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Abstract— We consider the System Optimal Dynamic
Traffic Assignment problem with Partial Control (SO-DTA-
PC) for general networks with horizontal queuing. The goal
of which is to optimally control any subset of the networks
agents to minimize the total congestion of all agents in
the network. We adopt a flow dynamics model that is a
Godunov discretization of the Lighthill-Williams-Richards
(LWR) partial differential equation with a triangular flux
function and a corresponding multi-commodity junction
solver. Full Lagrangian paths are assumed to be known for
the controllable agents, while we only assume knowledge of
the aggregate split ratios for the non-controllable (selfish)
agents. We solve the resulting finite horizon non-linear
optimal control problem using the discrete adjoint method.

I. INTRODUCTION

Dynamic traffic assignment (DTA) is the process of
allocating time-varying origin-destination (OD) based
traffic demand across a road network [1], [2]. There are
two types of traffic assignment: the user equilibrium or
Wardrop equilibrium (UE-DTA), where users minimize
individual travel-time in a selfish manner, and the system
optimal allocation (SO-DTA) where a central authority
picks the route for each user to minimize the aggregate
total travel-time over all users [3]. User equilibrium
(UE) traffic assignment can lead to inefficient network
utilization, highlighted by Braess’ Paradox [4], where
adding capacity to the network can actually result in
longer travel times for all users. This inefficiency can
occur in real road networks [5]. SO traffic assignment
on the other hand leads to optimal utilization of the
network resources, but is hard to achieve in practice
since the overriding objective for individual vehicles is
to minimize their own travel-time. Setting a toll on each
road segment equal to the marginal delay of the demand
results in an SO allocation, even with selfish behav-
ior [6]. However, imposing time-varying tolls on each
road segment is impractical and difficult to implement
in many settings due to both infrastructure and political
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considerations.
An alternative approach is to attempt to control a

fraction of the vehicles1 by assigning routes via a central
authority (e.g. smart phone application) that tries to
minimize system wide total travel-time. This strategy
has been attempted in communication networks with
non-decreasing latency functions and vertical queues.
However, these assumptions are generally not satisfied
in road traffic networks, with horizontal queues due to
congestion propagation and more complex latency func-
tions due to the physics of flows and driver behavior [7].
The literature on partial control in traffic assignment is
sparse and the scope of this work has been limited. For
example, Aswani et al. [8] use vertical queues and non-
decreasing latency functions, while Krichene et al. [9]
consider simple parallel networks.

Ziliaskopoulos [10] formulated the single destination
SO-DTA problem (with full control) as a Linear Pro-
gram (LP) under a LP relaxation of the non-linear
system dynamics. However, the SO-DTA problem with
partial control can not be formulated as a convex prob-
lem, even in the case of a single destination, without
violating the first-in-first-out (FIFO) condition [11], due
to the multiple commodities (selfish and cooperative
agents) in this problem. Furthermore, solving the SO-
DTA problem with an LP relaxation of the dynamics
can lead to the holding of vehicles on links when the
model allows for a larger flow. This is however not a
feasible solution for actual roadways. Thus, there is a
need for a more general solution that does not impose
holding.

We formulate the system optimal dynamic traffic as-
signment problem with partial control (SO-DTA-PC),
using a traffic dynamics model based on a Godunov
discretization of the Lighthill-Williams-Richards (LWR)
partial differential equation (PDE) [12], [13] with a
triangular fundamental diagram2. This gives a horizontal
queuing model with a latency function that that is
well accepted in the transportation community as a
good first order approximation of road traffic dynamics.

1Controlling all the vehicles would be ideal, but not always possible.
2The flux as a function of the density takes a triangular shape.
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One major difficulty of DTA in practical settings is
the unavailability of origin-destination (OD) data for
the entire demand. Therefore, we formulate the partial
control problem in a manner that only requires full OD
information for the agents that can be controlled by
the central authority and only requires junction split
ratios (which are much easier to obtain via for example
inductive loop detectors) for the rest of the demand.

