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Abstract. We consider the System Optimal Dynamic Traffic Assignment (SO-DTA) problem
with Partial Control for general networks with physical queuing. Our goal is to optimally
control any subset of the networks agents to minimize the total congestion of all agents
in the network. We adopt a flow dynamics model that is a Godunov discretization of the
Lighthill–Williams–Richards partial differential equation with a triangular flux function
and a corresponding multicommodity junction solver. The partial control formulation
generalizes the SO-DTA problem to consider cases where only a fraction of the total flow
can be controlled, as may arise in the context of certain incentive schemes. This leads to a
nonconvexmulticommodity optimization problem.We define amulticommodity junction
model that only requires full Lagrangian paths for the controllable agents, and aggregate
turn ratios for the noncontrollable (selfish) agents. We show how the resulting finite hori-
zon nonlinear optimal control problem can be efficiently solved using the discrete adjoint
method, leading to gradient computations that are linear in the size of the state space and
the controls.
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1. Introduction
Dynamic traffic assignment (DTA) is the process of allo-
cating time-varying origin-destination (OD) based traf-
fic demand to a set of paths on a road network. This
problem has been extensively studied over the last
35 years, since the seminal works of Merchant and
Nemhauser (1978a, b). There are two types of traf-
fic assignments that are generally considered, the user
equilibrium or Wardrop equilibrium allocation (UE-
DTA), in which users minimize individual travel-time
in a selfish manner, and the system optimal alloca-
tion (SO-DTA) where a central authority picks the
route for each user and seeks to minimize the aggre-
gate total travel-time over all users. These principles
were first presented in the work of Wardrop (1952) in
the context of static traffic assignment and expanded
on by Beckman, McGuire, and Winsten (1956). See
Peeta and Ziliaskopoulos (2001) for a broad overview
of dynamic traffic assignment. User equilibrium (UE)

traffic assignment can lead to inefficient network uti-
lization, highlighted by Braess’ Paradox (Braess 1968),
where adding capacity to the network can result in
longer travel times for all users. It has been shown that
this paradox can occur in real road networks (Kelly
1991) and that it is hard to design networks that are
immune to it (Roughgarden 2006). In fact, it can be
shown that the price of anarchy (PoA) (Koutsoupias and
Papadimitriou 1999), the worst case ratio of the sys-
tem delay caused by the selfish behavior over the sys-
tem optimal solution, may be arbitrarily large even
in simple networks (Roughgarden and Tardos 2004,
Swamy 2007). The UE-DTA problem, also commonly
referred to as the dynamic user equilibrium (DUE) prob-
lem, is not addressed here, but we refer the reader
to Friesz et al. (1993, 2013); Han, Friesz, and Yao
(2013); Smith and Wisten (1995); and Wie, Tobin, and
Carey (2002) for some solutions, strategies, and vari-
ants of the DUE problem. System optimal (SO) traffic
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assignment, on the other hand, leads to optimal use of
the network resources (Carey and Watling 2012; Qian,
Shen, and Zhang 2012; Li, Waller, and Ziliaskopoulos
2003; Nie 2011), but is hard to achieve in practice
since the overriding objective for individual drivers
in a road network is to minimize their own travel-
time. It is well known that setting a toll on each road
segment corresponding to the marginal delay of the
demand moves the user equilibrium towards an SO
allocation (Vickrey 1969, Roughgarden 2002). How-
ever, imposing time-varying tolls on each road segment
is impractical and tolling in general is difficult to imple-
ment in many settings due to both infrastructure and
political considerations.
An alternative approach is to attempt to control a

fraction of the drivers (via direct control or some incen-
tive scheme) and assign routes via a central authority
that tries tominimize systemwide total travel time. This
has been studied in the context of Stackelberg routing
games (Korilis, Lazar, and Orda 1997; Roughgarden
2001; Swamy 2007), where the goal of the central con-
troller is to assign routes to a fraction of the demand
using a strategy that minimizes the systemwide cost,
while anticipating selfish behavior from the demand
that is not being controlled. Most of this work has been
in the area of communication networks and assumes
a nondecreasing latency function and vertical queues.
However, these assumptions are generally not satis-
fied in road traffic networks, with physical (or horizon-
tal) queuing because of congestion propagation and
more complex latency functions due to the physics
of flows and driver behavior (Daganzo 1994, 1995;
Lighthill and Whitham 1955; Richards 1956). There-
fore, the literature on partial control in traffic assign-
ment is sparse and usually makes strong simplifying
assumptions. For example, Aswani and Tomlin (2011)
use vertical queues and nondecreasing latency func-
tions, while Krichene et al. (2013) consider simple par-
allel networks. Ziliaskopoulos (2000) formulated the
single destination SO-DTA problem (with full con-
trol) as a Linear Program (LP) under a LP relaxation
that approximates the nonlinear dynamics of the sys-
tem. However, the SO-DTA problem with partial con-
trol cannot be formulated as a convex problem, even
in the case of a single destination, without violating
the first-in-first-out (FIFO) condition (Carey 1992) due
to the multiple commodities (selfish and cooperative
demand). Furthermore, solving the SO-DTA problem
with an LP relaxation of the dynamics can lead to the
holding of vehicles on links when the model allows for
a larger flow. It has been argued that this holding can
be achieved in practice via variable speed limit (VSL)
signs (Ziliaskopoulos 2000) and makes sense when the
goal of the problem is also to solve for the optimal VSL
values (Gomes and Horowitz 2006), but is impractical

to implement in most cases. Thus, there is a need for a
more general solution that does not require VSL.

A further complication of DTA in practical settings
is the unavailability of OD data for the entire demand.
Most DTA solutions assume that this data is available,
although it can be challenging to obtain in practice.
Therefore, we formulate the partial control problem in
amanner that requires full OD information only for the
demand that can be controlled by the central authority,
and the boundary flows and junction split ratios for the
remaining demand (which are much easier to obtain
via inductive loop detectors, for example).

We formulate the system optimal dynamic traffic as-
signment problemwith partial control (SO-DTA-PC), using
a traffic dynamicsmodel similar to theCell Transmission
Model (CTM) (Daganzo 1994, 1995), which is a Godu-
nov discretization of the Lighthill–Williams–Richards
(LWR)partial differential equation (PDE) (Lighthill and
Whitham 1955, Richards 1956) with a triangular flux
function. The CTM is a physical queuing model and
uses a latency function that gives a constant delaywhen
the traffic density is below a certain threshold and pro-
gressively increases as thedensity increasesbeyond this
threshold; it is well accepted in the transportation com-
munity as a goodfirst order approximation of road traf-
fic dynamics for DTA (Lo and Szeto 2002; Ukkusuri,
Han, and Doan 2012). We propose solving the SO-
DTA-PC problem with the nonconvex traffic dynamics
from Delle Monache et al. (2014) and limited OD data
with complete split ratios as a non- linear optimal con-
trol problem. Themulticommodity formulation thatwe
propose can be directly used to solve SO-DTAproblems
withmultiple origins and destinations.

The next challenge is finding efficient descent meth-
ods for this nonconvex optimal control problem. There
is a vast literature on optimization techniques for non-
convex control problems (see Bertsekas 1999 and the
references therein) that can be used to solve this prob-
lem. While gradient based methods do not guarantee
converging to the optimal solution in nonconvex opti-
mization problems, they can still be used to find local
minima. One of the main computational challenges in
this approach is the efficient computation of the gra-
dient, since this computation must be repeated many
times. We show that the structure of our dynamical
system allows for very efficient computation of the gra-
dient via the discrete adjoint method (Bayen, Raffard,
and Tomlin 2006; Giles and Pierce 1997, 2000; Jameson
and Martinelli 2000; Raffard 2008). If the state vector is
n dimensional and the control vector is m dimensional,
direct computation of the gradient takes O(n2m) time.
The adjoint method generally reduces the complexity
to O(n2 + nm), but the structure of our system allows
further reduction of the complexity to O(n + m) by
exploiting the sparse nature of the forward system.
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Note that this work currently does not model the
response of the selfish users (demand). It is clear that
a change in the network state will result in a response
from the selfish users as in a Stackelberg game. Finding
the optimal control for a Stackelberg game isNP-hard in
the size of the network for the class of increasing latency
functions even in the static case (Roughgarden 2001); it
is common touse approximate strategies (Roughgarden
2001, Swamy 2007). We wish to extend this work in the
future tomodel the selfish response.

The contributions of this article are as follows: (1) for-
mulation of the SO-DTA-PC as a multicommodity
finite horizon optimal control problem (our formula-
tion allows for networks with multiple origins and
destinations); (2) defining a multicommodity junction
model for the network dynamics that reduces the bur-
den of input data by using different input data mod-
els for controllable and noncontrollable commodities,
(3) solving the gradient of the system with O(n + m)
time complexity for an n dimensional state space and
m dimensional control vector using the discrete adjoint
method, and (4) experimental results to illustrate the
benefits and applications of the technique.
The rest of the article is organized as follows. In

Section 2, we present the traffic dynamics model with
its assumptions, junction solver, and boundary con-
ditions, and introduce the notion of controllable and
noncontrollable flows in the network. In Section 3, we
define the forward model of the system with explicit
solutions to the junction problems. Section 4 formu-
lates the optimization problem, derives the adjoint sys-
tem, and describes the gradient descent method. This
is followed with numerical results in Section 5. We
conclude with some final remarks and future research
directions in Section 6.

2. Traffic Model
The aggregate traffic dynamics are modeled using a
macroscopic traffic flow model based on the LWR
PDE (Lighthill and Whitham 1955, Richards 1956). We
use amulticommodity variant of the PDEmodel devel-
oped in Garavello and Piccoli (2006) with input buffers.
The buffers are used to ensure that no vehicles are
dropped from the system due to congestion propagat-
ing outside the bounds of the network, which is an
important consideration in the optimal control setting,
and is known in the PDE literature as imposing strong
boundary conditions. We then use a Godunov dis-
cretization (Godunov 1959) of the network PDE model
as explained in Reilly et al. (2015) to obtain an equiva-
lent discrete model.

