I3, R =

0 0 0
0 0 0
0 0 0

 , γ = 0.5,x0 = (0.3, 0.5, 0.2)⊤. This means we investigate

the differences between the players’ routing decision process when the central decision
maker penalizes equally the flow on the three edges, and when it gradually doubles the
penalty on the edges.

We also discuss the reliability of the solver by showing one example, where the solver
outputs the correct steady state solution only with large enough time horizon T . This
example serves as an alert that in order to get the accurate numerical solution with the
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MPQPSolver(·), one needs to set a large time horizon T , at the price of longer computation
time.

Comparisons and Results

For ease of reference, we list below the detailed choice of parameters in each figure. In all
experiments we assume no penalty on the controller (i.e., the central decision maker has the
freedom to pose any suggested routing decision).

Figure (4.2):

Q = Qf =

1 0 0
0 1 0
0 0 1

 , R =

0 0 0
0 0 0
0 0 0

 , A =

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

 , B =

1 0 0
0 1 0
0 0 1

 ,

T = 15, γ = 0.5,x0 =
(
0.3 0.5 0.2

)⊤
Figure (4.3):

Q = Qf =

1 0 0
0 1 0
0 0 1

 , R =

0 0 0
0 0 0
0 0 0

 , A =

1 0 0
0 1 0
0 0 1

 , B =

1 0 0
0 1 0
0 0 1

 ,

T = 15, γ = 0.5,x0 =
(
0.3 0.5 0.2

)⊤
Figure (4.4):

Q = Qf =

1 0 0
0 2 0
0 0 4

 , R =

0 0 0
0 0 0
0 0 0

 , A =

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

 , B =

1 0 0
0 1 0
0 0 1

 ,

T = 15, γ = 0.5,x0 =
(
0.3 0.5 0.2

)⊤
Figure (4.5):

Q = Qf =

1 0 0
0 2 0
0 0 4

 , R =

0 0 0
0 0 0
0 0 0

 , A =

1 0 0
0 1 0
0 0 1

 , B =

1 0 0
0 1 0
0 0 1

 ,

T = 15, γ = 0.5,x0 =
(
0.3 0.5 0.2

)⊤
Figure (4.6):

Q = Qf =

1 0 0
0 2 0
0 0 4

 , R =

0 0 0
0 0 0
0 0 0

 , A =

1 0 0
0 1 0
0 0 1

 , B =

1 0 0
0 1 0
0 0 1

 ,
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T = 15, γ = 0.5,x0 =
(
0 1 0

)⊤
Figure (4.7):

Q = Qf =

1 0 0
0 2 0
0 0 4

 , R =

0 0 0
0 0 0
0 0 0

 , A =

1 0 0
0 1 0
0 0 1

 , B =

1 0 0
0 1 0
0 0 1

 ,

T = 15, γ = 0.7,x0 =
(
0.3 0.2 0.5

)⊤

Figure 4.2: Identity Q,Qf , B, A = (1/3), γ = 0.5. “*” denotes the initial state.

Discussion: In each figure, we present on the left the probability simplex in R3, the
critical regions in it (recall that within each partition the optimal controller takes different
affine expression), and the convergence trajectory of the state xt (with the initial state
denoted by ∗). On the right we present (1) the value of the flow allocation xt on each edge
at each time step t, (2) the value of the optimal control (suggested routing decision) ut on
each edge at each time step t, (3) the incurred latency lt on each edge at each time step
t, and (4) the incurred stage cost x⊤

t Qxt + u⊤
t Rut, t = 0, . . . , T − 1 and the terminal cost

x⊤
TQfxT .

1. Varying A matrices in the dynamics: To see the differences in changing A, we
compare figure (4.2) and figure (4.3).

• It can be observed that in both scenarios, the controlled system converges to its
steady state x∗ = (1/3, 1/3, 1/3)⊤ in one step. The numerical results suggest that
with the choice of cost matrices being Q = Qf = I3, R = 0 and the specific setup
of other parameters in the numerics, the steady state x∗ coincides with the Nash
equilibrium in the parallel network with latency functions l1(y) = l2(y) = l3(y) =
y.
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Figure 4.3: Identity Q,Qf , A,B, γ = 0.5. “*” denotes the initial state.