Solving the SO-DTA-PC subject to this model re-
quires solving a non-linear optimization problem. While
gradient based methods do not provide any guarantees
of converging to the optimal solution in non-linear
optimization problems, they can still be used to find
local minima and it is a common approach to use
gradient descent methods with multiple start points. One
of the main computational challenges in this approach
is the efficient computation of the gradient, since this
computation must be repeated a large number of times.
We show how the structure of our dynamical system
allows for very efficient computation of the gradient via
the discrete adjoint method [14]. If the state vector is
n dimensional and the control vector is m dimensional,
direct computation of the gradient takes O(n2m) time.
The adjoint methods reduces the complexity to O(n2 +
nm), but the structure of our system allows for further
reduction of the complexity to O(n+m) by avoiding a
matrix inversion and solving the system via backwards
substitution.

The contributions of this article are as follows: 1)
formulation of the SO-DTA-PC problem as a multi-
commodity finite horizon optimal control problem,
2) defining the appropriate multi-commodity junction
model for the network dynamics, 3) solving the gradient
of the system with O(n + m) time complexity for a n
dimensional state space and m dimensional control vec-
tor using the discrete adjoint method, 4) Experimental
results for showcasing the benefits and applications of
the technique3.

II. TRAFFIC MODEL

The aggregate traffic dynamics are modeled using a
macroscopic traffic flow model [12], [13]. We use a
multicommodity variant of earlier PDE model developed
in [15]. This model imposes strong boundary conditions
at the entrances to the network, so that no vehicles
are dropped due to congestion propagating outside the
bounds of the network, an important consideration in
the optimal control setting. We then use a Godunov dis-

3It should be noted that this framework does not consider the
demand response of the selfish agents in response to the control, which
will impact the network conditions in the setting of a repeated game.

cretization [16] of the network PDE model as explained
in [17] to obtain an equivalent discrete model.

A. Network model

The road network is divided into cells, indexed by i ∈
A. We add a ghost cell at the entrances of the network to
impose the boundary demands. Each junction, indexed
by z ∈ J , connects a set of incoming links J in

z

to a set of outgoing link J out
z . The total flow in the

network is decomposed into a set of |C| commodities
that correspond to different types of flow.

The supply of a cell i at time step k, denoted σi (k),
is the flow it can accept from its predecessor cell, while
the demand δi (k) is the flow that is trying to leave the
cell. Note that buffers have no supply and the sinks have
no demand.

The density of a link i at time step k, denoted by
ρi (k), is the total number of vehicles on the link during
that time step divided by the length of the link Li.
The vehicles in the link could be from any of the |C|
commodities in the network. The density induced by a
single commodity c on a link i at time step k, denoted
by ρi,c (k), is the total number of vehicles of commodity
c on the link during that time step divided by the length
of the link Li.

The initial conditions of the network are the densities
of each commodity at each link at time step k = 0 and
are denoted ρi,c (0).

The inflow (resp. outflow) from a cell i at time step k,
denoted f in

i (k) (resp. f out
i (k)), is the total flow leaving

(resp. entering at) the cell at time step k. Note that
buffers have no inflow and sinks have no outflow. The
inflow (resp. outflow) from a cell i at time step k
corresponding to commodity c, denoted f in

i,c (k) (resp.
f out
i,c (k)), is the total flow of commodity c leaving (resp.

arriving at) the cell at time step k.
The state of the network at time step k is given by the

density ρi,c (k) of each commodity c at each cell i. The
density evolution is governed by the following dynamics
under the time discretization of ∆t.4

ρi,c (k) = ρi,c (k − 1) +
∆t

Li

(
f in
i,c (k − 1)− f out

i,c (k − 1)
)

∀i ∈ A \ (B ∪ S), ∀k ∈ [[1, Tf ]], ∀c ∈ C (1)

ρi,c (k) = ρi,c (k − 1) +
∆t

Li
· f in
i,c (k − 1)

∀i ∈ S, ∀k ∈ [[1, Tf ]], ∀c ∈ C (2)

4The discretization of the system must satisfy the Courant-
Friedrichs-Lewy (CFL) for numerical stability. See section 2.1 in [18]
for more details.
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with initial condition

ρi,c (0) = ρ0
i,c ∀i ∈ A \ S, ∀c ∈ C (3)

ρi,c (0) = 0 ∀i ∈ S, ∀c ∈ C (4)

Assumption 1. The flux function defining the relation-
ship between density and flow is obtained using given a
first order approximation of the empirical relationship
between flow and density [19], which results in the
standard triangular fundamental diagram.
Assumption 2 (First-in first-out (FIFO) property). We
assume that no vehicles leaving the origin at a time step
t > t′ will overtake the agents that have left the origin
at time step t′.