2.1. Network Definitions
The road network is divided into cells, indexed by i ∈A
where A is the set of all cells. Note that a physical
road link connecting two junctionsmay be divided into

multiple cells. We add a buffer (origin) cell, indexed
by i ∈B where B ⊂ A, at each entrance (origin) of
the network to ensure that vehicles are not dropped
from the system when congestion propagates to the
entrance of the network (i.e., to impose strong bound-
ary conditions). The sink cells, indexed by i ∈ B ⊂ A
where S ⊂ A, correspond to the boundaries (destina-
tions) where flows exit the network. Therefore, each
origin o belongs to the set B and each destination
belongs to the set S . Each junction, indexed by z ∈ J ,
connects a set of incoming cells J in

z to a set of outgoing
cells J out

z . The total flow in the network is decomposed
into a set of |C | commodities that correspond to differ-
ent types of flow. Appendix A provides a full list of the
notation that is used throughout the article with their
corresponding descriptions.

Definition 1 (Supply and Demand). The supply of a cell i
at time step k, denoted σi(k), is maximal flow that can
enter the cell, while the demand δi(k) is the maximal
flow that can leave the cell. By assumption, buffers have
no supply and the sinks have no demand.

Definition 2 (Density). The density on a cell i at time
step k, denoted by ρi(k), is the total number of vehicles
on the cell during that time step divided by the length
of the cell Li . The vehicles in the cell could be from any
of the |C | commodities in the network.

Definition 3 (Single Commodity Density). The density
induced by a single commodity c on a cell i at time
step k, denoted by ρi , c(k), is the total number of vehi-
cles of commodity c on the cell during that time step
divided by the length of the cell Li , and satisfies

ρi(k)�
∑
c∈C

ρi , c(k). (1)

Definition 4 (Initial Conditions). The initial conditions of
the network are the densities of each commodity at
each cell at time step k � 0 and are denoted ρi , c(0).
Definition 5 (Inflow and Outflow). The inflow (respec-
tively, outflow) fromacell i at time step k, denoted f ini (k)
(respectively, f outi (k)), is the total flow leaving (respec-
tively, entering) the cell at time step k. By assumption,
buffers have no inflow and sinks have no outflow.

Definition 6 (Single Commodity Inflow and Outflow). The
inflow (respectively, outflow) from a cell i at time step k
corresponding to commodity c, denoted f ini , c(k) (respec-
tively, f outi , c (k)), is the total flow of commodity c leaving
(respectively, entering) the cell at time step k

f ini (k)�
∑
c∈C

f ini , c(k), (2)

f outi (k)�
∑
c∈C

f outi , c (k). (3)

See Figure 1 for an illustration.
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Figure 1. The Density (ρ), Inflow ( f in), and Outflow ( f out) of
Cell i at Time Step k Includes Components Corresponding
to Each Commodity That Flows Through Cell i

Cell if i
in(k) = ∑ f i, c(k)

c ∈�

in

�i(k) = ∑�i, c(k)
c ∈�

f i
out(k) = ∑ f i, c (k)

c ∈�

out

Definition 7 (State Evolution). The state of the network
at time step k is given by the density ρi , c(k) of each
commodity c at each cell i. The density evolution is
governed by the following dynamics, which corre-
spond to mass conservation. Time is indexed by k ∈
[0,T f � T − 1] corresponding to T time steps

ρi , c(k)� ρi , c(k − 1)+ ∆t
Li
( f ini , c(k − 1) − f outi , c (k − 1)),

∀ i ∈A\(B∪S ), ∀ k ∈ [[1,T f ]], ∀ c ∈C , (4)

ρi , c(k)� ρi , c(k − 1)+ ∆t
Li
· f ini , c(k − 1),

∀ i ∈S , ∀ k ∈ [[1,T f ]], ∀ c ∈C , (5)

with initial condition

ρi , c(0)� ρ0
i , c , ∀ i ∈A\S , ∀ c ∈C , (6)

ρi , c(0)� 0, ∀ i ∈S , ∀ c ∈C. (7)

Prescribing traffic flows using a macroscopic traffic
flow model based on the LWR PDE requires defining
a flux function that describes the relationship between
traffic density and flow (Daganzo 1994).
Assumption 1. The flux function defining the relationship
between density and flow for each cell is given by a triangular
fundamental diagram as shown in Figure 2. The parameters
F, v, w, and ρjam are cell specific constants denoting, respec-
tively, the maximum flow rate through the cell, the maximum
(or jam) density of the cell, the free-flow (or congestion free)
speed of the cell, and the speed at which congestion propa-
gates backwards (congestion wave speed).

This is a first order approximation of the empirical
relationship between flow and density. See Dervisoglu
et al. (2009) for more details.

Figure 2. Triangular Fundamental Diagram
f

�

v −w

�jam

F

Assumption 2. FIFO property. We assume that no vehicles
entering a cell at time step k will overtake vehicles that have
already entered the cell at some time step k′ < k.

2.2. Discretization Requirements
The discretized network model is composed of cells
(each link representing a physical road may be divided
into multiple cells) and nodes (each node represent-
ing a junction between some incoming and outgo-
ing cells). As with any numerical scheme, the accu-
racy of a macroscopic traffic model increases with the
granularity of the network discretization. In addition,
to ensure the convergence of the solution of the dis-
cretized model to the solution of the continuous LWR
equation as the time step ∆t and space discretization L
goes to zero, the network must satisfy the Courant–
Friedrichs–Lewy (CFL) conditions, which are standard
requirements in numerical analysis (Godunov 1959,
Leveque 2002). See Appendix B for a more detailed
explanation of the CFL requirements.

2.3. Controllable and Non-Controllable Flow
There are two types of flows that are transported in
the network. Controllable flows that have OD require-
ments, but can be routed along any path in the net-
work, and noncontrollable flows that have fixed paths.
These flows are modeled by distributing the total flow
of the network intomultiple commodities, as explained
below. See Figure 3 for a simple example network.

Assumption 3. Path decomposition of controllable flow.
We assume that the controllable flows from each OD pair
are restricted to a small predetermined subset of paths in the
network.

Remark 1. The SO-DTA model presented here is de-
signed primarily for applications where the vehicles
need to be rerouted in real-time along a set of pre-
determined routes. Application with this requirement
includes (i) real-time traffic rerouting due to an acci-
dent or other perturbation and (ii) redistributing recur-
ring traffic on high capacity arterials and highways to
avoid schools, small residential streets, and other traf-
fic sensitive streets (a problem created by apps such as
Waze). In this context, for most operational settings, it
was determined that a small set of paths per OD pair
was sufficient. See Appendix C for a discussion on how
to find this set of paths and an alternative approach for
when paths do not need to be predetermined.

Definition 8 (Non-Controllable Commodity). There is a
single noncontrollable commodity cn that represents
all noncontrollable flow in the network. The paths of
the flow corresponding to the noncontrollable com-
modity are defined via the junction split ratios.

Definition 9 (Split Ratio). The split ratio of a commod-
ity c at cell i and time step k among the outgoing
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Figure 3. A Simple Network with a Single Origin and Two Destinations

Route 1

Route 2

Route 3

Route 4

Destination 1 (S1)

Destination 2 (S2)

Origin (O)

�i = �i, cn
 + �i, 1 + �i, 2

�j = �j, cn
 + �j, 1 + �j, 2

Cell i

Cell j

�is1, 1 = 1

�is2, 1 = 0

�oi, 1 = 1

�oi, 1 = 0

Notes. The noncontrollable commodity is denoted by cn and the compliant commodities by their corresponding route numbers. Routes 1
and 3 correspond to the OD pair (o , s1) and routes 2 and 4 correspond to the OD pair (o , s2). Commodities 1, 2, and cn flow through cell i and
commodities 3, 4, and cn flow through cell j. The routing for commodity 1 is illustrated using the split-ratios β.

cells j ∈ Γ(i), denoted βi j, c(k), is the fraction of the com-
modity c flow out of cell i that is entering cell j at time
step k, such that ∑ j∈Γ(i) βi j, c(k)� 1.

Definition 10 (Controllable Commodities). The control-
lable commodities cc ∈ CC correspond to the control-
lable flow. There is a unique controllable commodity
that corresponds to each path that the controllable flow
can be routed along in the network. A controllable
commodity is then equivalent to a tuple (origin, desti-
nation, path). There is no restriction on the number of
OD pairs in the network.

Definition 11 (Conservation of Flow). The path of a con-
trollable commodity is defined via the junction split
ratios for this commodity

βi j, c(k)�


1 if the path of commodity c

includes cell i and cell j,

0 otherwise.

(8)

Definition 12 (Origin-Destination Demand). The number
of controllable vehicles that seek to travel from origin
o ∈ B to destination s ∈ S at time step k is given by
D(o , s)(k) ·∆t. It is an exogenous input.

Assumption 4. Data requirements. We assume that the
OD information for all controllable flow and the aggregate
path information for all noncontrollable flow is known.

While at first glance this might seem like a lot of
information to gather, it is in fact reasonable to assume
in road traffic networks. We assume that the control-
lable flows are vehicles that are cooperating with the
traffic coordination system that is trying to efficiently
route vehicles and therefore will share their OD infor-
mation. The aggregate paths of the noncontrollable
flows can be obtained from historical traffic patterns.
The caveat is that empirical split ratios also include
the contribution of the controllable flows and therefore
must be preprocessed to remove this contribution. This
can be done, for example, by using the following pro-
cess: (i) Forward simulate the system assuming a con-
trollable flow fraction of zero; (ii) Assign the control-
lable flow to the shortest path corresponding to each

OD pair; (iii) Remove this flow from the network and
recompute each junction split ratio to reflect the flow
that has been removed.