Figure 4.4: Identity B, A = (1/3), Q = Qf = diag(1, 2, 4), γ = 0.5. “*” denotes the initial state.

• Specifically, the fact that the state xt converges in one step to the Nash equilibrium

with A =

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

 agrees with our analysis in property (4.4.2).

• The polyhedral partitions of the feasible state space ∆ are different. In the case

of A =

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

 there is no partition of the space, meaning that the optimal

controller takes the same affine function over ∆. In the case of A = I3, the feasible
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Figure 4.5: Identity A,B, Q = Qf = diag(1, 2, 4), γ = 0.5. “*” denotes the initial state.

Figure 4.6: Identity A,B, Q = Qf = diag(1, 2, 4), γ = 0.5, initial (0, 1, 0). “*” denotes the initial
state.

state space is partitioned into four polyhedral regions, within each taking different
expression of affine optimal controllers.

2. Varying γ in the dynamics: To see the differences in changing γ, we compare figure
(4.5) and figure (4.7).

• Both controlled systems converge to the steady state x∗ = (4/7, 2/7, 1/7)⊤. The
numerical results suggest that with the choice of cost matrices being Q = Qf =
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Figure 4.7: Identity A,B, Q = Qf = diag(1, 2, 4), γ = 0.7. “*” denotes the initial state.

1 0 0
0 2 0
0 0 4

 , R = 0 and the specific setup of other parameters in the numerics,

the steady state x∗ coincides with the Nash equilibrium in the parallel network
with latency functions l1(y) = y, l2(y) = 2y, l3(y) = 4y.

• The polyhedral partitions of the feasible state space ∆ are different in the two
cases. We observe that with larger γ = 0.7 (i.e. the players update their flow
allocation considering more their memory than the central decision maker’s sug-
gested routing decision), the feasible state space has way more polyhedral parti-
tions. This intuitively means that: if the players weight less the suggestions from
the central decision maker, in order for the central decision maker to drive the
traffic to a target flow allocation, it will have to design more complex routing
strategy based on the actual flow on the network.

• The convergence rate with larger γ is slower: we see that with γ = 0.5, the state
stabilizes with around 5 time steps, while with γ = 0.7, the state stabilizes with
around 10 time steps. This can be intuitively interpreted as: if the players weight
less the suggestions from the central decision maker, the steady state of the system
is less controllable and therefore it takes longer for the central decision maker to
stabilize the system.

3. Varying initial states x0: To see the differences in changing x0, we compare figure
(4.5) and figure (4.6).

• Both controlled systems converge to the steady state x∗ = (4/7, 2/7, 1/7)⊤, which
again coincides with the Nash equilibrium in the parallel network with latency
functions l1(y) = y, l2(y) = 2y, l3(y) = 4y.
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• We would like to point out that with x0 = [0, 1, 0]⊤, the state of the system starts
further away from its steady state, and starts within a different polyhedron from
where the steady state is located. However with the specific control dynamics in
the numerical experiment, the central decision maker still manages to steer the
system to the target flow allocation.

4. Varying cost functions: To see the differences in changing the cost matrices, we
compare figure (4.3) and figure (4.5).

• Both controlled systems converge, but to the different steady states. More specif-
ically, with Q = Qf = I3, the steady state is x∗ = (1/3, 1/3, 1/3)⊤, which co-
incides with the Nash equilibrium in the parallel network with latency functions

l1(y) = l2(y) = l3(y) = y; with Q = Qf =

1 0 0
0 2 0
0 0 4

, the steady state is

x∗ = (4/7, 2/7, 1/7)⊤, which coincides with the Nash equilibrium in the parallel
network with latency functions l1(y) = y, l2(y) = 2y, l3(y) = 4y.

• This justifies the capability of the central decision maker to design different objec-
tive functions and steer the controlled system to different target flow allocations.

Reliability of the solver: with the following setting, we show that it is important to
set the time horizon T to be large enough so that the algorithm gives the steady state solution.