B. Controllable and non-controllable flow

There are two types of flows that are transported in the
network. Controllable flows that have origin destination
requirements, but can be routed along any path in the
network, and non-controllable flows that have fixed
paths. These flows are modeled by distributing the total
flow of the network into multiple commodities.
Assumption 3 (Path decomposition of controllable flow).
We assume that the controllable flows from each origin
destination pair is restricted to a small pre-determined
subset of paths in the network.

There is a single non-controllable commodity cn that
represents all non-controllable flow in the network. The
paths of the flow corresponding to the non-controllable
commodity are defined via the junction split ratios. The
split ratio of a commodity c at cell i and time step k
among the outgoing cells j ∈ Γ(i), denoted βij,c (k), is
the fraction of the commodity c flow out of cell i that
is entering cell j at time step k.∑

j∈Γ(i)

βij,c (k) = 1 (5)

The controllable commodities cc ∈ CC correspond
to the controllable flow. There is a unique controllable
commodity that corresponds to each path that the con-
trollable flow can be routed along in the network. A
controllable commodity is then equivalent to a tuple
(origin, destination, path). The path of a controllable
commodity is defined via the binary junction split ratio
for each commodity.

The number of controllable vehicles wanting to travel
from origin o ∈ B to destination s ∈ S at time step k,
denoted D(o,s) (k) ∆t is an exogenous input.
Assumption 4 (Data requirements). We assume that the
origin destination requirements of all the controllable
flows and the aggregate path information for all the non-
controllable flows are known.

While at first glance this might seem like a lot of
information to gather, it is in fact reasonable to as-
sume in road traffic networks. We assume that the
controllable flows are vehicles that are cooperating with
the traffic coordination system that is trying to route
vehicles efficiently and therefore will share their origin
destination requirements. The aggregate paths of the
non-controllable flows can be obtained by looking at
historical traffic patterns and the empirical aggregate
split ratios seen in this data. The caveat is that split
ratios also include the contribution of the controllable
flows and therefore must be pre-processed to remove
this contribution. The junction split ratios for the non-
controllable commodities are time-dependent while the
junction split ratios for the controllable commodities are
not.

Definition 1 (Equivalence between compliant commodity
and path). Any compliant commodity c ∈ CC is a tuple
(o, s, p) where o ∈ B, s ∈ S and p describes a path
(i.e. a sequence of cells). We define the function Ω as
follows:

Ω: CC → S × B (6)
c 7→ (o, s).

Ω−1(o, s) is then the set of commodities corresponding
to the flows from source o to destination s.

Definition 2 (Compliant flow control). A control u is an
allocation of the compliant agents over the set Ω−1(o, s)
for each time step. Formally u is defined as:

u : CC × [[0, T − 1]] → [0, 1] (7)
(c, k) 7→ γc(k)

γc(k) is called the demand allocation for commodity c
at time step k. The number of vehicles with origin o and
destination s that are allocated to commodity c at time
step k is D(o,s) (k) · γc(k) ·∆t.
Definition 3 (Physically feasible control). A physically
feasible control u verifies the mass conservation of the
compliant agents:∑
c∈Ω−1(o,s)

γc(k) = 1 ∀k ∈ [[0, T ]], (o, s) ∈ B × S (8)

Let U be the set of all physically feasible controls.

III. FORWARD SYSTEM

A. Junction model

The junction model defines the dynamics of the flow
between neighboring cells. It is required to satisfy the
following properties.
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Requirement 1 (Multicommodity first-in first-out (FIFO)
condition). For any outgoing link i, the distribution of
its flow across the different commodities must be in
proportion to the ratio of vehicles of each commodity at
the link. If ρi (k) 6= 0 we must have:

f out
i,c (k) = f out

i (k)
ρi,c (k)

ρi (k)
(9)

Requirement 2 (Consistancy with split ratios). Let
fij,c(k) be the flow of commodity c from cell i to j
at time step k. The outflow must be consistant with the
split ratios.

fij,c(k) = f out
i,c (k) · βij,c (k) (10)

Requirement 3 (Maximum flow constraint). The outflow
cannot exceed the demand and the inflow cannot exceed
the supply:

0 ≤ f in
i (k) ≤ σi (k) ∀k ∈ [[0, T ]] (11)

0 ≤ f out
i (k) ≤ δi (k) ∀k ∈ [[0, T ]] (12)

We wish to define a multi-commodity junction flow
solver that assigns flows across the network in a manner
that is consistent with the above requirements.