Remark 2. The junction split ratios for the non-control-
lable commodities may be time-dependent, while the
junction split ratios for the controllable commodities
are not, since a controllable commodity corresponds to
a single path.

Definition 13 (Controllable Commodity and Origin-Desti-
nation Pair). Any controllable commodity c ∈ CC is a
tuple (o , s , p) where o ∈B, s ∈ S and p is a path (i.e., a
sequence of cells). We define the functionΩ as follows:

Ω: CC → S ×B,
c 7→ (o , s). (9)

The set Ω−1({o , s}) contains all the commodities corre-
sponding to the flows from origin o to destination s.
The function Ω provides a mapping between com-
modities and their corresponding OD pairs.

Definition 14 (Controllable Flow Control). A control u is
an allocation of the controllable demand over the set
Ω−1({o , s}) for each time step. Formally u is defined as

u: CC × [[0,T f ]] → [0, 1],
(c , k) 7→ γc(k).

(10)

The demand allocation for commodity c at time step k
is given by γc(k). The number of vehicles with origin o
and destination s that are allocated to commodity c at
time step k is D(o , s)(k) · γc(k) ·∆t.

Definition 15 (Physically Feasible Control). A physically
feasible control u verifies the mass conservation of the
controllable demand allocation∑

c∈Ω−1({o , s})
γc(k)� 1, ∀ k ∈ [[0,T f ]], ∀ (o , s) ∈B×S .

(11)
We denote with U the set of all physically feasible
controls.
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3. Forward System
We now define the dynamics of the flows through the
network in our model, which includes the boundary
conditions, the rules governing the movements across
junctions, and system level dynamics of the flow (i.e.,
the forward system).

3.1. Junction Model
The junction model defines the dynamics of the flow
between neighboring cells. We require that it satisfy
the following properties.
Requirement 1 (Multicommodity First-in First-Out (FIFO)
Condition). For any outgoing cell i, the distribution of its
flow across the different commodities must be proportional to
the ratio of vehicles of each commodity on the cell. If ρi(k), 0
we must have

f outi , c (k)� f outi (k)
ρi , c(k)
ρi(k)

. (12)

Requirement 2 (ConsistencywithSplitRatios). Let fi j, c(k)
be the flow of commodity c from cell i to j at time step k. The
outflow must be consistent with the split ratios

fi j, c(k)� f outi , c (k) · βi j, c(k). (13)

Requirement 3 (Maximum Flow Constraint). The outflow
cannot exceed the demand and the inflow cannot exceed the
supply

0 ≤ f ini (k) ≤ σi(k), ∀ k ∈ [[0,T f ]], (14)
0 ≤ f outi (k) ≤ δi(k), ∀ k ∈ [[0,T f ]]. (15)

We define a multicommodity junction flow solver
that assigns flows across the network in a manner that
is consistent with the above requirements. The mul-
ticommodity junction solver we consider is based on
the source destination model (SDM) in Garavello and
Piccoli (2006).
Definition 16 (Priority Vector). In the case of a junc-
tion where there is more than one incoming cell and
the aggregate demand of these cells is greater than
the aggregate supply of the outgoing cells, the avail-
able supply must be distributed among the competing
demands according to some priority vector as follows:
The priority vector P j for cell j defines the allocation of
its supply over the incoming cells i ∈ Γ−1( j). The prior-
ity for a given incoming cell i is given by Pi j such that∑

i∈Γ−1( j) Pi j � 1.
Definition 17 (Aggregate Split Ratio). The aggregate
split ratio βi j(k) over all commodities for a given path
through a junction is defined as follows:

βi j(k)�
∑
c∈C

ρi , c(k)
ρi(k)

βi j, c(k)

�
1

ρi(k)
∑
c∈C

ρi , c(k)βi j, c(k). (16)

The aggregate split ratio is only defined for positive
aggregate densities, i.e., ρi(k) > 0.

See Appendix D for the specific junction model (sat-
isfying Requirements 1–3) and solution methods that
we use. Our model is related to the SDM in Garavello
and Piccoli (2006) and the multicommodity CTM in
Daganzo (1995).

3.2. Boundary Conditions
The boundary conditions at each origin cell of the net-
work dictate the flows that enter the network. Each
boundary condition is given as a flow rate at the
boundary.

Definition 18 (Boundary Demand). The number of vehi-
cles of commodity c leaving cell i ∈B at time step k is
the boundary demand of commodity di , c(k). Let cn be
the commodity corresponding to noncontrollable flow.
Note that only the aggregate demand at each origin
and junction split-ratios are required for the noncon-
trollable flow and that explicit OD information is not
required. For the controllable flow, the explicit demand
corresponding to every OD pair must be known. The
nonzero terms are defined as

di , c(k)�∆t ·Di , c(k), ∀ i ∈B, c � cn
(Non-controllable demand)

di , c(k)�∆t ·DΩ(c)(k) · γc(k), ∀ i ∈B, ∀c ∈CC
(Controllable demand)

Because the inflow to the network is limited by the
maximum flow capacity and density of the immedi-
ate downstream cell, all of the demand at a given time
step might not make it into the network. An origin
buffer is used to accumulate the flow that cannot enter
the network to guarantee conservation of boundary
flows. In the single commodity case, this model is suf-
ficient. However, in the multicommodity case, we also
need to make sure that the flow through the boundary
respects the multicommodity FIFO condition given in
Requirement 1.

As stated in Definition 18, di , c(k) is the boundary
demand per commodity on cell i at time step k. The
FIFO condition dictates that the vehicles entering the
boundary buffer at time k should enter cell i at the ratio
di , c′(k)/(

∑
c′∈C di , c(k)) for each commodity c.

The simplest solution is to have a single buffer l at
the boundary, as in the single commodity case, and
keep track of how many vehicles of each commodity
are at the buffer. The flow into the boundary cell will
be as follows:

f ini , c(k)�
li , c(k)
li(k)

f ini (k).

This equality satisfies the FIFO condition assum-
ing that the vehicles in the buffer are uniformly dis-
tributed. However, in reality the buffer can accumulate
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vehicles arriving at the boundary at different time steps
with different commodity ratios di , c(k)/di(k). Thus, this
model can violate the FIFO property across multiple
time steps if some vehicles cannot leave the buffer in
one time step. See Appendix E for a more detailed dis-
cussion on the FIFO condition and amulti-buffermodel
that satisfies the FIFO condition.
As the length of a buffer can be seen as the density of

a cell of length 1, we use the same notation ρi , c(k) for a
buffer i. The speed of this cell is then vi � 1/∆t because
of requirements 4 and 6.

3.3. System Dynamics
For a given control u, we can determine the evolution
of the network using the following equations that pre-
scribe the system dynamics. Let x(u) denote the state
of the network under these dynamics subject to the
control u.
The system of equations governing the evolution of

the network (implicit definition of x) is written for-
mally in the form H(x , u) � 0, thus x is an implicit
function of u. The discretized system dynamics can
be described using six types of constraints, given by
Hh � 0, h ∈ {1, . . . , 6}, listed below. These six constraints
have different individual instantiations depending on
the specific setting such as cell type or junction type.
For notational simplicity, the equations given here are
for the single buffer model. The explicit formulation is
given below.
Mass conservation

H1
k , i ,c : ρi ,c(k)�ρi ,c(k−1)+∆t

Li
( f ini ,c(k−1)− f outi ,c (k−1)),

∀ i∈A\(B∪S ),∀k∈[[1,T f ]],∀c∈C , (H1a)

H1
k , i ,c : ρi ,c(k)�ρi ,c(k−1)+∆t

Li
· f ini ,c(k−1),

∀ i∈S ,∀k∈[[1,T f ]],∀c∈C , (H1b)

with initial conditions

H1
0, i , c : ρi , c(0)� ρ0

i , c , ∀ i ∈A\S , ∀ c ∈C , (I1a)
H1

0, i , c : ρi , c(0)� 0, ∀ i ∈S , ∀ c ∈C. (I1b)

Boundary conditions

H1
k , i , c : ρi , c(k)

� ρi , c(k − 1)+ ∆t
Li
(DΩ(c)(k) · γc(k) − f outi , c (k − 1)),

∀ i ∈B, ∀ k ∈ [[1,T f ]], ∀ c ∈CC , (H1c)

H1
k , i , c : ρi , c(k)� ρi , c(k − 1)+ ∆t

Li
(Di , c(k) − f outi , c (k − 1)),

∀ i ∈B, ∀ k ∈ [[1,T f ]], c � cn , (H1d)

with initial conditions

H1
0, i ,c : ρi ,c(0)�ρ0

i ,c+
∆t
Li
·DΩ(c)(0)·γc(k),

∀ i∈B,∀c∈CC , (I2a)

H1
0, i ,c : ρi ,c(0)�ρ0

i ,c+
∆t
Li
·Di ,c(0), ∀ i∈B, c�cn . (I2b)

Flow propagation
Recall that ρi(k) �

∑C
c�1 ρi , c(k) is the total density of

cell i at time step k

H2
k , i : δi(k)�min(Fi , viρi(k)),

∀ i ∈A\(B∪S ), ∀ k ∈ [[0,T f ]], (H2a)
H2

k , i : δi(k)�min(Fi , ρi(k)Li/(∆t)),
∀ i ∈B, ∀ k ∈ [[0,T f ]], (H2b)

H3
k , i : σi(k)�min(Fi ,wi(ρ

jam
i − ρi(k))),

∀ i ∈A\(B∪S ), ∀ k ∈ [[0,T f ]], (H3a)
H3

k , i : σi(k)� Fi , ∀ i ∈S , ∀ k ∈ [[0,T f ]]. (H3b)

Junction solution
The derivation of the explicit solutions to the 1 × 2,

2 × 1, and 2 × 2 junctions listed below are given in
Online Appendix F. The general solutions for the junc-
tion model are given in Section 3.1.