Let

Q = Qf =

1 0 0
0 2 0
0 0 4

 , R =

0 0 0
0 0 0
0 0 0

 , A =

1 0 0
0 1 0
0 0 1

 , B =

1
2

1
2

0
0 1

2
1
2

1
2

0 1
2

 ,

γ = 0.6,x0 =
(
0.3 0.5 0.2

)⊤
If we set the time horizon T = 15, we observe in figure (4.8) that the control system can
be oscillating and non-stable, and does not converge to a steady state. However if we set a
larger T = 35, we see in figure (4.9) that the controlled system is stabilizing – the trajectory
of the state converges to a steady state.

4.7 Conclusion
This chapter transformed the dynamic traffic assignment problem into a control theoretic
problem, under a simple scenario using a parallel network with affine latency functions
on each edge. We started with the routing problem under the repeated game framework,
proposed a game design scheme through LQR within the control theoretic framework, and
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Figure 4.8: Identity A, B =

1/2 1/2 0
0 1/2 1/2
1/2 0 1/2

, Q = Qf = diag(1, 2, 4), γ = 0.6, T = 15. “*”

denotes the initial state.

then leveraged control techniques to analyze convergence/stability of the system with special
examples. Within our system analysis, we discovered that the design of A,B in the equation
of the dynamics could be chosen to be left stochastic matrices so that the conservation of flow
is guaranteed. Additionally, the suggested routing allocation u has to be chosen such that the
resulting vector is stochastic, disqualifying certain control technique that can be used in this
system (i.e. the algebraic Ricatti equation) and requesting the use of others. Using this fact,
we designed an algorithmic solution for the optimal control using a multiparametric quadratic
programming approach (explicit MPC), generating explicit strategies and geometric plots to
visualize the optimal solutions the central decision maker should take at the feasible states of
the game. We discussed the impact of each system parameter on the solution and explained
that various structures in A will result in different solution requirements for the central
decision maker, while the cost function changes the system’s steady state, and γ,x0 influence
the rate of convergence.
Future work includes 1) studying the region of attraction of the LQR routing system via
reachability analysis, 2) extending the present work to more complex network structures
(beyond the parallel network), 3) generalizing the analysis of the convergence behavior of
the LQR routing system beyond the special cases considered in the present work, and 4)
leveraging the Reinforcement Learning techniques to approach general routing problems.
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Figure 4.9: Identity A, B =

1/2 1/2 0
0 1/2 1/2
1/2 0 1/2

, Q = Qf = diag(1, 2, 4), γ = 0.6, T = 35. “*”

denotes the initial state.



87

Chapter 5

Conclusions and Future Steps

Transportation accounts for 28% of energy consumption in the US, with 75% of that occurring
on highways. Workers spent on aggregate over three million driver-years commuting to their
jobs [32], contributing significantly to the nation-wide congestion. Based on 2012 estimates,
US commuters experienced an average of 52 hours of delay in 2011, which amounts to $121
billion of fuel costs and opportunity costs due to delay annually [122]. Estimates project that
4.2% of fuel will be wasted in congestion in 2050 (up from 1.8% in 1998) with the adoption of
autonomous vehicles [148]. Mixed autonomy, the intermediate regime between a system with
no adoption of autonomy and a system where autonomy is fully employed, is proposed as a
potential solution to fuel consumption reduction and flow capacity improvement. However
the mixed autonomy system differs from the isolated system or the fully-controlled system,
and it may exhibit high complexity and uncertainty. The design and analysis of models
and controls are thus challenging. In this thesis we studied the transportation system at
three levels: the vehicle level, the mixed autonomy vehicle control level, and the full origin-
destination demand routing level.

5.1 Discussion and open problems
At the vehicle level. Chapter 2, Limitations and Improvements of the Intelligent Driver
Model (IDM), demonstrated the lack of guarantee of well-posedness for the solution of IDM
and closed the theoretical gap by proposing several modifications and rigorously showing the
existence and uniqueness of solutions.