Definition 4 (Priority vector). In the case of a junction
where there is more than one incoming cell and the
aggregate demand of these cells is greater than the aggre-
gate supply of the outgoing cells, the available supply
needs to be distributed among the competing demand
according to some allocation vector. The priority vector
Pj for cell j definies the allocation of its supply over
the incoming cells i ∈ Γ−1(j). The priority for a given
incoming cell i is given by Pij .∑

i∈Γ−1(j)

Pij = 1 (13)

The aggregate split ratio βij (k) over all commodities for
a given path through a junction is defined as follows:

βij (k) =
∑
c∈C

ρi,c (k)

ρi (k)
βij,c (k)

=
1

ρi (k)

∑
c∈C

ρi,c (k)βij,c (k) (14)

Remark 1. The aggregate split ratio is only defined for
positive aggregate densities, i.e. ρi (k) > 0

Now we consider the solutions to the flows across
each junction in the model. We limit the discussion in
this article to the junction solutions and refer to reader
to section 3.1 of [18] for a detailed explanation of the
junction model and proof of uniqueness of the solutions.

1) Diverge solver (1×m): We consider a diverging
junction z with one incoming link i and m outgoing
links. There are |C| commodities that flow through the
network each with their own time-varying split ratio
βij,c (k).
Remark 2. If ρi (k) = 0, δi (k) = 0 and f out

i (k) is zero.
We consider the case of ρi (k) 6= 0.
The solution to the junction problem is given by the
following equation.

f out
i (k) = min

({
σj (k)

βij (k)
, ∀j ∈ J out

z | βij (k) > 0

}
, δi (k)

)
(15)

2) Merge solver (n × 1): We consider a merging
junction z with n incoming links and one outgoing link
j. A priority vector Pj (s.t.

∑
Pij = 1) prescribes

the priorities at which the outgoing link accepts flows
from the n incoming links when the junction is supply
constrained.

If the problem is demand constrained (i.e.∑
i∈J in

z
δi (k) < σj (k)), then the solution is given by:

f out
i (k) = δi (k) ∀i ∈ J in

z (16)

Otherwise the problem is supply constrained and the
solution to the junction problem is given by solving the
following quadratic optimization problem that finds the
flow maximizing solution with the smallest violation of
the priority vector, where the violation is measured using
the L2 distance:

min
t,{f out

i (k), ∀i∈J in
z }

∑
i∈J in

z

(
f out
i (k)− t · pij

)2
(17)

subject to∑
i∈J in

z

f out
i (k) = σj (k)

0 ≤ f out
i (k) ≤ δi (k) ∀i ∈ J in

z

3) Merge-diverge solver (2 × m): We consider a
junction with 2 incoming links and m outgoing links5.
Assumption 5. The priority vectors Pj for each outgoing
link j are identical. This implies that the inflow priorities
are allocated with respect to the total flow that enters the
junction and that the priority does not depend on which
outgoing link the vehicles will enter. The priority vector
Pj prescribes the ratios at which the m outgoing links

5We limit our analysis to merge-diverge junctions of no more than
two incoming links because our model does not prescribe a unique
solution when the number of incoming links is greater then two. Thus,
our model can only be used with 1×m,n× 1 and 2×m junctions.
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allocate their available supply to the 2 incoming links.
It satisfies Pi = Pi1 = Pi2 and

∑
i∈J in

z
Pi = 1.

Let J in
z and J out

z be the sets of incoming and outgoing
links at the junction. If the problem is demand con-
strained (i.e.

∑
i∈J in

z
βij (k) δi (k) ≤ σj (k),∀j ∈ J out

z ,
then the solution is given by:

f out
i (k) = δi (k) ∀i ∈ J in

z (18)

Otherwise, the flows through the junction are given by
the following optimization problem.

min
t,f out

i (k) ∀i∈J in
z

∑
i∈J in

z

(
f out
i (k)− t · Pi

)2
(19)

subject to∑
i∈J in

z

βij (k) f out
i (k) ≤ σj (k) ∀j ∈ J out

z

max
j

∑
i∈J in

z

βij (k) f out
i (k)− σj (k)