To simplify the notation, we use the following
shorthand:

• We drop the time index k
• We abbreviate i1 � 1 and i2 � 2
• We use the following notation i1 � i2 and i2 � i1

When ρi � 0, there are no vehicles in the incoming cell i
and the outflow of this cell is zero for all commodities.
The following equations only apply for ρi , 0.

Aggregate split ratios

H4
k , i , j, z : βi j �

1
ρi

∑
c∈C

ρi , cβi j, c , ∀ z ∈ J , ∀ i ∈ J in
z ,

∀ j ∈ J out
z , ∀ k ∈ [[0,T f ]]. (H4)

Flow out of incoming cells by commodity

H5
k , i ,c : f outi ,c �

ρi ,c

ρi
min

({
σ j

βi j
,∀ j∈J out

z

����βi j>0
}
,δi

)
,

∀z∈J 1×n ,∀ i∈J in
z , (H5a)

H5
k , i ,c : f outi ,c �

ρi ,c

ρi

·


δi if Pi(min(δ1+δ2 ,σ1)−δi)>δiP i ,

min(δ1+δ2 ,σ1)−δ i if P i(min(δ1+δ2 ,σ1)−δ i)>δ iPi ,

Pi min(δ1+δ2 ,σ1) otherwise ,
∀z∈J 2×1 ,∀ i∈J in

z , (H5b)
H5

k , i ,c : f out1

�



δ1 if P1/P2>δ1/min(δ2 ,(σ1−β11δ1)/β21 ,(σ2−β12δ1)/β22),
min(δ1 ,(σ1−β21δ2)/β11 ,(σ2−β22δ2)/β12)

if P1/P2<min(δ1 ,(σ1−β21δ2)/β11 ,(σ2−β22δ2)/β12)/δ2 ,

min(P1σ1/(P1β11+P2β21),P1σ2/(P1β12+P2β22))
otherwise,

∀ i∈J in
2×2 ,
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f out2 is obtained by symmetry,

f outi ,c �
ρi ,k

ρi
f outi , ∀i∈{1,2},∀c∈C. (H5c)

Flow into outgoing cells by commodity

H6
k , i ,c : f ini ,c�

∑
x∈J in

z

βxi ,c f outx ,c , ∀z∈J ,∀ i∈J out
z ,∀c∈C. (H6)

As shown in Figure 4, the dynamics equations has a
topological ordering that allows for the following effi-
cient forward simulation algorithm. For any given time
step k, each of the three internal loops are trivially par-
allelizable problems.

4. Adjoint Based Optimization
Given the traffic model and the dynamics of the flow,
we nowdescribe the adjoint-based optimization frame-
work for minimizing the total travel-time of all agents
in the system.

4.1. Problem Formulation
For a given control u, we can determine the evolu-
tion of the network using the equations for the system
dynamics. Let x(u) be the state of the network under
these dynamics subject to the control u.

Figure 4. (Color online) Dependency Diagram of the System Variables

Time 0

Time Tf = T − 1

Time k…

…

(�N, c(0))

(�1, c(0))

…

�N(0)

�1(0) �1(0)

…

�N(0)

…

(�Nj(0))

(�1j(0))

… …

… … … … … …

( fN, c(0))out ( fN, c(0))in

( f1, c(0))in( f1, c(0))out

( fN, c(Tf))
in

( f1, c(Tf))
in( f1, c(Tf))

out

( fN, c(Tf))
out(�Nj(Tf))

(�1j(Tf))

�N(Tf)

�1(Tf)

�N(Tf)

�1(Tf)

(�N , c(Tf))

(�1, c(Tf))

The total travel-time J(x(u)) is defined as

J �
T−1∑
k�0

∑
i∈A\S

ρi(k) · Li . (17)

The SO-DTA-PC is a physically acceptable (see Defi-
nition 14) division of the controllable agents among the
different commodities that minimizes the total travel-
time (including the travel-time of the noncontrollable
commodities). The solution is obtained by solving the
following optimization problem:

min
u∈U

J(x(u))

subject to system dynamics,
control constraints,

where the system dynamics are given in Section 3.3
and the control constraints are the following:

γc(k) ≥ 0, ∀ c ∈CC , k ∈ [[0,T f ]],∑
c∈Ω−1{(o , s)}

γc(k)� 1, ∀ k ∈ [[0,T f ]].

Note that this is a nonconvex optimization problem
that might contain multiple local minima. Therefore,
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the gradient methods will not guarantee global opti-
mality. However, descent algorithms can still be used to
obtain locally optimal solutions and can be improved
by using multiple starting points (Boese, Kahng, and
Muddu 1994; Marti 2003). Furthermore, nonconvex
optimization techniques such as subgradient and inte-
rior point methods (Giles and Pierce 1997,Wachter and
Biegler 2005) require the gradient of the system.We use
the discrete adjoint method, which will be explained
in Section 4.2, to efficiently solve for the gradient of the
system. The control constraints can be satisfied using a
projected gradient descent or a barrier function. In our
implementation, we use the projected gradient descent
approach.

4.2. Overview of the Adjoint Method
We consider the following general optimization
problem:

min
u∈U

J(x , u)

subject to H(x , u)� 0,
(18)

where x ∈ X denotes the state variables and u ∈ U
denotes the control variables.
The adjoint method (Duffy 2009) is a technique to

compute the gradient ∇u J(x , u)� dJ/du of the objective
function without fully computing ∇u x � dx/du. The
gradient is then used to perform a gradient descent.
We suppose that for any control u, (∂H/∂x)(x , u) is not
singular.
Under equality constraints H(x , u) � 0, the La-

grangian

L(x , u , λ)� J(x , u)+ λT H(x , u) (19)

coincides with the objective function for any feasible
point (x(u), u). The problem is then equivalent to com-
puting the gradient of the Lagrangian

∇uL(x , u , λ)� ∂J
∂u

+
∂J
∂x

dx
du

+ λT

(
∂H
∂u

+
∂H
∂x

dx
du

)
�
∂J
∂u

+ λT ∂H
∂u

+

(
∂J
∂x

+ λT ∂H
∂x

)
dx
du
. (20)

In particular, if λ satisfies the adjoint equation

∂J
∂x

+ λT ∂H
∂x

� 0, (21)

then the gradient is

∇uL(x , u)� ∂J
∂u

+ λT ∂H
∂u

. (22)

The solution for λ exists and is unique if ∂H/∂x is
not singular, which is the case in our forward system,
as explained in Section 4.3.

4.3. Applying the Adjoint Method
To use the adjoint method to compute the gradient, the
partial derivatives of the forward system with respect
to the state variables ∂H/∂x must not be singular.
We can rewrite our system of equations in the form
H(x , u)� 0 and verify this condition trivially.
All of the diagonal terms of ∂H/∂x are nonzero

(since equal to 1 or −1 depending on the way we
rewrite Hv). As seen in the dependency chain shown
in Figure 4, the nonzero derivative terms of Hv depend
only on variables that have a smaller index in x. This
means that ∂H/∂x is lower triangular with nonzero
terms on the diagonal and is thus nonsingular. There-
fore, we can apply the adjoint method to compute the
gradient of this system.

Reduced state space. The forward system dynamics
described in Section 3.3 hadmany state variables. How-
ever, the only required state variables of the system
are the partial densities ρi , c(k). All of the other vari-
ables were introduced to make the forward system eas-
ier to understand. We will now drop most of these
auxiliary variables to simplify the computation of the
adjoint system. We only use ρi , c(k), f outi , c (k), and f ini , c(k)
to describe the system and replace the other variables
by their expressions as a function of the three state
variables that we retain.

We define

x �
©­­«
((ρi , c(k))c∈C)i∈A
(( f outi , c (k))c∈C)i∈A
(( f ini , c(k))c∈C)i∈A

ª®®¬k∈[[0,T f ]]

,

H �
©­­«
((H1

k , i , c)c∈C)i∈A
((H5

k , i , c)c∈C)i∈A
((H6

k , i , c)c∈C)i∈A

ª®®¬k∈[[0,T f ]]

.

Computational complexity. Let n be the dimension of
the state vector x ∈ Rn , m be the dimension of the con-
trol vector u ∈ Rm , and Nc � |C | be the total number
of commodities. From the above definition of the state
vector, we can see that n � |A| · T · Nc . The dimension
of H is also n as defined above.
Direct computation of the gradient ∇u J(x , u) takes

O(n2m) time

∇u J(x , u)� ∂J
∂x
· ∇u x +

∂J
∂u
. (23)

Computing ∇u J requires solving the system H(x , u) �
0 ⇒ (∂H/∂x)(dx/du) + ∂H/∂u � 0, which is equiv-
alent to solving m different n × n linear systems
and takes O(n2m) time. The final step of multiplying
(∂J/∂x)(dx/du) and adding ∂J/∂u takes O(nm) time,
but is dominated by the time to compute dx/du.
The discrete adjoint method reduces this complex-

ity to O(n2 + nm) by solving for λ in the adjoint sys-
tem. Computing the adjoint variables λT ∈ Rn using
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Equation (21) only takes O(n2) time since it only
requires solving one n × n linear system. Multiplying
λT(∂H/∂u) and adding ∂J/∂u takes O(nm) time, so the
total computation time is O(n2 + nm).

The structure of our system allows for further reduc-
tion of the complexity to O(n + m |C |). As shown
previously, ∂H/∂x is a lower triangular matrix and
therefore we can compute the solution to Equation (21)
using backwards substitution. We exploit the fact that
the matrix ∂H/∂x is extremely sparse. The maximum
row cardinality is four because the forward system
does not contain any constraints with more than four
variables. Therefore, Equation (21) can be solved in
O(n) time. If the maximum in-degree of the network
is din, the maximum column cardinality is 2 + |C | ·
(1 + din), as will be clear in Section 4.4 from Equa-
tion (27). Assuming that din is a small constant, themul-
tiplication step in Equation (22) takes O(m |C |) time.
This leads to a total computation time of O(n + m |C |).