Based on the improvements on the original IDM and solid theoretical guarantee on the
well-posedness and feasibility of their solutions, one can further work on more complex traffic
scenarios such as multi-lane traffic with lane-changing. To improve the overall traffic perfor-
mance on multi-lanes, we will consider a hybrid system where the continuous longitudinal
dynamics can be chosen as one of the IDM modifications and the discrete lateral control is
the lane-changing time.

Richer traffic conditions can be integrated with the modified IDM, such as traffic dynam-
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ics at the intersection or at the bottleneck. The stability of the solutions in terms of model
parameters and initial datum will also be investigated. Furthermore, it would be of great
interest to calibrate the modified IDM with simulation and field data, and to compared the
simulated results from the calibrated model with the real traffic data.

At the mixed autonomy vehicle control level. Chapter 3, Design of a Basis-
based Feedback Controller with Optimal Control, introduced a systematic way to design
the basis-based feedback controller. The optimal controller was defined by the solution of a
finite-dimensional constrained optimization problem.

The theoretical discussion of the characterization of the actuation function space is, how-
ever, still primitive. Due to the complexity of mixed autonomy system and the objective,
understanding the actuation space is challenging. Further analysis will be conducted com-
bining prior knowledge from the field data.

The optimal Legendre polynomial basis controller is trained with field data and has been
evaluated with simulation data and compared with a range of other mobile traffic controller
(including deep-RL methods, MPC, car-following model based controllers and modified Fol-
lowerStopper controller). A field experiment of the proposed Legendre polynomial basis
controller will be of interest.

Moreover, one will extend the basis-based optimal controller from single lane environment
to the more general multi-lane road system. A hybrid system can be considered where the
continuous longitudinal dynamics is governed by the basis-based controller, and the discrete
lateral controller determines optimal lane-changing behavior.

The approach in this chapter can be combined with other controller designs. For example,
we will study the impact on traffic performance with inclusion of car-following based con-
trollers. Finally, it is crucial to further explore the stability of the proposed control scheme
with regard to the initial datum, as the transportation system can be noisy.

At the full origin-destination demand routing level. Chapter 4, Parallel Network
Flow Allocation in Repeated Routing Games via LQR Optimal Control, studied the repeated
routing game problem on a parallel network with affine latency functions on each edge,
transforming the dynamic traffic assignment problem into a control-theoretic problem. The
impact of model parameters on the traffic performance was theoretically studied, and an
algorithmic solution based on explicit MPC was proposed.

Due to the extra flow conservation constraints, an analysis of region of attraction of the
LQR routing system is challenging. For the same reason mentioned, theoretical analysis of
the convergence behavior of the LQR routing system is limited to special cases. Analytical
tools such as reachability analysis [10] are suitable here for a solid discussion on the properties
of constrained LQR solutions.

Real roadway networks are way more complicated than the parallel network considered
in the present work. In order to employ the flow allocation techniques in this chapter to the
real-world applications, one crucial step is to generalize the control-theoretical framework
to more complex network topology. As the routing strategies are oftentimes updated online
with the sequence of traffic data becomes available, it is essential to further study the time
complexity and the rate of convergence of the control algorithm.



CHAPTER 5. CONCLUSIONS AND FUTURE STEPS 89

5.2 Future Directions
Mixed autonomy is a highly complex system, due to the uncertainty of human performance
involved, failure and delay in vehicle-to-vehicle connection, cognitive and irrational perspec-
tive in human-vehicle interaction, various designs of the communication protocol potentially
limited by hardware implementation and computing power, and uncertainty in the design
objective. As a result, mathematical modeling and control of mixed autonomous traffic is
extremely challenging. The literature on theoretically solid mixed autonomy modelling and
control is still sparse. Further progress would require the development in (non-convex) opti-
mization theory; optimal control theory; mathematical analysis for ODEs/PDEs/stochastic
systems; cooperative and non-cooperative, one-shot and dynamical game theory; probabilis-
tic models; and many others. The mission of mixed autonomy is crucial to benefit humanity,
and the collaboration and integration of the fields described above have vast potential to
improve transportation systems through efficiency, improved safety, and access to mobility.
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