 = 0 ∀j ∈ J out
z

f out
i (k) ≤ δi (k) ∀i ∈ J in

z

In all three cases, the total outflow f out
i (k) for each

incoming link i is then divided among the commodities
according to the FIFO law:

f out
i,c (k) =

ρi,c (k)

ρi (k)
f out
i (k) (20)

The commodity flows are split among the outgoing links
according to the split ratios constraints:

f in
j,c (k) =

∑
i:(i,j)∈A

βij,c (k) f out
i,c (k) (21)

B. Boundary conditions

The boundary conditions at each source link of the
network dictate the flows that enter the network. Each
boundary condition is given as a flow rate at the bound-
ary.
Definition 5 (Boundary demand). The number of vehi-
cles of commodity c leaving from cell i ∈ B at time step
k is the boundary demand of commodity di,c (k). Let
cn be the commodity corresponding to non-controllable
flow. The non-zero terms are defined as:

di,c (k) = ∆t ·Di,c (k) ∀i ∈ B, c = cn
(Non-controllable demand)

di,c (k) = ∆t ·DΩ(c) (k) · γc(k) ∀i ∈ B, ∀c ∈ CC
(Controllable demand)

Since the inflow to the network is limited by the max
flow capacity and density of the immediate downstream

link, all of the demand at a given time step might not
make it into the network. A source buffer is used to
accumulate the flow that can not enter the network to
guarantee the conservation of boundary flows. Using a
single source buffer could however violate the FIFO
condition at the source. See section 3.2 of [18] for
a discussion on preserving the FIFO condition at the
source.

C. System dynamics

For a given control u, we can determine the evolution
of the network using the system dynamics. Let x(u) give
the state of the network under these dynamics subject
to the control u. The system of equations governing the
evolution of the network (implicit definition of x) are
written formally in the form H(x, u) = 0. The explicit
formulation is given in section 3.3 of [18]. The dynamics
equations have a topological ordering that allows for an
efficient forward simulation algorithm, where much of
the computation can be done in parallel.

IV. ADJOINT BASED OPTIMIZATION

A. Problem formulation

The system optimal dynamic traffic assignment with
partial compliance (SO-DTA-PC) is a physically accept-
able (see Definition 2) division of the compliant agents
among the different commodities that minimizes the
total travel-time (including the travel-time of the non-
compliant commodities). The total travel-time J(x(u))
is defined as:

J =

T−1∑
k=0

∑
i∈A\S

ρi (k) · Li

The solution is obtained by minimizing the cost
function J(x(u)) subject to the system dynamics given
in section III-C and the following control constraints.

γc(k) ≥ 0 ∀c ∈ CC, k ∈ [[0, Tf ]]∑
c∈Ω−1{(o,s)}

γc(k) = 1 ∀k ∈ [[0, Tf ]]

Note that this is a non-convex optimization problem
that might contain multiple global minima. Therefore,
gradient methods will not guarantee global optimality.
However, descent algorithms can still be used to obtain
locally optimal solutions and non-convex optimization
techniques such as subgradient and interior point meth-
ods [20] can be aided by having the gradient of the
system. We use the discrete adjoint method, which will
be explained in the next section, to efficiently solve for
the gradient of the system.
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Obtaining a physically feasible control requires satis-
fying the two control constraints. However, the adjoint
method that we will use to efficiently compute the
gradient of the system does not allow for inequality
constraints. Therefore, the γc(k) ≥ 0 inequality con-
straint is satisfied by projecting any control values of the
solution given by the gradient decent to the boundary of
the feasible set of γc(k) = 0. This can be handles either
via a barrier function or by augmenting the state space.
See section 4.1 of [18] for an explanation.

B. Overview of the adjoint method

We consider the following general optimization prob-
lem:

min
u

J(x, u)

subject to H(x, u) = 0
(22)

where x ∈ X denotes the state variables and u ∈ U
denotes the control variables.