4.4. Adjoint Equations
The adjoint equations are given by the system

∂J
∂x

+ λT ∂H
∂x

� 0, (24)

⇒ ∂J
∂x

+
∑
x′∈x

λ′x
∂Hx′

∂x
� 0, (25)

where x is the state vector and H′x is the forward system
equation corresponding to the variable x′ ∈ x. To write
the adjoint system equation corresponding to x′, we
have to look at all forward system equations where x′

appears and consider all non-null ∂Hx′/∂x terms. In
particular we write the equations such that ∂Hx′/∂x′

�−1. Note that this can be done because the Godunov
scheme provides an explicit expression for the forward
system constraints.

Computing ∂J/∂x

∂J
∂ρi , c(k)

�

{
Li ∀c∈C , ∀ i∈A\S , ∀k∈[[0,T f ]],
0 otherwise.

(26)

Computing λT(∂H/∂x)

∂H
∂ρi , c(k)

:
∑
x′∈x

λx′
∂Hx′

∂ρi , c(k)

�λρi , c (k)
∂Hρi , c (k)

∂ρi , c(k)
+λρi , c (k+1)

∂Hρi , c (k+1)

∂ρi , c(k)

+
∑

c′∈CC

(
λ f outi , c′ (k)

∂H f outi , c′ (k)

∂ρi , c(k)

+λ f outx , c′ (k)
∑

x:(x , i)∈A

∂H f outx , c′ (k)

∂ρi , c(k)

)
, (27)

∂H
∂ f outi , c (k)

:
∑
x′∈x

λx′
∂Hx′

∂ f outi , c (k)

�λρi , c (k+1)
∂Hρi , c (k+1)

∂ f outi , c (k)
+λ f outi , c (k)

∂H f outi , c (k)

∂ f outi , c (k)

+
∑

j: j∈(i , j)
λ f inj, c (k)

∂H f inj, c (k)

∂ f outi , c (k)
, (28)

∂H
∂ f ini , c(k)

:
∑
x′∈x

λx′
∂Hx′

∂ f ini , c(k)

�λρi , c (k+1)
∂Hρi , c (k+1)

∂ f ini , c(k)
+λ f ini , c (k)

∂H f ini , c (k)

∂ f ini , c(k)
. (29)

Section 4.5 shows how to compute all of the individ-
ual partial derivatives that are required in the above
equations. Once they are computed, we simply plug
them into the above equations and solve the sys-
tem via backwards substitution since ∂H/∂x is lower
triangular.

4.5. Partial Derivatives
Computing the gradient of the system via the adjoint
method requires computing the partial derivatives
∂J/∂u, ∂J/∂x, ∂H/∂u, and ∂H/∂x. The first three of
these can be computed trivially.

• Partial derivatives of the cost functionwith respect
to the control variables (∂J/∂u) from Equation (17)

∂J
∂γc(k)

� 0. (30)

• Partial derivatives of the cost functionwith respect
to the state variables (∂J/∂x) from Equation (17)

∂J
∂ρi , c(k)

�

{
Li if c ∈C , i ∈A\S , k ∈ [[0,T f ]],
0 otherwise.

(31)

• Partial derivatives of the constraints with respect
to the control variables (∂H/∂u) from Equation (H1c)

∂ρi , c(k)
∂γc(k)

�


∆t
Li
·DΩ(c)(k) if c ∈CC , i ∈B, k ∈ [[0,T f ]],

0 otherwise.
(32)

Finally, we need to compute the partial derivatives
of the constraints with respect to the state variables
∂H/∂x, which ismuchmore algebraically involved and
is described in Online Appendix G.

5. Numerical Results
To illustrate the effectiveness of our framework for
computing the SO-DTA-PC, we have implemented the
algorithm and tested it on synthetic and practical traf-
fic rerouting scenarios using experimental field data.
Our implementation uses the discrete adjoint method
to compute the gradient and a projection step to keep
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the solution in the physically feasible control set as
explained in Section 4.1. We use the Rprop algo-
rithm (Riedmiller and Braun 1992) as our gradient
descent technique. All of the experiments were run
on a 1.8 GHz Intel Core i5 dual-core processor with
8 GB RAM. The performance cost C of each scenario is
measured using the total travel time of all of the vehi-
cles passing through the network

C �

T−1∑
k�0

∑
i∈A\S

ρi(k) · Li ·∆t .

We present numerical results for two network sce-
narios.
1. A network adapted from the synthetic network

used in Ziliaskopoulos (2000). The network is illus-
trated in Figure 5.

2. A subsection of Interstate 210 with a parallel arte-
rial route, as depicted in Figure 7.

5.1. Synthetic Network
The synthetic network is a simple 10 cell network adapt-
ed from the example used in Ziliaskopoulos (2000). We
have slightly modified the original network to increase
the capacity of cells 8 and 9 such that they can accom-
modate flow from routes 2 and 3, and changed some
of the other parameters to satisfy the CFL conditions
in Section 2.2. The network contains three paths over
which vehicles can be routed. The time discretization is
set to one time unit and the length of each cell is also
normalized to one unit. Therefore, the total capacity of
each cell in terms of the number of vehicles N is equal
to the jam density ρjam. Each cell in Figure 5 is anno-
tated with its cell capacity N , while the edge weights in
the network prescribe themax flow F between the cells.
The free flow speed v of each cell is also normalized to
one and the congestion speed w is equal to the free flow
speed. The demand at the origin of the first three time
steps is, respectively, 8, 16, and 8 vehicles. The network

Figure 5. (Color online) The Synthetic Network

Route 1 

Route 3

Route 2
C = 2, N = 20

C = 9, N = 20

C = 8, N = 20

C = 7, N = 20

C = 3, N = 10 C = 4, N = 10

C = 5, N = 10

C = 6, N = 10
C = 1, N = ∞

C = 10, N = ∞

6

6

6

6

6

6

6

6

6

Notes. There are 10 cells marked C � 1, . . . , 10 and the jam density ρjam of each cell is denoted by the maximum number of vehicles (N), since
the length of each cell is normalized to 1. The edge weights represent the max flow F between the neighboring cells.
Source. Adapted from Ziliaskopoulos (2000).

Table 1. Optimal Allocation of Demand Across Routes

Time step 1 2 3

(a) Normal operation
Route 1 0.75 0.5 0.5
Route 2 0 0 0
Route 3 0.25 0.5 0.5

(b) Incident local minimum
Route 1 0.25 0.417 0.417
Route 2 0 0 0
Route 3 0.75 0.583 0.583

(c) Incident global minimum
Route 1 0 0.25 0.25
Route 2 0.25 0 0
Route 3 0.75 0.75 0.75

is simulated for 10 time steps, which gives enough time
for all of the entering flow to exit the network.

First we use the discrete adjoint optimization frame-
work to compute the system optimal flow allocation
for the network assuming that all of the flow is con-
trollable. Table 1(a) shows the optimal route allocation
for the origin demands at each time step with nonzero
demand. The total travel time cost (C) with the optimal
flowallocation is 178 time units. The solution converges
towithin0.5%of theoptimal solution in three iterations.

Capacity reduction due to an incident.We now consider
the case where the capacity between cells 3 and 4 is
temporarily reduced due to some incident. The corre-
sponding capacities for cell (3, 4) are given in Table 2.
If the vehicles continue to be routed using the previ-

ous path allocation, the total travel cost (C) will now be
244 time units. The total cost increases by 37% because
a large percentage of vehicles are routed along the
path that is temporarily closed and then subjected to
a reduced capacity. If we recompute the system opti-
mal flow allocation, the total cost decreases to 211 time
units and the corresponding flow allocation is given in
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Table 2. Capacity Reduction Due to an Incident

Time step 1 2 3 4 5 6 7 8 9 10

F(3, 4) 6 6 0 0 3 3 6 6 6 6

Table 1(b). It turns out that this solution is actually a
local minimum in the system due to the FIFO condition
for vehicles departing cell 3. Whenever there is some
nonzero flow for route 1 and the capacity between
cells 3 and 4 is zero, the flow of vehicles that take
route 2 is also restricted to zero. This causes a noncon-
vexity that results in a discontinuity of the gradient at
the point where the flow of vehicles on route 1 is zero.
Gradient-based methods are not well suited to deal
with such conditions because the information obtained
from the gradient only provides local information. The
global optimal solution occurs with the flow allocation
given in Table 1(c) and results in a total travel time
cost of 207. As mentioned in Section 4.1, the effect of
local minima can, in general, be mitigated using multi-
start strategies (Boese, Kahng, and Muddu 1994; Marti
2003) and the efficient gradient computation obtained
via the adjoint method can be combined with non-
convex optimization techniques such as interior point
methods (Wachter and Biegler 2005).
Partial control. In many situations, it might not be

possible to reroute all of the vehicles in the system.
Therefore, we also analyze the behavior of the system
when only some fraction of the vehicles are rerouted.
We consider the example above with a capacity reduc-
tion due to an incident, but in this case, assume that
only a certain fraction of the flow can be controlled.
The remaining (noncontrollable) flow is expected to
continue to follow the flow distribution from before
the incident (i.e., the distribution given by Table 1(a)).
Figure 6 shows how the total travel time changes with

Figure 6. (Color online) The Change in Total Travel Time vs.
the Percentage of Vehicles That Can Be Rerouted
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Percentage of rerouted vehicles

System optimal
210

220

230

240

250

0 0.2 0.4 0.6 0.8 1.0

Note. All performance measures are with respect to the local mini-
mum found by the optimizer.

the percentage of vehicles that can be rerouted. In this
example, we see that the system optimal (local min-
imum) can be achieved by controlling only 60% of
the vehicles. However, in practice, it is possible that
the noncontrollable passengers might alter their route
choice distribution after the capacity drop, particularly
if they are aware of the control strategy being used
on the controllable travelers. In this work, we ignore
the potential endogenous route change response by
the noncontrollable users as explained in Section 1.
Accounting for the route choice response by the non-
controllable users to the control strategy leads to a
Stackelberg game and is a computationally hard prob-
lem to solve, as also alluded to in Section 1. This is
an extremely interesting area of future research and an
open problem.