The adjoint method [21] is a technique to compute
the gradient ∇uJ(x, u) = dJ

du of the objective function
without fully computing∇ux = dx

du . The gradient is then
used to do a gradient descent based optimization. We
suppose that for any control u, ∂H∂x (x, u) is not singular.
Under equality constraints H(x, u) = 0, the Lagrangian

L(x, u, λ) = J(x, u) + λTH(x, u) (23)

coincides with the objective function for any feasible
point (x(u), u). The problem is then equivalent to com-
puting the gradient of the Lagrangian:

∇uL(x, u, λ) =
∂J

∂u
+
∂J

∂x

dX
du

+ λT
(
∂H

∂u
+
∂H

∂x

dx

du

)
=
∂J

∂u
+ λT

∂H

∂u
+

(
∂J

∂x
+ λT

∂H

∂x

)
dX
du
(24)

In particular, if λ satisfies the adjoint equation:

∂J

∂x
+ λT

∂H

∂x
= 0 (25)

then the gradient is,

∇uL(x, u) =
∂J

∂u
+ λT

∂H

∂u
(26)

Remark 3. The solution for λ exists and is unique if ∂H
∂x

is not singular, which is the case in our forward system,
as explained in the following section.

C. Applying the adjoint method

To be able to use the adjoint method to compute
the gradient, the derivative of the forward system with
respect to the state variables ∂H

∂x must not be singular.
We can rewrite our system of equations in the form
H(x, u) = 0 and verify this condition trivially.

All the diagonal terms of ∂H∂x are non zero (since equal
to 1 ou −1 depending on the way we rewrite Hv). The
non zero derivative terms of Hv depend only of variables
that are present in a smaller index in x. This means
that ∂H

∂x is lower triangular with no zero terms on the
diagonal and is thus non singular. Therefore, we can
then apply the adjoint method to compute the gradient
of this system.

The forward system dynamics that were described
in section III had a large number of state variables.
However, the only required state variables of the system
are the partial densities ρi,c (k). All the others variables
were introduced to make the forward system easier to
understand. We will now drop most of these dummy
variables to simplify the computation of the adjoint
system. We only use ρi,c (k), f out

i,c (k) and f in
i,c (k) to

describe the system and replace the other variables by
their expressions as a function of the three state variables
that we retain.

X =


(
(ρi,c (k))c∈C

)
i∈A((

f out
i,c (k)

)
c∈C

)
i∈A((

f in
i,c (k)

)
c∈C

)
i∈A

 H =


((

H1
k,i,c

)
c∈C

)
i∈A((

H5
k,i,c

)
c∈C

)
i∈A((

H6
k,i,c

)
c∈C

)
i∈A


a) Computational complexity: Let n be the dimen-

sion of the state vector X ∈ Rn, m be the dimension
of the control vector is u ∈ Rm and Nc = |C| be the
total number of commodities. From the above definition
of the state vector, we can see that n = |A| ·T ·Nc. The
dimension of H is also n as defined above.

Direct computation of the gradient ∇uJ(x, u) takes
O(n2m) time.

∇uJ(x, u) =
∂J

∂x
· dX
du

+
∂J

∂u
(27)

Computing dJ
du requires solving the system H(x, u) =

0⇒ ∂H
∂x

dX
du + ∂H

∂u = 0, which is equivalent to solving m
different n× n linear systems and takes O(n2m) time.
The final step of multiplying ∂J

∂x
dX
du and adding ∂J

∂u takes
O(nm) time, but is dominated by the time to compute
dX
du .

The discrete adjoint methods reduces this complexity
to O(n2 + nm) by first computing the adjoint system.
Computing the adjoint variables λT ∈ Rn using equa-
tion (25) only takes O(n2) because it only requires

6
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solving one n × n linear system. Multiplying λT ∂H∂u
and adding ∂J

∂u to complete the computation in equation
(26) takes O(nm) time, so the total computation time
is O(n2 + nm).

The structure of our system allows for further re-
duction of the complexity to O(n + m|C|). As shown
in section IV-C, ∂H

∂x is a lower triangular matrix and
therefore we can compute the solution to equation (25)
using backwards substitution. We will exploit the fact
that the matrix ∂H

∂x is extremely sparse. The maximum
row cardinality is four because the forward system
does not contain any constraints with more than four
variables. Therefore, equation (25) can be solved in
O(n) time. If the maximum in degree of the network is
din, the maximum column cardinality is 2+ |C|(1+din),
as explained in section 4.4 of [18]. Assuming that din is
a small constant, the multiplication step in equation (26)
takes O(m|C|) time. This leads to a total computation
time of O(n+m|C|).