5.2. Interstate 210 Sub-Network
The experimental analysis was conducted on a 8 mile
corridor of Interstate 210 in Arcadia, California, with
a parallel arterial route, as illustrated in Figure 7. The
network has 24 cells corresponding to satisfying the
CFL condition for a time step of 30 seconds. The physi-
cal properties of the network such as the capacity were
obtained using the Scenario Editor software developed
as part of the Connected Corridors project, a collabora-
tion between the University of California Berkeley and
the California Partners for Advanced Transportation
Technology (PATH). Calibrated fundamental diagram
parameters, split ratios, and boundary data were also
obtained from other parallel research efforts at Con-
nected Corridors. The data used for calibrating these
parameters were obtained from the Freeway Perfor-
mance Measurement System (PeMS) (Chen et al. 2001).
We consider a prototypical one-hour time horizon dur-
ing the morning commute. The density profile of the
freeway under the calibrated parameters and estimated
boundary flows is shown in Figure 8(a).

Capacity drop during the morning commute.We analyze
the behavior of the freeway corridor in the event of
a capacity drop caused by some incident. We assume
that the capacity drop occurs at the fifth freeway road
segment 10minutes into the simulation and that it lasts
for 20 minutes, as illustrated in Figure 8(b). The free-
way capacity at segment five is assumed to be reduced
by half during this period, corresponding to a closure
of two lanes (out of four) at the location of the inci-
dent. Figure 8 shows the density profile corresponding
to (a) normal operation with capacity drop, (b) a capac-
ity drop due to a two lane closure during the incident
with no traffic diversion, (c) the same capacity drop
with traffic being diverted to the parallel arterial, and
(d) the change in the density profile due to the traffic
diversion. As Figure 8 shows, rerouting the excess flow
to the parallel arterial eliminates the bottleneck dur-
ing the incident and improves the throughput of the
freeway corridor.
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Figure 7. (Color online) The Interstate 210 Sub-Network

Partial capacity utilization. In this example, the par-
allel arterial is assumed to prioritize vehicles being
routed from the freeway and the full arterial capacity
is used for this purpose. However, in certain situations,
municipalities may want to allocate some capacity of
the parallel arterial for local traffic. In this case, the
optimizer can be limited to only use a certain fraction

Figure 8. (Color online) The Density Evolution Along the 14 Freeway Cells With (a) No Incident, (b) A Two-Lane Capacity
Drop from Minutes 10–30 at Cell 5, (c) Flow Being Rerouted to the Parallel Arterial Due to the Capacity Drop, and (d) the
Density Difference Between the Incident Profiles With and Without Rerouting
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Note. Panels (a)–(c) correspond to the 0 to 1 relative density color map and panel (d) corresponds to the −1 to 1 relative density color map.

of the capacity of the parallel arterial to reroute flows.
Figure 9 shows the density evolution when the arterial
capacity allocated for rerouting freeway traffic is lim-
ited to 40% and 50% compared to full arterial utiliza-
tion. The amount of local traffic that enters the parallel
arterial can be controlled via the traffic signal controls
along the arterial.
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Figure 9. (Color online) A Comparison of the Density Evolution for Different Rerouting Capacities on the Parallel Arterial
Route: (a) Only 40% of the Arterial Capacity Can Be Used for Rerouting Freeway Vehicles, (b) Only 50% of the Arterial
Capacity Can Be Used for Rerouting Freeway Vehicles, and (c) The Entire Arterial Capacity Is Used for Rerouting Freeway
Vehicles (i.e., the Parallel Arterial Temporarily Closed for Other Traffic)
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(c) Full arterial utilization(a) 40% of arterial capacity (b) 50% of arterial capacity

Note. All panels correspond to the 0 to 1 relative density color map shown in Figure 8.

Partial control.As in the case of the synthetic network,
the percentage of controllable vehicles can also be reg-
ulated in this example. Practically speaking, such a sit-
uation may arise due to only a fraction of the vehicles
on the roadway being equipped with the technology
to be rerouted by a central controlling authority or due
to the incentives (resources) required to get drivers to
reroute from their original route. The heatmaps that
arise from full control and partial control scenarios will
look similar to the results in Figure 9, since both restric-
tions (on arterial capacity and the fraction of control-
lable vehicles) essentially limit the number of vehicles
that can be rerouted to the parallel arterial.
Adjoint method—practical benefits. To demonstrate the

increased efficiency of computing the solution via
the discrete adjoint method, we also implemented
the gradient computation using a simple finite differ-
ences method by perturbing each variable and mea-
suring the response of the system. See Morton and
Mayers (2005) for a detailed analysis of finite dif-
ference methods. This approach, which approximates
the gradient at a given point, has a runtime com-
plexity of O(nm) where n is the dimension of the
state vector and m is the dimension of the control
vector. Recall that the size of the state vector is n �

|A| · T · |C | and that the size of the control vector is
m � T · |C |, where |C | is the total number of com-
modities (feasible paths) in the problem. Therefore,

O(nm) � O(|A| · T2 · |C |2) and the finite difference
method has a computation time that is quadratic in
the number of time steps. By comparison, the adjoint
method has a time complexity of O(n + m |C |) �
O(|A| · T · |C | + T · |C |2), which is linear in the num-
ber of time steps. The complexity of both methods is
quadratic in the total number of feasible paths, but this
is assumed to be a small number in practical routing
problems, since vehicles that travel between a fixed OD
pair will only typically have a small number of rea-
sonable paths. Figure 10 shows the time taken for one
gradient computation as a function of the number of
time steps in the problem for the I-210 network. The
simulations are run by changing the time discretiza-
tion of the problem to control the total number of time
steps. Reducing the time discretization also increases
the number of cells due to the maximum cell length
imposed by the CFL condition. The results show that
the finite differences approach quickly becomes com-
putationally intractable as the number of time steps in
the problem increases and highlights the value of the
discrete adjoint method for solving large problems in a
tractable manner. Therefore, one of the major practical
contributions of this framework is the ability to effi-
ciently compute the system gradient in multicommod-
ity SO-DTA problems (including the cases of partial
and full control). The adjoint-based solution technique
provides a computationally tractable method for real-
time route control in multicommodity traffic networks.
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Figure 10. (Color online) The Base 10 Logarithm (log10) of
the Gradient Computation Time for Solving the I-210
Network vs. the Number of Time Steps in the Problem
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Notes. The total time horizon is fixed, so a larger number of time
steps implies a smaller time discretization. This also results in a
larger number of cells (smaller in length) due to the CFL condition.

6. Conclusion
This article has presented a model and optimization
framework for solving the SystemOptimal Dynamic Traf-
fic Assignment problem with Partial Control (SO-DTA-PC)
for general networks with physical queuing dynamics.
The model only requires full origin-destination (OD)
information for the fraction of the agents that are con-
trollable, with aggregate split ratios being sufficient
for the noncontrollable (selfish) agents. We have used
a Godunov discretization of the Lighthill–Williams–
Richards (LWR) partial differential equation with a tri-
angular flux function (similar to the Cell Transmission
Model) and a correspondingmulticommodity junction
solver for the dynamics of the system, but the pro-
posed framework can also be used with other dynam-
ics models. We show that the sparsity pattern of the
forward system allows us to compute the gradient of
the system with linear computational complexity and
memory using the discrete adjoint method. Finally,
we apply this framework to find the optimal vehicle
rerouting strategy in response to a capacity loss in
a network, and show the congestion reductions that
can be achieved. Numerical results are presented for
a test network and Interstate 210 in Southern Califor-
nia. Themajor limitation of this work is the assumption
that noncontrollable vehicles have a fixed path choice.
Relaxing this assumption, as discussed in the article,
requires posing the problem as a Stakelberg game and
substantially increases the computational complexity
of the problem. Finding efficient approximation tech-
niques to solve this more general problem is an active
area of future research and an open problem.

Appendix A. Notation
Constants
∆t, ∆x Time and space discretization;

k, T, T f Time index, number of time steps, and final time
step (k ∈ [0,T f � T − 1]);

vi Free flow speed on cell i;
wi Congestion wave speed on cell i;
Li Length of cell i;

ρ
jam
i Jam density on cell i;
Fi Max flow capacity of cell i;

Pi j Merge priority factor from cell i to cell j.

Sets
J in

z Incoming cells to junction z;
Jout

z Outgoing cells to junction z;
A The cells (including buffers and sinks);
B The buffer cells;
S The sink cells;

OD The set of origin-destination (OD) pairs;
Γ−1(i) The predecessors of cell i;
Γ(i) The successors of cell i;
C The commodities;

CC The controllable commodities.

Inputs
ρi , c(0) Initial density of commodity c on cell i;
βi j, c(k) Split ratio for commodity c on cell i to cell j, time

step k;
D(o , s)(k) Demand rate of controllable agents going from

o ∈B to s ∈S , time step k;
Di , c(k) Demand rate of noncontrollable agents of commod-

ity c � cn on cell i, time step k.

Variables
f ini (k) Total flow into cell i, time step k;

f outi (k) Total flow out of cell i, time step k;
f ini , c(k) Flow of commodity c into cell i, time step k;

f outi , c (k) Flow of commodity c out of cell i, time step k;
ρi(k) Density on cell i, time step k;
ρi , c(k) Density contribution of commodity c on cell i, time

step k;
σi(k) Supply on cell i, time step k;
δi(k) Demand on cell i, time step k;
di(k) Boundary demand on cell i, time step k;
γc(k) Demand allocation for commodity c, time step k.