D. Adjoint equations

The adjoint equations are given by the system:

∂J

∂x
+ λT

∂H

∂x
= 0 ∀x ∈ X (28)

⇒ ∂J

∂x
+
∑
x′∈X

λ′x
∂Hx′

∂x
= 0 (29)

where X is the set of all the variables of the problem
and Hx (resp. H ′x) is the forward system equation
corresponding to the variable x (resp. x′). To write the
adjoint system equation corresponding to x (resp. x′), we
have to look at all the forward system equations where
x appears and consider all the non-null ∂Hx′

∂x terms. In
particular we write the equations such that ∂Hx

∂x = −1.
Note that this can be done because the Godunov scheme
provides an explicit expression for the forward system
constraints.

Solving the adjoint system requires the following
partial derivatives.

1) ∂J
∂ρi,c(k) =

{
Li ∀c ∈ C, ∀i ∈ A \ S, ∀k ∈ [[0, T ]]

0 otherwise
and 2) λT ∂H∂x , which is non-trivial to compute.

Sections 4.4 and 4.5 in [18] show how to compute all
the individual partial derivatives that are required. Once
they are computed, we can simply solve the system via
backwards substitution since ∂H

∂x is lower triangular.

V. NUMERICAL RESULTS

A. Interstate 210 network

The experimental analysis was conducted on a 8 mile
corridor of Interstate 210 in Arcadia, California with a

parallel arterial route. The network has 24 cells corre-
sponding to a discretization time step of 30 seconds. We
consider a prototypical one hour time horizon during the
morning commute6. The density profile of the freeway
under the calibrated parameters and estimated boundary
flows is shown in figure 1(a). We use the Rprop [22]
algorithm as our gradient descent technique. All the
experiments were run on a 1.8 GHz Intel Core i5 dual-
core processor with 8GB of RAM.
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Fig. 1: The density evolution along the 14 freeway road links with;
(a) no incident, (b) a two lane capacity drop from minutes 10-30 at
link 5, (c) flow rerouted to the arterial, and (d) the density difference
between the incident profiles with and without rerouting.
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Fig. 2: A comparison of the density evolution with; (a) only 40% of
the arterial capacity utilized for rerouting vehicles and (b) the entire
arterial capacity utilized for rerouting vehicles.

We analyze the behavior of the freeway corridor in the
event of a capacity drop caused by some incident. We

6The demand data and model parameters were obtained from the
Connected Corridors project at UC Berkeley.
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assume that the capacity drop occurs at the fifth freeway
road segment 10 minutes into the simulation and that
it lasts for 20 minutes, as illustrated in figure 1 (b).
The freeway capacity at segment five will be assumed
to be reduced by half during this period, corresponding
to a closure of two lanes (out of four) at the location
of the incident. Figure 1 shows the density profile cor-
responding to; (a) normal operation with capacity drop,
(b) a capacity drop due to a two lane closure during the
incident with no traffic diversion, (c) the same capacity
drop with traffic being diverted to the parallel arterial,
and (d) the change in the density profile due to the traffic
diversion. As the figure shows, rerouting the excess flow
to the parallel arterial eliminates the bottleneck during
the incident and improves the throughput of the freeway
corridor. In this example, the parallel arterial is assumed
to prioritize vehicles being routed from the freeway
and the full arterial capacity is used for this purpose.
However, in certain situations, municipalities may want
to allocate some capacity of the parallel arterial for local
traffic. In this case, the optimizer can be limited to only
use a certain fraction of the capacity of the parallel
arterial. Figure 2 shows the density evolution when the
arterial capacity for rerouting traffic is limited to 40%
in comparison to full arterial utilization. See section 5
in [18] for more detailed numerical results.

VI. CONCLUSION

This article presents a model and optimization
framework for solving the System Optimal Dynamic
Traffic Assignment problem with Partial Control
(SO-DTA-PC) for general networks with horizontal
queuing dynamics. The model only requires full
origin-destination (OD) information for the fraction of
the agents that are controllable, with aggregate split
ratios being sufficient for the non-controllable (selfish)
agents. We show that the sparsity pattern of the forward
system allows us to compute the gradient of the system
with linear computational complexity and memory with
respect to the state space, using the discrete adjoint
method. Finally, we apply this framework to find the
optimal vehicles rerouting strategy in response to a
capacity loss in the network, and show the congestions
reductions that can be achieved.

A longer technical report with additional details avail-
able online for the reviewer’s convenience at:
http://dx.doi.org/10.7922/G23X84KV.
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