Appendix B. CFL Conditions

Requirement 4 (CFL Condition 1). ∀ i ∈A\S , vi ≤ Li/∆t.

For numerical stability, the vehicles in a given cell should
only be able to travel forward at most one cell in a single time
step. Requirement 4 ensures that this condition is satisfied by
imposing an upper bound on the velocity.

Requirement 5 (CFL Condition 2). ∀ i ∈A\B, wi ≤ Li/∆t.

Each cell cannot have a density greater than ρjam. Require-
ment 5 ensures that this condition is satisfied. While the
requirement that vi ≤ Li/∆t comes from the positive den-
sity, this one comes from the fact that the density has to be
smaller than ρjam

i . Indeed, in the case of a cell with no out-
flow (because of an extreme congestion of the next cell), the
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inflow can be limited by the supply. When the inflow is sup-
ply constrained, the resulting density at the next time step
must always be smaller than ρjam

i

ρi(k)+
∆t
Li

wi(ρ
jam
i − ρi(k)) < ρ

jam
i ;

ρi(k)
(
1−wi

∆t
Li

)
< ρ

jam
i

(
1−wi

∆t
Li

)
,

and because 0 ≤ ρi(k) ≤ ρ
jam
i we also have 1− wi(∆t/Li) ≥ 0,

which is the requirement.

Requirement 6 (Finite Time Density Discharge). ∀ i ∈ A,
vi ≥ Li/∆t.

This condition guarantees that the density of a given cell
discharges in a finite amount of time when there is no incom-
ing flow. Requirement 6 ensures that this condition is satis-
fied. If vi < Li/∆t, we can have an exponential decrease of
the density in some cells when they should be emptied in
only one step. Taking the case of a cell without inflow, we
have ρi(k + 1)� ρi(k) − (∆t/Li)ρi(k)vi , which gives ρi(k + t)�
ρi(k)(1−∆tvi/Li)t . This is not an acceptable physical solution
and thus should be excluded.

Remark 3. Satisfying requirements 4 and 6 implies imposing
vi � Li/∆t. Given that the velocity v is an exogenous parame-
ter, this imposes a strict requirement on the space discretiza-
tion of the road segments. However, any given road segment
might not be strictly into cells of exact length vi · ∆t, and in
most cases a cell of length L ∈ (0, vi∆t)will remain. There are
multiple solutions to this issue:

• Approximate the length of each road segment to be a
multiple of vi · ∆t. The relative rounding error decreases as
the road gets longer and the discretization ∆t gets smaller.

• Change the dynamics of the last cell in each road seg-
ment to have a special case that allows for vehicles to be fully
dischargedwhen the supply of the downstream cell allows it.
This makes the dynamics equations and optimization prob-
lem more complicated.

• Accept thismodel limitation and have a small amount of
density stuck in the network. This is not bad in practice, since
the number of vehicles stuck in a cell decreases exponentially
with time.

Appendix C. Routing Over Predetermined Paths
The model presented in this work assumes that each con-
trollable OD demand is restricted to a small subset of pre-
determined paths in the network. As stated previously (see
Assumption 3), this assumption is driven by the fact that the
primary applications of this work required real-time control
and the ability to prespecify paths.

In the corresponding operational context, the set of routes
is selected by a traffic engineer or planner based on their
expertise and specific considerations such as avoiding sensi-
tive areas (schools, residential streets, etc.). However, if this
process needs to be automated, the following algorithmic
approaches can be considered.

One approach is to use an alternative paths algorithm.
These algorithms, which are used by companies such as
Google/TomTom/Appletopresentalternateroutes innaviga-
tion systems, are more sophisticated than simpler k-shortest

paths algorithms that typically provide many very similar
routeswith slight deviations. As described in Bast et al. (2016,
p. 26), alternate paths algorithms aim to find paths that are
“short, smooth, and significantly different (from the short-
est path and other alternatives).” See Section 3.2 in Bast et al.
(2016) for a short discussion on the topic and links to other
articles for further details.

Another heuristic approach is to solve the static UE prob-
lem for the maximum corresponding flows and pick the
paths with nonzero flows. This approach might however
ignore some of the paths that appear in an SO solution, so
it may be appropriate to consider increasing the maximum
flow to activate more candidate paths.

Furthermore, even in the context of solving the SO-DTA
problem for all possible paths, most road networks will only
induce vehicle flows (for a given OD pair) on a small sub-
set of paths (under an appropriate network aggregation).
Small deviations from these aggregated paths on low capac-
ity roads may not significantly compromise the quality of the
solution. Therefore, limiting the flows to a small set of paths
might not result in a major loss of efficiency. If the network is
aggregated, a secondary optimization problem can be solved
to distribute the flows from the aggregated path to its com-
ponents in the original network.

Finally, if it is necessary to solve the problem in full gener-
ality, an alternative approach (that does not limit the number
of paths that are used) is to change the control variables from
the path choice at each origin to destination specific split
ratios at each junction. This can still be achieved within the
framework described in this article. In a junction split ration
based formulation, the number of control variables scale as
O(D × J) with D being the number of destinations and J is
the number of junctions, as opposed to O(P×K)with P being
the number of OD pairs and K being the number of paths
per OD pair in the current formulation. Which formulation
has more control variables will depend on the specifics of the
network being considered. In terms of the adjoint formula-
tion, the resulting partial derivatives will be more complex as
the control variables will now explicitly appear in each junc-
tion problem. While this makes their analytical derivation
more tedious, it will not shorten the time taken to compute
each gradient. It is likely however that a junction based for-
mulation might shorten the convergence time of the gradient
descent. Implementing and comparing a junction based for-
mulation is a natural extension of this work.

Appendix D. Junction Solvers
In this section we describe the junction solvers for the
diverge, merger, and diverge/merge junctions that we con-
sider in our model. The underlying optimization problem
and an informal proof of existence and uniqueness of the
solution is given. Explicit solutions to the junction problems
are given in Online Appendix F.

D.1. Diverge Solver (1×m)
We consider a diverging junction z with one incoming cell i
and m outgoing cells. There are |C | commodities that flow
through the junction each with their own time-varying split
ratio βi j, c(k). If ρi(k)� 0, then δi(k)� 0 and f outi (k) is zero. We
only consider the case of ρi(k), 0.
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Given the split ratios and densities of the cells at a junc-
tion, we maximize the flow across the junction subject to the
maximum flow constraints

max f outi (k)
subject to 0 ≤ f inj (k) ≤ σ j(k), ∀ j ∈ Jout

z ,

0 ≤ f outi (k) ≤ δi(k).
(D.1)

We replace f ini (k) using the following relation:

f inj (k)�
∑
c∈C

βi j, c(k) · f outj, c (k) [mass conservation]

� f outi (k)
∑
c∈C

ρi , c(k)
ρi(k)

· βi j, c(k) [by the FIFO constraint]

� f outi (k) · βi j(k) [by definition of the aggregate
split ratios] (D.2)

This gives us a trivial maximization problem that implies
the following equality:

f outi (k)�min
({
σ j(k)
βi j(k)

,∀ j ∈ Jout
z

���� βi j(k) > 0
}
, δi(k)

)
. (D.3)

The total outflow f outi (k) for each incoming cell i is then
divided among the commodities according to the FIFO law:
f outi , c (k)� (ρi , c(k)/ρi(k)) f outi (k). The commodity flows are split
among the outgoing cells according to the split ratios con-
straints: f inj, c(k)� βi j, c(k) f outi , c (k).

Existence and uniqueness of the solution. A nonzero solution
exists if none of the constraints of the optimization/feasibility
problem imposes a zero flow. In other words, as long as the
demand is nonzero and none of the outgoing cells with posi-
tive demand (βi j(k)> 0) have nonzero supply, a nonzero solu-
tion exists. Because the solution to the maximum junction
flow is given by Equation (D.3) and the outflows are uniquely
determined by the split ratios, the solution is unique.

D.2. Merge Solver (n × 1)
We consider a merging junction z with n incoming cells
and one outgoing cell j. A priority vector P j (s.t.

∑
Pi j � 1)

prescribes the priorities at which the outgoing cell accepts
flows from the n incoming cells when the junction is supply
constrained.

If the problem is demand constrained (i.e., ∑i∈J in
z
δi(k) <

σ j(k)), then the solution is given by

f outi (k)� δi(k), ∀ i ∈ J in
z . (D.4)

Otherwise the problem is supply constrained and the so-
lution to the junction problem is given by solving the fol-
lowing quadratic optimization problem that finds the
flow-maximizing solution with the smallest violation of the
priority vector, where the violation is measured using the L2
distance:

min
t , { f outi (k)}i∈J inz

∑
i∈J in

z

( f outi (k) − t · pi j)2 (D.5)

subject to
∑
i∈J in

z

f outi (k)� σ j(k),

0 ≤ f outi (k) ≤ δi(k), ∀ i ∈ J in
z .

The total outflow f outi (k) for each incoming cell i is then
divided among the commodities according to the FIFO law:
f outi , c (k) � (ρi , c(k)/ρi(k)) f outi (k). See Figure D.1 for an illustra-
tion of the solution to a 2× 1 junction.

The priorities are satisfied exactly when the intersection
of the maximum flow isoline and the priority constraint is
feasible. When this point is outside the feasible set, the flow-
maximizing feasible point that is closest to the priority con-
straint (in Euclidean distance) is chosen. The solution violates
the priority rule only in the case where the demand for one
or more of the incoming cells is less than its flow-maximizing
allocation based on the priority vector. In other words, the
priority rule is only violated when an incoming cell does not
have enough flow to satisfy its priority-based allocation. It is
reasonable in the physical sense to maximize flow and only
violate the priority when it is a lack of demand that causes
the violation. The model is not denying any vehicles with
priority the ability to pass through the junction. This is an
important property to note because it avoids having to solve
a multiobjective optimization problem to come up with a
physically meaningful set of flows through the junction.

Existence and uniqueness of the solution. In the demand-
constrained case, existence and uniqueness are trivial. In the
supplied constrained case, the solution is the feasible point
that lies on the boundary of the feasible supply set (a seg-
ment) and minimizes the Euclidean distance to the priority
vector (a line), where the feasible set is given by the sup-
ply constraint (an n dimensional hyperplane: ∑i∈J in

z
f outi (k) ≤

σ j(k)) and demand constraints (an n-dimensional hyper-
rectangle: f outi (k) ≤ δi(k), ∀ i ∈ J in

z ). A solution exists when
the feasible set is non-empty, which is the case if the sup-
ply/demand constraints are greater than zero. This proves
the existence of a solution in all nondegenerate (zero sup-
ply or demand) cases. The boundary of the supply constraint
hyperplane intersects each coordinate axis at xi(k) � σ j(k)
and cannot be parallel to the priority constraint P, which is
a line that goes through the origin. Therefore, since the solu-
tion must lie on a segment that is not parallel to the priority
constraint line P, the solution that minimizes the distance to
the P must be unique. This concludes the proof.

D.3. Merge-Diverge Solver (2×m)
We consider a junction with 2 incoming cells and m outgoing
cells. Our analysis is limited to merge-diverge junctions of no
more than two incoming cells because our model does not
prescribe a unique solution when the number of incoming
cells is greater then two. Thus, our model can only be used
with 1×m, n×1, and 2×m junctions. To our knowledge, find-
ing an explicit junction solver for general junctions that con-
verges to the continuous solution in the limit when the dis-
cretization goes to zero is still an open problem. See Garavello
and Piccoli (2009) and Monache, Goatin, and Piccoli (2016)
for some recent results.

Assumption 5. The priority vectors P j for each outgoing cell j are
identical. This implies that the inflow priorities are allocated with
respect to the total flow that enters the junction and that the priority
does not depend on which outgoing cell the vehicles will enter.

The priority vector P j prescribes the ratios at which the
m outgoing cells allocate their available supply to the two
incoming cells. It satisfies Pi � Pi1 � Pi2 and

∑
i∈J in

z
Pi � 1.

Let J in
z and Jout

z be the sets of incoming and outgoing
cells at the junction. If the problem is demand-constrained
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Figure D.1. An Illustration of the Solutions to Merging Junctions

f 2
out(k)

�2(k)

�1(k)

C: f1    (k) + f2    (k) = �1(k)

(a) 2 × 1 junction

C1

C2

(b) 2 × 2 junction

f 1ou
t (k

)

�1(k)

f 1ou
t (k

)

out out

f1    (k) =out outP1

P2
–  f2    (k) f1    (k) =out outP1

P2
–  f2    (k)

f 2
out(k)

�2(k)

Notes. A similar illustration appears in Daganzo (1995). The dashed lines denote the demand constraints imposed by the density on the
incoming cells. The solid lines (C) denote the supply constraints imposed by the density in the outgoing cells. The solid lines going through
the origin denote the merge priority vector. If the priority vector intersects any supply constraint inside the feasible demand set, the solution
will be the feasible intersection point. If the intersection is outside the feasible demand set, then the solution will be the nearest feasible point
where the supply and the demand constraints intersect (marked with a dot).

(i.e., ∑i∈J in
z
βi j(k)δi(k) ≤ σ j(k), ∀ j ∈ Jout

z ), then the solution is
given by

f outi (k)� δi(k), ∀ i ∈ J in
z . (D.6)

Otherwise, the flows through the junction are given by the
following optimization problem:

min
t ,{ f outi (k)}i∈J inz

∑
i∈J in

z

( f outi (k)−t ·Pi)2 (D.7)

subject to
∑
i∈J in

z

βi j(k) f outi (k)≤σ j(k), ∀ j∈Jout
z ,

max
j

(∑
i∈J in

z

βi j(k) f outi (k)−σ j(k)
)
�0, ∀ j∈Jout

z ,

f outi (k)≤δi(k), ∀ i∈J in
z .

The total outflow f outi (k) for each incoming cell i is then
divided among the commodities according to the FIFO law:
f outi , c (k)� (ρi , c(k)/ρi(k)) f outi (k). The commodity flows are split
among the outgoing cells according to the split ratio con-
straints: f inj, c(k)�

∑
i: (i , j)∈A βi j, c(k) f outi , c (k). See Figure D.1 for an

illustration of the solution to a 2× 2 junction.
Existence and uniqueness of the solution. In the demand con-

strained case, existence and uniqueness are trivial. In the sup-
plied constrained case, the solution is the feasible point (with
respect to the supply and demand constraints) that lies on
the boundary of the feasible supply set (a union of segments)
and minimizes the Euclidean distance to the priority vector
(a line). A solution exists when the feasible set is nonempty,
which is the case if the supply/demand constraints are
greater than zero. This proves the existence of a solution in all
nondegenerate (zero supply or demand) cases. The feasible
supply set is the intersection of m two-dimensional hyper-
planes, which is a convex set. Therefore, the boundary of
the feasible supply set (a union of segments) is also convex.

Furthermore, the boundary of the feasible supply set inter-
sects each coordinate axis at xi(k) � min j(σ j(k)/βi j(k)) and
therefore cannot be parallel to the priority constraint P,
which is a line that goes through the origin. Therefore, since
the solutionmust lie on a convex union of segments and none
of these segments is parallel to the priority constraint line P,
the solution that minimizes the distance to P must be unique.
This concludes the proof.

Appendix E. FIFO Condition at the Origin
Note that the FIFO condition is violated in its strict sense even
within the network. The flow propagation model assumes
that all of the flow within a cell is uniformly distributed
according to the individual commodity ratios regardless of
when the vehicles arrived at the cell.

Example 1. Consider the following simple example: There
are two commodities a, b in cell i with 10 vehicles of each
commodity at time k. At time k + 1, 10 vehicles exit the cell
(5 of a and 5 of b by the FIFO rule) and 10 new vehicles (3 of a
and 7 of b) enter the cell. The new ratio of vehicles at i is 8 a
to 12 b. At time k +2, once again 10 vehicles exit the network.
According to the cell level FIFO rule, the 10 vehicles will
consist of 4 a’s and 6 b’s. However, the first 10 cars of those
currently in cell i came at the ratio of 1:1 and truly satisfying
the FIFO rule would require the 10 exiting vehicles to consist
of 5 a’s and 5 b’s.

Remark 4 (Cell-Level Multicommodity FIFO Condition). The
strict multicommodity FIFO condition is not satisfied in most
traffic flow models, but this is considered acceptable by the
traffic modeling community. The multicommodity FIFO con-
dition is therefore in practice at best limited to the cell level.

While this argument is satisfactory at the interior of the
network, due to the bounded number of vehicles in a given
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cell (due to the jam density), the FIFO violation can be sig-
nificant at the boundaries of the network. The number of
vehicles in an origin buffer at the boundary of the network
can be arbitrarily large, and thus, there is no bound on how
badly the multicommodity FIFO constraint can be violated.

A simple extension that limits the mixing of vehicles enter-
ing at different time steps is to have a series of origin buffers
at the boundary, where the multicommodity FIFO constraint
is enforced when vehicles move between the buffers. In this
model, the commodity ratios are maintained separately for
each buffer. Any vehicles that enter the network at a given
time step are added to the last active (non-empty) buffer. This
restricts the violation of the FIFO condition across multiple
steps to the capacity of a single buffer.

The capacity of each buffer is chosen such that the buffer
can satisfy the maximum supply of the first cell of the net-
work boundary that the buffer serves. This prevents artifi-
cial delays at the origin. The buffer capacity is set to ∆t · Fb
where b is the boundary cell.

The limitation of this model is that we need to maintain
lmax/(∆t · Fb) buffers per origin, where lmax is the maximum
queue length at the boundary and ∆t · Fb is the capacity of
each buffer. Let lb

i , c(k) be the number of vehicles of commod-
ity c in the bth buffer for origin node i at time step k and lb

i (k)
its sum over all of the commodities.

The buffers are updated as follows:
• First, given f ini (k), move flow out of the initial buffer

f ini , c(k)�
l1
i , c(k)
l1
i (k)

f ini (k), ∀ c ∈C , (E.1)

l1
i , c(k + 1)� l1

i , c(k) − f ini , c(k), ∀ c ∈C. (E.2)

• Let B be the number of buffers in use. Iterate through
the buffers and push flow upstream using the following
algorithm.

Algorithm 1 (Update buffers).
for b � 1 to B − 1 do
∆lb �min (L− lb

i (k + 1), lb+1
i (k + 1))

.Maximum flow that can enter buffer b

lb
i , c(k + 1)� lb

i , c(k + 1)+
lb+1
i , c (k + 1)

lb+1
i (k + 1)

∆lb , ∀ c ∈ C

. Per-commodity flow entering buffer b

lb+1
i , c (k + 1)� lb+1

i , c (k + 1) −
lb+1
i , c (k + 1)

lb+1
i (k + 1)

∆lb , ∀ c ∈ C

. Per-commodity flow leaving buffer b +1
end for
∆d � di(k) . Total demand at time step k + 1
b � B
. Allocate the demand to last buffer and create new buffers if

needed
while ∆d > 0 do
∆lb �min(L− lb

i (k + 1),∆d)
.Maximum flow that can enter buffer b

lb
i , c(k + 1)� lb

i , c(k + 1)+
di , c(k + 1)
di(k + 1) ∆lb , ∀ c ∈ C

. Per-commodity flow entering buffer b
b � b + 1

end while.

The only demand that is exposed to the system dynamics
and the optimization problem is the demand that is captured
in the first buffer. Amathematically rigorous spillback model
in the continuous time setting is presented in Han, Piccoli,
and Friesz (2016).
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